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Propionibacterium acnes is one of the most commonly implicated etiologic agents of sarcoidosis. We
previously reported a complete genome sequence of the C1 strain of P. acnes as a clinical isolate from
subcutaneous granulomatous inflammatory lesions in a patient with sarcoidosis. In the present study, we
initially searched for genetic profiles specific to the C1 strain by core genome analysis and multiple genome
alignment with database sequences from 76 and 9 P. acnes strains, respectively. The analysis revealed that
the C1 strain was phylogenetically independent and carried an 18.8-kbp transposon sequence unique to the
sarcoid isolate. The unique composite transposon comprised a novel insertion sequence and extrinsic genes
from bacteria other than P. acnes. Multilocus sequence typing using 24 sarcoid and 36 non-sarcoid isolates
revealed a total of 28 sequence types (STs), including ST26, which was most frequently found without
specificity for sarcoid isolates. All 13 ST26 isolates exhibited cell-invasiveness and were confirmed to carry
the novel insertion sequence and 4 of the 27 extrinsic CDSs in the transposon, with one exception. ST26 of
P. acnes with the composite transposon is the most unique strain detected to date and should be further
examined as a causative strain of sarcoidosis.

P
ropionibacterium acnes is a commensal bacterium on human skin and mucosal surfaces, and is considered
causative of acne. Previous studies reported the isolation of P. acnes from several tissues, including the
conjunctiva, external ear canal, oral cavity, upper respiratory tract, and intestine1, and the possible asso-

ciation of P. acnes with inflammatory disease, such as chronic prostatitis2, endocarditis3 and sarcoidosis4,5,6.
Sarcoidosis is a systemic granulomatous disease with unknown etiology that seems to result from the exposure

of a genetically susceptible subject to an environmental agent, and microbial etiologies of sarcoidosis have long
been considered based on the clinical similarity to infectious granulomatous diseases7. P. acnes is the only
microorganism isolated from sarcoid lesions by bacterial culture to date8,9 and one of the most commonly
implicated etiologic agents of sarcoidosis10,11. A series of Japanese studies proposed an etiology of sarcoidosis
as an allergic endogenous infection caused by this indigenous bacterium.

According to the currently-proposed etiology of sarcoidosis10,11, this low-virulence bacterium causes latent
infection in the lungs and lymph nodes and persists in a cell-wall-deficient form. This dormant form of P. acnes
can be activated endogenously under certain environmental conditions and proliferate in cells at the site of the latent
infection. In patients who are hypersensitive to this endogenous bacterium, granulomatous inflammation is trig-
gered by intracellular proliferation of the bacterium. If a certain strain of P. acnes causes sarcoidosis, such a causative
P. acnes strain may have some specific characteristics that confer its intracellular persistency, cell-wall-deficiency,
and endogenous activation, or there may be specific antigenicity of the bacterium in sarcoidosis patients.
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Many studies of acne vulgaris report that P. acnes exhibits
phenotypic and genotypic diversity12,13,14. In connection with sar-
coidosis, Ishige et al. compared genotypes of P. acnes strains iso-
lated from the lungs and lymph nodes with those of P. acnes
indigenous to the skin, conjunctivae, and intestine using random
amplified polymorphic DNA analysis15. They found that P. acnes
strains from a particular site were genetically similar, more so than
isolates obtained from different sites. Moreover, Minegishi et al.
recently determined the complete genome sequence of a P. acnes
isolate (C1) from granulomatous inflammatory lesions of a patient
with cutaneous sarcoidosis16.

In the present study, we initially performed core genome analysis
and multiple genome alignment using the whole genome sequence
from the C1 strain of P. acnes, compared with 76 and 9 strains of
P. acnes from a public database, respectively, to search genetic pro-
files of P. acnes from sarcoid tissue samples. In addition, we exam-
ined 24 and 36 isolates from sarcoid and non-sarcoid tissue samples,
respectively, by multilocus sequence typing (MLST) and polymerase
chain reaction (PCR) detection for a P. acnes-specific insertion
sequence (IS) and extrinsic protein-coding DNA sequences (CDSs)
of a novel transposon. The roles of the P. acnes-specific transposon
with novel ISs and the cell-invasiveness of P. acnes with the transpo-
son are discussed in connection with the etiology of sarcoidosis as an
allergic endogenous infection caused by this indigenous bacterium.

