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Activity patterns of neural population are constrained by underlying biological mechanisms. These patterns
are characterized not only by individual activity rates and pairwise correlations but also by statistical
dependencies among groups of neurons larger than two, known as higher-order interactions (HOIs). While
HOIs are ubiquitous in neural activity, primary characteristics of HOIs remain unknown. Here, we report
that simultaneous silence (SS) of neurons concisely summarizes neural HOIs. Spontaneously active neurons
in cultured hippocampal slices express SS that is more frequent than predicted by their individual activity
rates and pairwise correlations. The SS explains structured HOIs seen in the data, namely, alternating signs
at successive interaction orders. Inhibitory neurons are necessary tomaintain significant SS. The structured
HOIs predicted by SS were observed in a simple neural population model characterized by spiking
nonlinearity and correlated input. These results suggest that SS is a ubiquitous feature of HOIs that
constrain neural activity patterns and can influence information processing.

I nformation in the brain is represented by the collective spiking activity of multiple neurons1. Activity patterns
of observed neurons are highly structured due to various underlying biological mechanisms including direct
anatomical connections2,3, indirect connectionsmediated by unobserved neurons4,5, and intrinsic nonlinearity

of individual neurons6,7. However, exploration of this structure is non-trivial due to limited data size in compar-
ison to possible combinations of activity patterns that grow exponentially with population size.

To infer the structure of neural activity patterns from limited amount of data, the maximum entropy principle
has been successfully applied8,9. Under this principle, the probability distribution of activity patterns is estimated
to be the least structured distribution that is consistent with a set of observed activity statistics. Conventionally
this maximum entropy distribution is statistically characterized by parameters of different orders, where the
orders refer to the numbers of subset neurons that these parameters constrain. The model with the first-order
parameters fits to the observed activity rates of individual neurons. The model that additionally includes the
second-order parameters further adjusts the observed deviations of pairwise correlations from the chance coin-
cidence expected from the individual activity rates. The second-order parameters are referred to as pairwise
interactions. More generally, the model that includes up to the k-th (k 5 3, 4, . . . ) order interactions adjusts
simultaneous activation rates of k neurons from the expectation based on interactions up to the (k-1)-th order.
Interactions beyond the pairwise interactions (k. 2) are collectively termed higher-order interactions (HOIs)10,11.
Notably, these interactions refer to statistical dependency of neurons, and do not necessarily involve anatomical
connections.

In earlier studies, individual activity rates and pairwise correlations alone could explain, 90% of variability in
activity patterns of small populations of retinal ganglion cells8,9 and cortical neurons12,13. However, this does not
exclude the existence of HOIs or limit their contribution to information processing. Indeed, the addition of HOIs
to a statistical model significantly improved the goodness-of-fit to neural activities obtained from multi unit
activity14,15, single unit activity5,16–20, and local field potential21,22 in both in vivo and in vitro preparations.
Furthermore, HOIs are relevant in neural information coding14,16,18,23. However, previous studies have not
identified a key feature in HOIs that summarizes the principal role of seemingly diverse HOIs.
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One of the most striking features of neural population activity is
simultaneous silence (SS). The spiking activity of individual neurons
is known to be sparse24. As a result, the most commonly observed
activity pattern in typical networks is the pattern inwhich all neurons
are silent. Does SS involve HOIs? Indeed, departures from the level of
expected SS from individual activity rates and pairwise correlations
(excess SS) were empirically reported previously16–20. However, the
significance of SS in characterizing HOIs of the population activity is
not well understood.
Here, we examine SS in population activity of the hippocampal

CA3 networks in cultured slices. Previous studies demonstrated
that CA3 pyramidal cells in the organotypic slice cultures are wired
with an in vivo-like connection probability of 15–30%3, and their
spontaneous spike rates are closer to those of in vivo hippocampal
neurons25, compared to neurons in acute slice preparations. We
demonstrate that most local groups of hippocampal neurons that
possess HOIs express excess SS. A single parameter that quantifies
SS accounts for about 20% of the variability in population activity
patterns that is produced by numerous HOIs. We then confirm
specific oscillatory structure of HOIs at successive interaction
orders predicted from the SS. Through modeling, we also dem-
onstrate that correlated population activity caused by spiking non-
linearity and correlated input exhibits the same structure of HOIs,
and that this structure conveys information of input. These results
suggest that neurons are operating in a unique regime where they
are constrained to be silent simultaneously.

