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Oscillatory media can exhibit the coexistence of synchronized and desynchronized regions, so-called
chimera states, for uniform parameters and symmetrical coupling. In a phase-balanced chimera state, where
the totals of synchronized and desynchronized regions, respectively, are of the same size, the symmetry of
the system predicts that interchanging both phases still gives a solution to the underlying equations. We
observe this kind of interchange as a self-emerging phenomenon in an oscillatory medium with nonlinear
global coupling. An interplay between local and global couplings renders the formation of these alternating
chimeras possible.

S ynchronization phenomena are omnipresent in nature, and, consequently, their theoretical description has
received great attention for the last two decades1. Given a network of coupled oscillators with a distribution
of natural frequencies, it was a seminal achievement to describe their synchronization transition when the

coupling strength is increased2. Such a transition can be observed in populations of flashing fireflies, in a clapping
audience, in coupled pendulum clocks or metronomes and in many other natural systems3. Lately, a contrasting
andmore counterintuitive transition has received considerable interest from the nonlinear dynamics community:
a population of identical oscillators with symmetrical coupling can split into two coexisting groups, one oscil-
lating in synchrony, while the other one behaves desynchronized. These so-called chimera states have been the
subject of several theoretical studies4–15, and could be realized in a number of different experimental sys-
tems12,14,16–19; for a review, see Ref. 20.

The possible importance of chimera states ranges across various disciplines, pertaining to phenomena such as
the unihemispheric sleep of animals21–23, signal propagation through synchronized firing in otherwise chaotic
neuronal networks24, and the existence of turbulent-laminar patterns in Couette flow25. So far, chimera states
typically show a persistent separation into coherent and incoherent domains, with no interchange of dynamics
between the different domains. During unihemispheric sleep, however, when one half of the brain stays awake
and shows desynchronized neuronal activity while the other half is synchronized and sleeping, the synchroniza-
tion of neurons is known to alternate between cerebral hemispheres21–23. In theoretical studies this phenomenon
could only be reproduced by considering two man-made groups of non-identical oscillators with predefined
inter- and intra-group coupling, either autonomously26 or driven by a periodic external signal27.

In contrast, in this Article we present alternating chimera states that spontaneously emerge in an isotropic
oscillatory medium with nonlinear uniform global coupling, thereby tightening the connection between chimera
states and unihemispheric sleep. As the chimera states found so far in this system are in phase balance, and since
the parameters are uniform and the coupling is symmetric, interchanging the incoherent and coherent phases
again yields a solution of the underlying equations. A combination of local and global coupling effects then
triggers the alternation.

Results
Themodel we consider is a spatially two-dimensional system governed by a modified complex Ginzburg-Landau
equation (MCGLE)14,28:

LtW~Wz 1zic1ð Þ+2W{ 1zic2ð Þ Wj j2W
{ 1zivð Þ Wh iz 1zic2ð Þ Wj j2W� �

,
ð1Þ

where a linear and a nonlinear global coupling term have been added to the standard complex Ginzburg-Landau
equation (CGLE). HereW5W(x, y, t) is a complex variable describing the dynamical state of the system at any
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location (x, y) at time t and . . .h i denotes spatial averages. By spatially
averaging the MCGLE, one obtains a rather simple equation for the
dynamics of Wh i:

Lt Wh i~{iv Wh i[ Wh i~ge{ivt , ð2Þ
displaying simple harmonic oscillations with amplitude g and angu-
lar frequency v. The standard CGLE is a generic model for a spatially
extended system close to the onset of oscillations, and is considered
one of the most important nonlinear equations in physics29,30. To
account for peculiar pattern formation in the oxide-layer thickness
observed during the photoelectrodissolution of n-type silicon14,31,32,
we introduced the nonlinear global coupling. For a wide range of
experimental parameters and various types of spatial patterns, the
spatially averaged oxide-layer thickness has been found to display
nearly harmonic oscillations31,32. This is captured with the special
nonlinear global coupling in Eq. (1), as shown in Eq. (2).
Numerically solving Eq. (1) for appropriate simulation parameters

c1, c2, v and g (see methods section for details), we were able to
reproduce different kinds of dynamics observed in the experimental
silicon system, including a two-dimensional chimera state14: By
changing the parameter c2 we observe a transition from two-phase
clusters (Fig. 1a) to subclustering (Fig. 1b), where one of the two
phases exhibits again two-phase clusters as a substructure. By further
changing c2 we find a two-dimensional chimera state as shown in
Fig. 1c; the spatio-temporal dynamics are visualized in a one-dimen-
sional cut along y in Fig. 1d.
The chimera states previously obtained with theMCGLE exhibit a

persistent division of the system into one coherent and one turbulent
phase, each of which consists of one or more domains. After their
initial formation, almost no area is exchanged between the phases.
Changing c2 to c2520.64, we observe an astonishing, new kind of