Results
Monophyly of the C1 sarcoid isolate in core genome analysis. The
genomic sequence data for 77 strains of P. acnes were available from
the database at the time of writing; the C1 strain of P. acnes is the only
clinical isolate from sarcoid tissue for which the whole genomic
sequence has been determined16. We first compared amino acid
sequences of CDSs among all strains for which genomic sequences
were available by sequence similarity.

A total of 1477 single-copy core CDSs were identified, and 1262 of
the 1477 CDSs were used for construction of a phylogenetic tree. In
the maximum likelihood-based phylogenetic tree, the C1 strain was
separately located as a monophyletic clade (Fig. 1), although only the
C1 strain was included in the analysis due to unavailability of any
other genome information of the isolates from sarcoid tissue samples
(sarcoid isolates). These findings suggest that sarcoid isolates have
evolved to be monophyletic.

Unique region on the genome of the C1 sarcoid isolate. Next, we
compared whole genome sequences of the C1 sarcoid isolate with
those from nine other strains available in the NCBI GenBank
database using multiple genome alignment (Fig. 2). Homology was
observed along whole genome in all dot plots, except inversions in C1
versus ATCC 11828 and C1 versus HL096PA1, which were reported
previously17 (Fig. 2-i). All the breakpoints of these inversions were
located in rRNA-encoding regions, and these inversions seemed
to occur symmetrically across the replication axes of the genomes.
Moreover, the C1 genome contained an 18.8-kbp specific region that
was absent in the other nine genomes (Fig. 2-ii). Disruption by this
C1-specific region was observed in an alpha/beta hydrolase-encoding
CDS, which was intact in the genomes other than C1. At both ends
of this region, transposase-encoding CDSs were located between
the two similar inverted-repeat sequences; the region was likely a
composite transposon composed of two ISs (including transposase
between two repeat sequences) at both ends and their intermediate
CDSs between the two ISs (Fig. 2-iii).

The ISs of the identified transposon were of a novel family because
the sequences were not found in the public database. Max score and
e-value of the most similar IS was 44.1 bits and 3e-04, respectively,
based on the software ISfinder18. The identified transposon con-
tained 13 hypothetical and 14 functionally-known CDSs; the latter
included resolvase-coding and arsenate-related CDSs, such as those

encoding arsenic resistance protein and arsenite-activated ATPase
(Supplementary Table S1).

All 27 CDSs in the transposon were identical to the CDSs of
species other than P. acnes, such as P. humerusii, P. jensenii,
P. freudenreichii, and P. acidipropionici.

Phylogenetic dispersiveness of sarcoid and non-sarcoid isolates in
MLST analysis. MLST analysis was performed with 24 sarcoid and
36 non-sarcoid isolates, together with the reference ST data (ST1-
ST93) available from the public database. The 76 P. acnes strains for
which either complete or draft genome sequences were available in
the public database were excluded in the MLST analysis, because
their STs were already known and were therefore less informative
(Supplementary Table S2). In a phylogenetic tree constructed from
concatenated nucleotide sequences of 9 loci, 28 sequence types
(STs) were identified among 60 isolates examined, including novel
STs (ST94-ST112) (Table 1 and Fig. 3-i). ST26 isolates were most
frequently found in 6 (25%) of 24 sarcoid isolates and 7 (19%) of
36 non-sarcoid isolates without a significant difference between
them. The remaining (75%) sarcoid isolates were located dispersively
across various STs. The dispersiveness of the sarcoid isolates was
supported by differences in the allele number combination shown in
the eBURST diagram, although STs of the sarcoid isolates were limited
in number (Fig. 3-ii).