Results
Simultaneous silence and HOIs of hippocampal neurons. We
analyzed the spontaneous spiking activity of putative neurons in
the hippocampal CA3 area of organotypic slice cultures, measured
by the Calcium imagingmethod. Slices were prepared from postnatal
day 7, and then cultivated from day 7 to 14 (see Methods). Neuronal
activity was detected by onsets of calcium transients3,26–28, which
provided event-timing data with a resolution of 100 ms. Fig. 1A
and B display an example of population event activity of a single
slice culture, and spatial positions and activity rates of individual
neurons. We analyzed n~20 slices in total, and found the
following features. First, activity rates of the neurons from all slices
were distributed close to a log-normal distribution (Fig. 1C),
similarly to spike rates of in vivo hippocampal CA3 neurons of
awake rodents29,30. The rates of calcium events in individual cells
computed from 2122 neurons in 20 slices were 0.073 6 0.097
(mean 6 standard deviation (SD) events/s; median 0.035,
interquartile range 0.01–0.097 events/s). Notably, activity rates of
neurons in cultured slices were close to those under an awake in
vivo condition25. Second, the activity of pairs of neurons was only
weakly correlated (Fig. 1D). Average correlation coefficient was
0.033 6 0.065 SD (detection in a 100 ms window). A cross-
correlogram revealed that, on average, the activity of pairs of
neurons was not correlated after a , 400 ms timelapse (Fig. 1D
inset). Third, intracellular voltage recordings under the same
experimental conditions all reveal uni-modal distributions of
membrane potentials (Fig. 1E). Hence, no obvious sign of a
superposition of UP and DOWN states was detected.
To analyze the correlated activity of multiple neurons, 50 groups

of N~10 neighboring neurons were selected from each of 20 slices
(see an example group of neurons shaded in pink in Fig. 1B and
events marked in red in Fig. 1A), for a total of 1000 groups of 10
nearest-neighbor cells. The centers of groups were sampled accord-
ing to the spatial density of cells in the CA3 area (See Methods). The
average ‘radius’ of the 1000 groups was 36.6 (613.4 SD) mm, where
the radius of a group was computed as the mean Euclidean distance
of its cell positions from the group’s center position. We then repre-
sented the activity of the ith neuron i~ 1, � � � ,10ð Þ in a time window
by a binary variable xi~{0,1}, where ‘1’ denotes an active state in

which at least one event occurred, and ‘0’ represents an inactive, or
‘silent’, state inwhich no events occurred (Fig. 1F).We used a 400 ms
time-window in the subsequent analyses to incorporate the temporal
correlation observed in the cross-correlogram (c.f. the shaded inter-
val in Fig. 1D inset).
To examine if hippocampal neurons exhibit collective activity

beyond what can be explained by pairwise interactions, we com-
pared the activity patterns of a group of observed neurons with
those predicted from a pairwise maximum entropy model8,9,31,

p2(x1,:::,xN )* exp
X

i
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. This model provides

the least structured probability distribution that is consistent
with the observed activity rates of individual neurons and cor-
relations between pairs of neurons. The parameters fhi,hijg were
adjusted to fit these statistics. We call this model a pairwise
model hereafter. First, we examined if the neurons exhibited
SS beyond that predicted by the pairwise correlations. To this
end, we compared the observed probability of the pattern in
which all of 10 neurons are simultaneously silent with its
probability according to the pairwise model. Figure 2A displays
a distribution of percentage deviation of observed SS
probabilities from the prediction of the pairwise model,
pdata 0, � � � ,0ð Þ{p2 0, � � � ,0ð Þ