chimera state. The initial transition to a state of one synchronized
and one turbulent phase proceeds as for the ‘‘ordinary’’ chimera
states. However, after some time interval the dynamics in the phases

interchange, the initially synchronized phase becoming turbulent
while the turbulent phase becomes synchronized, as depicted in
Fig. 2. Initially, these alternations do not have a characteristic time-
scale, but occur rather erratically in time. Domains of the same phase
tend to merge, thereby reducing curvature and length of the bound-
ary between the phases. Eventually (at t5 106), only two domains are
left, separated by a roughly straight boundary along one of the axes of
the system. Three snapshots in Figs. 3a–c visualize this situation.
Now the alternations of turbulence and synchrony occur more reg-
ularly than before the two phases have properly demixed, approxi-
mately once every interval Dt 5 103. We find these approximately
regular alternations to persist for at least t5 3.7?107, our maximum

Figure 1 | Transition from two-phase clusters to a two-dimensional
chimera state. Shown are snapshots of the real part of the complex variable

W in (a)–(c). (a) Two-phase clusters obtained for parameter c2 5 20.7.

Both phases are homogeneous. (b) Subclustering at c2 5 20.67. In this

case, one phase is homogeneous, while the other one is split into two-phase

clusters. (c) Two-dimensional chimera state found for c2 5 20.58. The

inhomogeneous phase shows strongly incoherent dynamics. (d) Temporal

evolution of the real part of W in a one-dimensional cut at x 5 0 in (c).

Other parameters read: c1 5 0.2, v 5 0.1 and g 5 0.66. Reprinted with

permission from L. Schmidt, K. Schönleber, K. Krischer & V. García-

Morales, Chaos 24, 013102 (2014). Copyright 2014, AIP Publishing LLC.

Figure 2 | Alternating chimera state in the MCGLE. (a) Coexistence of
turbulence and synchrony. (b) Spread of turbulence to the initially

synchronized phase. (c) After an interval Dt < 200, the turbulence has

moved completely from one phase to the other. (d) Temporal evolution of

the absolute value ofv in a cross-section along the x-axis, covering the time

interval from (a) to (c).

Figure 3 | Alternating chimera state with straight boundary (a–c) Three
snapshots of the system after the two-domain state has been reached,

recorded at relative points in time t5 0, 600 and 1000. Over the course of

an interval Dt< 103, the turbulence moves completely from one phase (a)

to the other (c). (d) Temporal evolution of the absolute value of W in a

cross-section along the x-axis. Alternations are now observed regularly at

intervals of about Dt < 103.
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simulation time. Moreover, the system was simulated with the
same parameter values for 100 slightly differing random initial
conditions, always eventually leading to an alternation, the latest
occurring at t < 6?104. In contrast, the system was simulated with
the parameter values corresponding to the non-alternating chimera
state in Fig. 1c for t 5 106 without an alternation taking place.
The two-domain state facilitates the study of the alternation pro-

cess, which always proceeds similarly: First, the turbulence in the
unsynchronized domain turns into a two-phase subclustering.
Then a spatial pattern emerges in the previously coherent domain,
starting at the domain boundary, which acts as a nucleus for tur-
bulence (cf. Figs. 2b and 3b). As the incoherence spreads throughout
the whole domain, the pattern in the other, originally turbulent
domain gradually fades away, leaving it fully synchronized. This
can be seen in Fig. 3d, where the temporal development of a cross-
section is shown.
After the turbulence has engaged the formerly synchronized

domain, the now turbulent domain grows further in size. This
growth process is much slower than the preceding spread of tur-
bulence within the domain. Eventually, the turbulent domain
becomes larger than the synchronized one and when a critical size
is reached, another alternation takes place.
In order to validate the above proposedmechanism, we used initial

conditions as shown in Figs. 4a and c, where either the turbulent or
the synchronized domain was chosen significantly larger than the
other one. Starting out with turbulence covering only a small part of
the system (Fig. 4a), this domain simply grows steadily until it covers
slightly more than half the system, followed by an interchange of
dynamics between the domains. This behavior is visualized in a one-
dimensional cut shown in Fig. 4b. Notably, the growth rate is found
to be greatest at the beginning and to gradually decrease when
approaching phase balance. This can be rationalized as follows:
Many cluster states, including the chimera state found in the
MCGLE, display phase balance. Thus, the phase balanced state,
where both phases cover the same area, is a preferred state, in the
sense that the ghost of the stable phase-balanced state is still felt.
Themore the system approaches the phase balanced state, the slower
the dynamics become.
When starting the simulation from a state where most of the

system is covered by turbulence (Fig. 4c), an initial, very rapid syn-
chronization takes place, with the originally turbulent domain
becoming homogeneous withinDt5 40. This rapid synchronization
is followed by a spread of turbulence throughout the initially syn-
chronized domain, and the same kind of steady domain growth as
observed for the simulation where the turbulent domain is initially
smaller. This corroborates that if the turbulent domain becomes too
large, an alternation is triggered. Note that the growth rate of the