ST26 isolates with the novel IS and four CDSs in the transposon.
PCR detection of the novel IS was successful in 14 of the 60 isolates
including the C1 strain (Table 1). All 13 ST26 isolates and a single
ST91 isolate carried the novel IS. Most (12 of 13) of the ST26 isolates
carried the four representative CDSs (hypothetical 15.9 kDa protein,
arsenic resistance protein, regulatory protein ArsR, and resolvase)
that were contained in the unique transposon sequence, with one
exceptional strain in which the IS was positive but the four genes
were totally negative based on PCR.

ST26 isolates with cell-invasiveness. Comparison of the genomic
profiles of P. acnes examined in the present study with the cell-
invasiveness of each strain reported in our preceding study19

revealed that 12 (50%) of the sarcoid isolates and 16 (44%) of the
non-sarcoid isolates were cell-invasive (Supplementary Table S2).
Cell-invasive strains were classified in a limited number of STs
(ST8, 26, 36, 41, 67, 70, 100, 112) among a total of 28 STs found in
all isolates (Fig. 3-i). All of the ST26 isolates with the novel IS were
cell-invasive.

Discussion
We previously reported a whole genome sequence of the C1 strain of
P. acnes from a granulomatous inflammatory lesion of a sarcoidosis
patient16. To search for a specific genetic profile of this sarcoid isolate,
we first performed core genome analysis with whole genome
sequences from 76 P. acnes strains and multiple genome alignment
with complete genome sequences from 9 P. acnes strains. The geno-
mic profiles we found in this sarcoid isolate led to the identification of
a transposon unique to the C1 isolate with a novel IS. P. acnes strains
with the novel IS were classified in ST26 by MLST, with one excep-
tion (ST91). PCR analysis for 4 CDSs of the transposon suggested
that most of the P. acnes strains with the novel IS carry the transpo-
son, which may allow us to determine relevant factors of the bac-
terium in the etiology of sarcoidosis.

In the present study, ST26 was phylogenetically independent from
the other STs based on the core genome analysis (Fig. 1). In the MLST
analysis, the ST26 and ST91 strains were phylogenetically independent
(Fig. 3-i); however, only ST26, and not ST91, exhibited cell-invasiveness,
indicating the phylogenetic independence of ST26 from the others,
which was not apparent in the MLST analysis due to the use of only
house-keeping CDSs and lack of sufficient genetic information.
According to the results by Lomholt and Kilian12, ST26 of P. acnes is
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different from other ST groups of P. acnes in terms of the mutational
status of the two hemolytic-associated genes (camp 5 and tly) of this
indigenous bacterium. The present study demonstrated the phylogen-
etic independence of ST26 based on the core genome analysis delineat-
ing the P. acnes population with high resolution.

A well-known genotype of P. acnes is recA (types I, II, and III).
Each of the recA genotypes has a characteristic phenotype and recA
type I is dominant in isolates from acne vulgaris20. Based on the
genotype of the recA gene against the P. acnes isolates in this study,
all the ST26 strains in this study were classified as type I. The isolates

in type I are prevalent in acne vulgaris and exhibit beta-hemolysis21.
The study of clustered regularly interspaced short palindromic
repeats (CRISPR) in P. acnes revealed that CRISPR were present
exclusively in types II and III, and differentiated type I from type
II20. Absence of the CRISPR in type I strains is consistent with the
presence of the novel transposon in ST26 strains in type I. The ST26
strains might have evolved to be genetically and phenotypically
unique in type I, which is the type possibly evolved from type II.