p2 0, � � � ,0ð Þ , where pdata 0, � � � ,0ð Þ is the observed

probability of SS. In some groups, the pairwise model tended to
underestimate the occurrence probability of SS of 10 neurons.
This discrepancy has to be explained by HOIs in the data.
To examine the contribution of HOIs to population activity, we

computed the fraction of entropy that is explained by HOIs. This
fraction, referred to as the percentage entropy margin for HOIs, is

quantified as DHOI~
H2{Hdata

H2
, where H2 is the entropy of the

pairwise model and Hdata is the entropy of the observed histogram
of population activity patterns. We call Hdata the data entropy in the
following. The data entropy is characterized by all of the first, second,
and HOIs. Therefore, the difference between H2 and Hdata must be
explained by HOIs.We found that the distribution ofDHOI exhibited
a long tail (Fig. 2B). This indicates that there were a noticeable
number of groups in which HOIs played a much stronger role in
shaping population activity. Finally, we explored the relation
between the contributions ofHOIs to the probability of SS.We found
that the groups expressing higher/lower probabilities of SS than the
pairwise model coincided with the groups possessing large entropy
margins for HOIs (Fig. 2C). The positive correlation between these
two values in Fig. 2C (Spearman’s rank correlation coefficient 0.69,
p,0.001) implies that a significant portion of the HOIs of the CA3
neurons may be explained by the SS. The rank correlation coefficient
was higher (0.92) and statistically significant (p , 0.001) if we
analyze non-overlapping groups.

Simultaneous silence is a ubiquitous feature of HOIs. To directly
examine the contribution of the SS to the entropy explained by HOIs,
we constructed amaximumentropymodel that augments thepairwise
modelwith a single additional term to account for the probability of SS
observed in the data. We refer to this model as the SS model:

Pss x1, � � � ,xNð Þ*exp
X
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Here a single parameter, h0, was introduced to account for the
probability of SS of N neurons. Positive or negative h0 indicates that
the probability of SS of all neurons ismore or less thanpredicted by the
pairwise model, respectively. Importantly, this new SS term is
equivalent to adding specific structured HOIs into the pairwise
model. By expanding the SS term into the standard HOI-

coordinates, we obtain h0P
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or decreasing the total period of quiescence is equivalent to
introducing a single parameter to the HOIs with alternating signs
for different orders of interaction. In addition to capturing
individual activity rates and pairwise correlations, the SS model
explores this 1-dimensional structure in the high-dimensional space
of HOIs to fit the rate of SS. We fitted the SS model to the same 1000
groups of 10 hippocampal neurons obtained from 20 slices. Note that,
in each group, the fitted first and second order parameters of the SS
model are generally different from those of the pairwisemodel because
of the newly introduced SS term.
We compared goodness-of-fit of the SS model with that of the

pairwise model (Fig. 3A). The ordinate of the panels represents
percentage differences between observed and predicted SS prob-
abilities of sub-groups of r ~ 1, � � � ,10ð Þ neurons by the two mod-
els (Left, the pairwise model; Right, the SS model). By definition,
the pairwise model adjusts the silence rates of individual neurons
(equivalent to 1 minus activity rates, r~1) and pairs (r~2)
(Fig. 3A Left panel). However, the pairwise model fitted to the

data underestimated probabilities of SS for larger sub-groups of
neurons. This means that many sub-groups of hippocampal neu-
rons expressed SS more often than chance as predicted from their
activity rates and the pairwise correlations. In contrast, the SS
model additionally accounts for the probability of SS of all 10
neurons in a group (see the complete match of the data and pre-
diction at r~10 in addition to r~1,2 in Fig. 3A Right panel).
Order of magnitude reductions in the differences were observed
in the SS of many sub-groups (r~ 3, � � � ,9). (Note the scale dif-
ference in the Left and Right panels.).
We tested the excess or paucity of SS using the SS model against a