turbulent nucleus in Fig. 4d is not symmetric in positive and negative
y-direction. This could be a manifestation of the growth being
governed by two different mechanisms. The growth process in the
negative y-direction is the spreading of turbulence within the initially
homogeneous domain. In the positive y-direction, the domain
boundary is moving, at a slower pace.
For parameters corresponding to a non-alternating chimera state,

initializing the system out of phase balance leads to the following
behavior: an initially smaller turbulent domain grows until phase
balance is reached, while for an initially larger turbulent domain,
an alternation takes place at first, followed by the growth of the
new, smaller turbulent domain up to phase balance. Thus, the dif-
ference between alternating and non-alternating chimeras is that in
the former the phase balanced state is not stable and the turbulent
domain grows further.
Investigating the extent of alternating chimera states in parameter

space yields the phase diagram depicted in Fig. 5. As shown, they
span a distinct band-like region of the g – c2 parameter space, form-
ing a part of the border between ordinary chimera states and two-
phase cluster states.
Moreover, when carrying out simulations for c2520.66 and g5

0.66, closer to the parameter range where two-phase subclustering
was detected previously14, the alternation of the subclustering from
one of the phases to the other is repeatedly found as an initial tran-
sient. However, in contrast to the alternating chimeras, this behavior
has not yet been found to persist as long-term behavior.

Conclusion. In summary, our simulations of a two-dimensional
oscillatory medium governed by a complex Ginzburg-Landau
equation with additional nonlinear global coupling, give evidence
that alternating chimera states may spontaneously occur in
isotropic oscillatory media. The simulations suggest that
alternations are the result of an interplay between a diffusion-
driven expansion of the turbulent phase and a global restriction on
itsmaximum size, as demonstrated in Fig. 4.Moreover, movement of
the boundary between the phases was found to always proceed in the
direction of expansion of the turbulent phase. This is in accordance
with earlier work on reaction-diffusion systems33–37, including the
realistic model of catalytic CO oxidation on a Pt(110) surface33,34,37,
where the expansion of turbulence at the expense of synchronized
domains was observed as well.
The alternating behavior reminds of heteroclinic cycling between

two attractors, similar to ‘‘slow switching’’ reported for two-cluster
states in Refs. 38,39. However, at this state it would be premature to
draw a conclusion about the mechanism of alternation.
As unihemispheric sleep of animals is suggested to be a prominent

example of chimera states emerging in biological systems21–23, it
is very important that the interchange of synchronization and

Figure 4 | Modified initial states not satisfying phase balance. (a) Initially the turbulent domain ismuch smaller than the synchronized domain. (c)Here,

the turbulent domain is initially larger. (b,d) Temporal evolution of cross-sections through the system evolving from (a) and (c), respectively.
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incoherence between hemispheres occurring during this kind of
sleep can be reproduced without external forcing and with identical
oscillators. However, the current relation of chimera states and uni-
hemispheric sleep has only a qualitative basis. Thus, the important
next step in that direction would be the detailed investigation of
neuronal dynamics during this sleep. Future research has to give
answers to questions like what are appropriate models for neuronal
oscillations and, even more importantly, how they are coupled.

Methods
Simulations of Eq. (1) in the main text were carried out using a pseudospectral
method, an exponential time stepping algorithm40 and a computational timestep ofDt
5 0.05. We used 256 3 256 Fourier modes, a system size of L 5 400 and no-flux
boundary conditions. Note that the equation is dimensionless.

All simulations except those shown in Fig. 4 were carried out from uniform initial
conditions with superposed noise of 0.2%. Modified initial states not satisfying phase
balance (Figs. 4a and c) were created by reflecting a chimera solution about y56200
(for a larger or smaller turbulent domain, respectively) and choosing an appropriate
section of the enlarged system.

Simulation parameters c1 5 0.2, v 5 0.1 and g 5 0.66 were kept fixed for all
simulations depicted in Figs. 1–4, while c2 was varied as described in themain text and
caption of Fig. 1. When investigating the extent of alternating chimera states in
parameter space, c1 5 0.2 and v 5 0.1 were still left constant, while g and c2 were
varied as shown in Fig. 5.

In order to classify the dynamics for a particular set of parameter values in the phase
diagram in Fig. 5, simulations were initialized from a phase balanced state consisting
of a homogeneous and a spatially turbulent domain, separated by a vertical boundary.
If the turbulence switched twice from one side to the other within less than t5 2?104,
the dynamics were classified as an alternating chimera state. If the turbulent half
remained turbulent throughout the pre-set time interval, while the synchronized half
remained synchronized, or if they switched just once, the dynamics were classified as
an ordinary chimera state. Two-phase cluster states were also classified correspond-
ingly, while all other dynamics were combined into a fourth group of other dynamics
(see Fig. 5).
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