With regard to the uniqueness of ST26 P. acnes strains, it is notable
that the presence of the unique transposon in the genome was

Figure 1 | A maximum likelihood-based phylogenetic tree of 77 P. acnes constructed by 1262 core CDSs. The tree was constructed by concatenated

amino acid sequences of 1262 core CDSs among 77 P. acnes genomes. Detailed tree structure of a dense-branching part is shown in the upper box. Intricate

parts in the main and detailed trees are indicated in grey, and the strains in each part are shown altogether without precise location at the tree. Only

bootstrap probability values over 70% are given. The sarcoidosis-derived strain is indicated by red color.
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suggested in most ST26 P. acnes strains, as well as in the C1 strain. This
transposon carried not only functionally known CDSs, such as those
encoding arsenical- and metal-resistance proteins, but also hypothet-
ical CDSs for which cell-invasiveness of P. acnes seems to be essential
for linking this indigenous bacterium to the cause of sarcoidosis,
because infectious granulomas are commonly caused by intracellular
pathogens. The cell-invasiveness of P. acnes is closely associated
with the serotype and particular genotypes19. In the present study,

cell-invasiveness was correlated with a limited number of STs among
a total of 28 STs found in the isolates examined. Because all ST26
strains of P. acnes were cell-invasive, ST26 strains might have evolved
to acquire advantageous characteristics for intracellular persistence of
the bacterium after cell-invasion by unknown mechanisms, including
horizontal gene transfer via transposition of particular genes. The
previous study suggested that specificity of genetic elements to each
P. acnes lineage contributes to phenotypic and functional differences

Figure 2 | Multiple genome alignment of 10 P. acnes complete genomes. (i) Dot plots of C1 against the nine other genomes are shown. Each dot indicates

20-bp match between two genomes, and only $ 65-bp continuous dots are shown as a line. (ii) Multiple alignments of 10 P. acnes genomes are shown as a

figure constructed by Mauve. Each colored box indicates a local collinear block (LCB) that is defined as a genomic region free from genome

rearrangements, and LCBs with the same color are linked by lines, indicating homology with each other. An 18.8-kbp C1-specific region is indicated by a

dashed line box. (iii) A layout of CDSs in the C1-specific 18.8-kbp region and adjacent region is shown with the corresponding loci on 266 genome. Each

boxed arrow indicates a CDS, and the arrowhead is pointed in the transcriptional direction. Homology is indicated in grey, while the novel IS and putative

transposon are indicated in yellow and green, respectively. In the transposon, the arrows are colored as follows: red, identical or homologous to the CDS of

Propionibacterium humerusii; blue, identical or homologous to the CDS of Propionibacterium sp. 5U42AFAA strain; white, identical or homologous to the

CDS of dairy propionibacteria. Amplicon sites from PCR with the primers in Supplementary Table S3 are indicated by bold lines.
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of P. acnes as a commensal and pathogenic agent22,23. Considering that
a plasmid found in a P. acnes strain is suggested to be associated with
P. acnes virulence17, the novel transposon might confer novel genetic
characteristics to the strains of this unique ST.

The lack of a genetic profile specific to the sarcoid isolates, how-
ever, has been reported in several studies. Ishige et al.15 reported that
P. acnes isolates were not specific to sarcoidosis when examined by
random amplified polymorphic DNA analysis with 45 sarcoid and

Table 1 | Genetic profiles of 60 P. acnes strains by MLST and PCR analysis
Allelic profile