null hypothesis of no such activity (i.e., the hypothesis that the pair-
wise model is sufficient to characterize the data). Here, we used
x2-tests11 with multiple comparison correction using the
Benjamini-Hochberg-Yekutieli method with a false discovery rate
of 0.05 to assess if the SS term significantly improved the fitting in
each group (See Methods). Of 1000 groups, 156 groups (16%) from
10 slices rejected the null hypothesis (Fig. 3B). We call these groups
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Figure 1 | Ensemble activity of CA3 putative neurons detected by Calcium imaging. (A) Ensemble activity of 45 neurons from a single hippocampal

slice. Small vertical ticks indicate events detected from calcium imaging signals. Ensemble activity of an example group of 10 neurons is marked in red. (B)

Spatial distribution of neurons in the CA3 area of the slice in A. Each filled circle represents a position of a neuron. The color indicates activity rate of each

neuron. The pink area corresponds to the example group highlighted in A. (C) Distribution of activity rates from neurons in all 20 slices. Solid line is a

fitted log-normal distribution. (D) Distribution of correlation coefficients calculated from the event sequences (within a 100 ms window) from all the

pairs of neurons in 1000 neighboring groups from 20 slices. The inset shows an average cross-correlogram from all the pairs of neurons. Dashed lines

indicate6 2 SD of the correlogram at 1–2 sec lags. The gray shading (20.2 ms to1 0.2 ms) indicates the interval where the correlgoram exceeded the

dashed lines. (E) Distributions of membrane potentials recorded from neurons (n 5 7) in hippocampal slice cultures under the same condition as

described inMethods. Different colors indicate different neurons. In all cases, the densities of the membrane potentials were characterized by a unimodal

profile. (F) Construction of binary patterns from event sequences. The event sequences are binned using awindow of 400 ms. In each bin, we denote ‘0’ if

there is no event, and ‘1’ if there is at least one event.
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that exhibit excess or paucity of SS the SS groups. Statistical prop-
erties of the SS as well as non-SS groups were summarized in Table 1.
Indeed, most of the groups (68%, 133 groups out of 197) that
exhibited relatively large margins of entropy for HOIs (DHOI. 3%)
were the SS groups. Note that, at this point, each of the SS groups
could have had either significantly positive or negative h0. It turned
out that 154 out of the 156 SS groups exhibited significantly positive
h0 (Fig. 3B Right inset). Thus, virtually all the SS groups expressed
significantly larger probability of SS than the corresponding pairwise
model. In these groups, the total number of bins for which all neu-
rons were quiet was larger than expected by the corresponding pair-
wise model. In other words, activity was confined to a smaller
number of bins. Hence, we conclude that the population activity of
most groups exhibiting HOIs (DHOI. 3%) was significantly sparse in
time. Note that the observed fraction of SS groups was robust to the
number of groups sampled from each slice but typically increased
with the size of these groups (Fig. 3C).
Finally, we examined the relation between the percentage entropy

margin for HOIs, DHOI, and the percentage of the HOI entropy
explained by the SS. The latter entropy was computed as

Dss~
H2{Hss

H2
, where Hss is the entropy of the SS model. Figure 3D

displays scatter plots of these values for all groups. As predicted from
Fig. 2C, we observe significant positive correlation between DHOI and
Dss (Spearman’s rank correlation coefficient 0.52, p ,0.001). The

dashed lines are isoclines of a constant ratio a~
H2{Hss

H2{Hdata
. This ratio

describes the fraction of entropy explained by the SS in the entropy
margin for HOIs. As expected, the SS groups (filled circles) typically
had large a. Figure 3E displays a distribution of a for the groups that
expressed large margin for HOIs (197 groups with DHOI. 3%). In
these groups, the single higher-order parameter of the SS explained
18.3% (interquartile range, 4.7–31%) of the entropy forHOIs (Fig. 3C).
Since we have only added a single parameter in the high-dimensional
space of HOIs, this result implies that the SS comprises one important
characteristic of the HOIs.
In order to assess biases that may be caused by limited samples in