ST Novel IS

CDSs in the transposon

Strain name cel coa fba gms lac oxc pak recA zno
Hypothetical

15.9 kDa protein
Arsenic resistance

protein
Regulatory

protein ArsR Resolvase

C1 5 9 4 8 4 2 3 5 11 26 1 1 1 1 1

S1 6 11 6 10 6 4 4 9 12 44 2 2 2 2 2

S2 7 11 4 10 1 2 10 6 11 103 2 2 2 2 2

S3 5 4 2 8 4 3 3 5 5 8 2 2 2 2 2

S4 5 4 3 3 4 3 5 1 9 41 2 2 2 2 2

S5 7 11 4 10 1 2 10 6 11 104 2 2 2 2 2

S6 5 9 4 8 4 2 3 5 11 26 1 1 1 1 1

S7 3 9 8 11 7 3 7 6 5 94 2 2 2 2 2

S8 7 9 4 3 4 3 3 2 11 70 2 2 2 2 2

S9 5 9 4 8 4 2 3 5 11 26 1 1 1 1 1

S10 7 9 4 3 4 3 3 2 11 70 2 2 2 2 2

S11 5 4 3 3 4 3 5 1 9 41 2 2 2 2 2

S12 5 4 3 3 4 3 5 1 9 41 2 2 2 2 2

S13 5 9 4 8 4 2 3 5 11 26 1 1 1 1 1

S14 3 13 8 11 7 6 7 6 14 51 2 2 2 2 2

S15 5 9 4 3 4 3 3 2 11 67 2 2 2 2 2

S16 5 9 4 3 4 3 3 2 11 67 2 2 2 2 2

S17 5 9 4 8 4 2 3 5 11 26 1 1 1 1 2

S18 3 13 8 11 7 6 7 6 14 51 2 2 2 2 2

S19 6 11 6 10 6 4 4 9 11 102 2 2 2 2 2

S20 3 13 8 11 7 6 7 6 14 51 2 2 2 2 2

S21 5 9 4 3 4 3 3 2 11 67 2 2 2 2 2

S22 5 9 4 8 4 2 3 5 11 26 1 1 1 1 1

S23 5 4 3 3 4 3 5 1 9 41 2 2 2 2 2

LN1 5 4 3 3 4 3 5 1 9 41 2 2 2 2 2

LN2 3 9 8 11 7 2 5 1 9 95 2 2 2 2 2

LN3 5 9 4 8 4 2 3 5 11 26 1 1 1 1 1

LN4 5 9 4 8 4 2 3 5 11 26 1 1 1 1 1

LN5 5 4 2 8 4 3 3 5 5 8 2 2 2 2 2

LN6 5 9 4 8 4 2 3 5 11 26 1 2 2 2 2

LN7 5 9 4 3 4 3 3 2 11 67 2 2 2 2 2

LN8 3 9 8 11 7 2 7 6 9 105 2 2 2 2 2

LN9 5 9 4 3 4 3 3 2 11 67 2 2 2 2 2

LN10 5 9 4 3 4 3 3 2 11 67 2 2 2 2 2

NS1 5 9 4 8 4 3 3 5 11 100 2 2 2 2 2

NS2 6 11 6 10 6 3 4 5 11 110 2 2 2 2 2

NS3 5 9 4 8 4 3 3 5 11 100 2 2 2 2 2

NS4 7 9 4 3 4 3 3 2 11 70 2 2 2 2 2

NS5 5 9 4 8 4 3 3 5 11 100 2 2 2 2 2

NS6 6 11 6 10 6 4 4 9 11 102 2 2 2 2 2

NS10 5 4 3 3 1 3 3 1 9 98 2 2 2 2 2

NS11 5 9 4 8 4 2 3 5 11 26 1 1 1 1 1

NS12 5 9 4 8 4 2 3 5 11 26 1 1 1 1 1

NS19 5 9 4 8 4 2 3 5 11 26 1 1 1 1 1

NS20 3 13 7 11 7 5 5 6 11 97 2 2 2 2 2

NS21 5 9 4 15 4 2 3 5 11 91 1 1 1 1 1

P1 5 9 4 3 4 3 3 2 11 67 2 2 2 2 2

P2 3 13 7 11 4 3 3 6 14 101 2 2 2 2 2

P3 5 9 3 3 4 3 5 2 9 36 2 2 2 2 2

P4 5 9 3 3 4 3 3 1 9 112 2 2 2 2 2

P6 5 9 1 8 1 3 3 2 11 96 2 2 2 2 2

P8 3 13 8 11 7 3 7 6 14 108 2 2 2 2 2

P9 5 9 4 8 4 2 3 5 11 26 1 1 1 1 2

P10 5 9 2 8 4 3 3 5 5 8 2 2 2 2 2

P11 6 11 6 10 6 3 4 5 11 109 2 2 2 2 2

P12 5 4 3 3 4 3 5 1 9 41 2 2 2 2 2

P14 3 13 8 11 7 3 5 6 13 111 2 2 2 2 2

P15 3 13 7 11 7 3 9 6 11 107 2 2 2 2 2

P16 5 4 3 3 4 3 9 1 9 106 2 2 2 2 2

P17 3 13 7 11 7 3 9 6 14 99 2 2 2 2 2
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67 non-sarcoid isolates. Furukawa et al.19 also reported that P. acnes
isolates were not specific to sarcoidosis in terms of serotype, cell-
invasiveness, or genetic polymorphism of the trigger factor gene and
the two invasion-associated P. acnes genes. Based on the lack of any
specific characteristic of the sarcoid isolates, they concluded that host
factors that cause an allergic Th1 immune response to the indigenous
bacterium are more important for the onset of sarcoidosis than patho-
gen factors. The present study, however, demonstrated that the sar-

coid isolates were likely to have evolved uniquely; the sarcoid isolates
might have the capacity to induce chronic inflammation, and
unknown factors carried by the transposon unique to the ST26 isolates
might be associated with such a characteristic of the sarcoid isolates.

Also, in the present study, ST26 of P. acnes with the novel trans-
poson was not specific to sarcoid isolates. The lack of P. acnes strains
specific to sarcoidosis does not exclude the possibility that a certain
strain of P. acnes causes sarcoidosis in a genetically susceptible

Figure 3 | A neighbor joining-based phylogenetic tree and an allelic profile diagram of 69 P. acnes strains and 93 reference STs. (i) The tree was

constructed by concatenated nucleotide sequences of nine loci in the P. acnes MLST. Detailed tree structure of a dense-branching part is shown in the

upper box. The ST types are shown with the isolate names that were classified in the corresponding STs. Intricate parts in the main and detailed trees are

indicated in grey, and the strains in each part are shown altogether without precise location in the tree. Only bootstrap probability values over 70% are

given. Isolates exhibiting cell-invasiveness are indicated in red. (ii) Diagram constructed by eBURST. Each circle indicates an allelic profile in the P. acnes

MLST, with the ST number. The ST numbers including sarcoid isolates are indicated by open circles and the others are indicated by filled circles. The STs

are single-locus variants against each other if they are linked by a line, and singletons if not linked.
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subject under certain environmental conditions. A single isolate
from each sarcoid sample does not always represent the P. acnes
strain that causes sarcoid lesions due to heterogeneity of character-
istics in the population. Most of the sarcoid isolates were cultured
from lymph nodes affected by sarcoidosis. This indigenous bac-
terium is also isolated from some non-sarcoid lymph node samples.
Such non-pathogenic strains cannot be discriminated from patho-
genic strains when a single colony is picked up from a culture plate as
a representative isolate from the sarcoid sample. The C1 strain is an
exceptional sarcoid isolate cultured from a sarcoid granulomatous
inflammatory lesion in the subcutaneous fatty tissue. Because P.
acnes has never been found in non-sarcoid subcutaneous tissue, it
is free from indigenous flora and seems to be isolated only from the
sarcoid granulomatous-inflammatory lesions.

In conclusion, we demonstrated the phylogenetic independency of
ST26 strains and their unique characteristics of cell-invasiveness and
a unique transposon, and suggested that ST26 is a responsible agent
for sarcoidosis. Further studies of ST26 such as whole genome ana-
lysis of ST26 P. acnes isolates other than C1 are essential for elucid-
ating possible pathogenic factors of this indigenous bacterium in the
etiology of sarcoidosis.

Materials and Methods
P. acnes strains. A total of 60 P. acnes isolates were evaluated (Supplementary Table S2).
All of the P. acnes isolates used for the study were collected earlier15,19. A representative
strain (C1) of sarcoid isolates, which was used for the previous complete genome
sequence analysis by Minegishi et al.16, was isolated from a subcutaneous lesion of a
25-year-old woman with sarcoidosis. Of the other 59 P. acnes isolates evaluated, 23 were
isolated from 23 lymph nodes of 23 patients with sarcoidosis, 10 were isolated from
10 non-metastatic lymph nodes draining from the stomach, lung, or colon with primary
cancer (4, 3, 3 strains, respectively), 12 were isolated from skin swabs of 12 healthy
individuals, and 14 were isolated from prostate tissue of 14 patients with prostate cancer.
Genomic information of 76 strains (9 complete and 67 draft genomes) was available
from the DDBJ/EMBL/GenBank database.