our data sets, we repeated our analysis using two alternative data sets
(Supplementary Fig. S1 online). First, we analyzed only one half of
the data by taking every other bin of the original population activity
patterns for each slice. Second, we analyzed bootstrapped population
activity patterns, where the same number of patterns as the original
data were resampled with replacement in each slice. These two data
sets contain less variations of population activity patterns than the
original data. For the both data sets, the fraction of SS groups was
smaller than the 16% found in Fig. 3B. The fraction of the HOIs
explained by SS also decreased to less than a half of 18% found in
Fig. 3E. Because we did not overestimate these quantities after sub-
sampling and resampling, it is unlikely that our original estimation
(16% exhibits significant SS; 18% of HOIs is explained by SS)
overestimated the fractions expected from a larger number of sam-
ples. In sum, the analyses confirm significant SS in the data, and
predict the presence of the alternating signs of HOIs, a possibility
we directly test now.

Alternating signs ofHOIs predicted by SS. If SS is amajor feature of
theHOIs, we expect to findHOIswhose signs alternate depending on
the orders of interaction (c.f. the expansion of the SS term). In order
to directly examine the structure of HOIs, we consider a simple
maximum entropy model that includes a single global parameter
for each order of HOIs:

phHOI x1, � � � ,x10ð Þ* exp
X

i
hixiz

X
i1vi2

hi1i2xix1 ix2z
X10

k~3
�hk

X
i1v���vik

xi1 � � �xik
h i

, ð2Þ

where �hk (k~3,4, � � � ,10) is a single parameter for the kth order
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HOIs. The term for the kth order interaction parameterized by a
parameter �hk sums all combinatorial interactions of k neurons
among 10 neurons. We call this model the homogeneous HOI

(hHOI) model. The hHOI model fitted to the data reproduces the
histogram of the number of active neurons in each time
bin14,19,20,32.
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In these data sets (DHOI. 3%), the hHOI model explained 24% of
the variability in population activity due toHOIs (interquartile range

11–34%) as assessed by
H2{HhHOI

H2{Hdata
, where HhHOI is the entropy of

the hHOI model. This result indicates prevalent heterogeneity in the
HOIs. The result also upper bounds the fraction of entropy for HOIs
that could be explained by the single SS term. We then investigated
how much of this entropy is actually explained by the SS term.

Figure 4A displays relations between the percentage entropy margin

explained by the hHOI model, DhHOI~
H2{HhHOI

H2
, and by the SS

model, Dss. Similarly to Fig. 3D, the dashed lines are isoclines of

b~
H2{Hss

H2{HhHOI
, which quantifies the fraction of entropy explained

by the SS in the entropy margin for the homogenous HOIs.
Figure 4B shows a distribution of b for the groups exhibiting HOIs

HhHOI

HSS

H2

H
2
H
S
S

-

H
2
H
hH
O

I
-

H2 HSS-
H2 HhHOI-β =

β

C
um
ul
at
iv
e 
di
st
rib
tio
n 

Proportion of SS in hHOIs,

β=0.4
β=0.6
β=0.8
β=1.0

β=0.2

 [%]

0 20 40 60 80 100
0

0.25

0.5

0.75

1

−15

−10

−5

0

5

10

15

0

20

40

60

80

100

−10

0

10

−10
0

10

−10

0

10

θ5

θ 3

θ 4

HOI groups (ΔHOI>3%)

C

A

D

B

θ
k

H
om
og
en
eo
us

 H
O

I p
ar
am
et
er
s,

θ 3
θ 4

θ 5

-

-
-

+
-
-

-
+
-

+
+
-

-

+
-

+

+
-

-

+
+

+

+
+

G
ro
up
s 
in

 a
 q
ua
dr
an
t [
%
]

3 4 5

The order, k

6

10
−6

10
−4

10
0

10−3

10 0

10 1

10−2

10−1

10
−2

Percentage entropy margin for SS, ΔSS [%]

P
er
ce
nt
ag
e 
en
tro
py

 m
ar
gi
n 
fo
r h
H
O

Is
, Δ

hH
O

I [
%
]

*** *** *

Figure 4 | The groups that express HOIs exhibited alternating signs of homogenous HOIs at successive orders of interaction. (A) Scatter plots of
entropymargins for hHOIs versus entropymargins for SS. The same color indicates groups selected from the same slice culture. Filled circles indicate groups

exhibitingHOIs (DHOI. 3%).Dashed lines represent different proportions of homogenousHOI entropymargin explained by the SS term,b~
H2{Hss

H2{HhHOI
.

We excluded 9 outliers from the plots. (B) Cumulative distribution function of this proportion, b, for the groups exhibiting HOIs (DHOI. 3%). (C) The

homogeneousHOI parameters up to the 6th order of the hHOImodel. Each box covers 25th to 75th percentile, andwhiskers represent 1.5 times the distance

fromthe 25th to75thpercentile.Dots are outliers. Thedistributions at the 3rd, 4th, and5thorderdeviated significantly fromzero (two tailed sign test,*** and

* represent significance level 0.001 and 0.05, respectively). (D) (Left) 3-dimensional plots of the homogeneous HOIs of the hHOI model. Outliers with

elements larger than 10 or less than210 were excluded. (Right) A histogram of the number of groups that fell in 8 quadrants of the �h3,�h4,�h5
� �

parameter

space. The same color marks the same slice culture. The dotted horizontal line is the chance level (12.5%) with random HOIs.

Table 1 | Activity rates, correlation coefficients, and probabilities of SS computed from binary sequences using 400 ms window under
control and PTX conditions. Values are expressed as Mean (6 SD)

Activity rate Correlation coefficient Prob. SS

Control 0.039 (6 0.042) 0.060 (6 0.108) 0.728 (6 0.152)
SS groups 0.032 (6 0.035) 0.172 (6 0.122) 0.831 (6 0.103)
Non-SS gropus 0.040 (6 0.043) 0.040 (6 0.092) 0.706 (6 0.151)

PTX 0.027 (6 0.017) 0.920 (6 0.108) 0.965 (6 0.021)
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(DHOI. 3%). In these groups, the single SS term explained 80% of the
entropy for homogeneous HOIs (interquartile range 48–92%). From
this result, we conclude that SS constitutes the dominant structure of
the homogeneous HOIs.
We next directly visualize the structure of homogeneous HOIs.

Figure 4C displays distributions of the homogeneous HOI para-
meters, �hk of the hHOI models. (We only show the parameters for
k~3,4,5,6 although we fitted hHOIs up to the 10th order). The
homogeneous HOI parameters up to the fifth order but not higher
were significantly different from zero (two tailed sign test). The set of
the homogeneous HOI parameters, �h3,�h4,�h5

� �
, from each group fell

in a particular quadrant in the 3-dimensional space (negative triple-
wise, positive quadruple-wise, and negative quintuple-wise interac-
tions, Fig. 4D), exhibiting an obviously biased direction. (If the set of
homogeneous HOI parameters randomly fell in any quadrant, the
probability that the observed number of groups (, 54% of the
groups) would fall in any single quadrant would be less than
10{15). Thus the structured homogeneous HOIs found up to the
5th order contributed to the excess SS found in 68% of the groups
withDHOIw3%. These results demonstrate that the structured HOIs
with alternating signs are an attribute of excess SS in local networks
of hippocampal neurons.