Culture condition and DNA extraction. Stored isolates of P. acnes were grown in
Gifu anaerobic medium (GAM) broth (Nissui Pharmaceutical Co., Ltd., Tokyo,
Japan) at 37uC under anaerobic conditions (10% H2, 10% CO2, 80% N2) for 3 days.
Isolation of genomic DNA was described previously19.

Core genome analysis. All 77 P. acnes genome sequences (see above section ‘‘P. acnes
strains’’; C1 genome and 76 genomic information in the public database) were
processed by the RAST server 24,25 for prediction of CDS regions with functional
annotation, and used for the following analysis as the information derived under the
same CDS-prediction/annotation criteria. The amino acid sequences of all the
predicted CDSs were clustered by PGAP v1.02 under the default parameters26. Single-
copy core CDSs were identified as those that were located in a single genomic region
and commonly present on all the genomes, while strain-specific CDSs were identified
as those found exclusively on a single genome. The amino acid sequences of the
single-copy core CDSs were concatenated in each strain after exclusion of the CDSs
with endogenous rearrangement events by a Phi test, which is a partial algorithm of
SpritsTree427,28. The concatenated amino acid sequences were used for construction
of a maximum likelihood-based phylogenetic tree. ModelGenerator v851 was used to
estimate the appropriate substitution model of amino acid, and RAxML v7.2.8 was
used for tree construction under the Jones-Taylor-Thornton model and 100 times
bootstrap iteration29,30. The tree was visualized by Dendroscope v331,32.

Multiple genome alignment. The complete genome sequences of 10 P. acnes strains
were aligned using the nucmer program in MUMmer v3.23 and progressiveMauve
mode in Mauve v2.3.133,34. The C1-specific region was identified as a gap in the Mauve
alignment, and ISsaga was used to identify any ISs in the C1-specific region35. The
identified IS was considered to be novel if all alignments between the identified IS and
each of any known ISs in the ISsaga database had ,80% length of the known IS and
,80% nucleotide identity.

Annotation of the CDSs in the unique transposon. Annotation of the CDSs in the
unique transposon was based on the results of BLASTP searches against the NCBI
nonredundant protein database36,37.

PCR conditions. The novel IS and several intermediate CDSs in the transposon were
detected by PCR in 59 P. acnes isolates using the primers listed in Supplementary
Table S3. The PCR conditions for the IS were as follows: 5 min at 94uC, followed by 30
cycles of 30 s at 94uC, 30 s at 58uC, and 80 s at 72uC. The PCR conditions for the
other genes were 3 min at 94uC, followed by 30 cycles of 30 s at 94uC, 30 s at 58uC, and
90 s at 72uC. The annealing temperature for arsenic resistance protein was 60uC. The

PCR was completed with a final extension step at 72uC for 7 min. Location of the
amplicons on C1/266 genomes is shown in Fig. 2.

MLST analyses. We used nine genetic loci (cel, coa, fba, gms, lac, oxc, pak, recA, and
zno) for the MLST analyses. PCR conditions and characterization of the allelic
profiles were described previously12,38. The nucleotide sequences of all nine loci were
concatenated to use for the construction of a neighbor joining-based phylogenetic
tree by MEGA v5.2 under Kimura’s two-parameter (K2P) substitution model and
1000 times bootstrap iteration39. The allelic profiles were visualized by drawing a
diagram using eBURST v340. The sequence data, and allelic/ST profiles available in the
public database (http://pacnes.mlstransposonet) were included in the above MLST
analyses.

Nucleotide sequence accession numbers. Nucleotide sequences of the MLST
analyses have been deposited in the DDBJ/EMBL/GenBank databases under the
following accession numbers: LC006312-LC006851.
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