Simultaneous silence relies on network inhibition. Several
different biological mechanisms may underlie the observed
structure of HOIs. One such mechanism may be the inhibitory
networks in the hippocampal CA3 area. To test this hypothesis, we
examined population activity under bath application of GABAA

receptor antagonist picrotoxin (PTX) (Fig. 5A). When fast GABAA

mediated inhibitory networks were blocked by PTX, activities of
observed neurons nearly completely synchronized with each other
(Fig. 5B). The cross-correlogram exhibited a sharper peak (Fig. 5B

inset) than that in the control (cf. Fig. 1C), much shorter than the
400 ms time window used to analyze the control condition.
Nonetheless, we used the same window-size, 400 ms, to test for the
deviation of SS from the pairwise model, except in Fig. 6D, where we
explored the dependency on bin sizes. Table 1 summarizes activity
rates, correlation coefficients, and probabilities of SS computed using
the 400 ms bin under control and PTX conditions. The average
probability of SS under the PTX conditions was much larger than
that under the control condition. However, this frequent SS is
expected from the high pairwise correlation coefficients observed
under the PTX conditions. Indeed, the entropy explained by HOIs
was greatly diminished in the PTX data, indicating that the pairwise
model adequately explained population activity in almost all groups
under blockade of inhibition (Fig. 5C). Accordingly, the percentage
of groups that exhibited significant SS beyond the pairwise model
was considerably reduced from 16% down to 4% (Fig. 5C, red). The
considerable reduction of SS groups was observed whenever the
window size larger than 200 ms was used in order to thoroughly
cover the synchronous events (Fig. 5D). We thus concluded that
an inhibitory network is necessary for neurons to produce both
frequent SS and weak pairwise correlations; the conjunction of
both can only be explained by HOIs.

Simultaneous silence emerges in a population of thresholding
units that receive correlated input. Finally, we demonstrated that
a simple model of neural population reproduces the structured HOIs
with alternating signs with respect to different orders of interaction
observed in the spontaneous activity of hippocampal neurons under
the control conditions. A population model known as the
Dichotomized Gaussian (DG) model33–36 simulates a population of
neurons that receive correlated Gaussian inputs, where each neuron
produces a binary output in response to its input by simple
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thresholding (Fig. 6A, See Methods). Despite the substantial
simplification, the spiking mechanism is similar to the one
assumed in networks of balanced excitatory and inhibitory
neurons: the mean input to each neuron is typically smaller than
the threshold and, therefore, spikes are induced by fluctuations in
the input. The DG model has been reported to reproduce neural
activity patterns better than the pairwise model22. Figure 6B
displays simulated DG models using different strengths of input
correlations (Fig. 6B), including one that produces output
correlations similar to those found in experimental observations
(see Table 1). The population exhibited asynchronous spiking
activity. We numerically computed the HOIs of the DG model for
N~10 (See Methods). The HOIs showed clear alternation in signs
with respect to the successive orders of interaction (Fig. 6C) and
demonstrated excess SS (Fig. 6D). These results show that the
experimentally observed SS with structured HOIs can arise from
the conjunction of two ubiquitous biological features, i.e.,
correlated input and spiking nonlinearity. Further, we demonstrate
that SS can contain rich information of inputs provided to the
observed population of neurons. Figure 6E compares the signal-to-
noise ratio for estimating the input correlation based on specific
features of population activities – activity rates and pairwise

correlations (Rate 1 Pair), SS in addition to activity rates and
correlations (Rate 1 Pair 1 SS), and joint activity rates of all
orders (Full). The signal-to-noise ratio, which is also called the
linear Fisher information37–39, quantifies the accuracy of estimating
a small change in an input parameter by an optimal liner decoder (see
Methods). The result shows that measuring SS in addition to activity
rates and correlations can provide nearly full information available
from the observation of all statistics. The results were qualitatively
the same when an input mean (or a threshold level) was estimated
instead of input correlation.

Discussion
We investigated the structure of HOIs in spontaneous activity of
neurons in the CA3 area of organotypic hippocampal slice cultures.
Most groups (, 70%) of neurons that expressed significant HOIs
(DHOIw3%) also exhibited excess SS (Fig. 3), and SS alone could
account for, 20% of the entropy explained byHOIs in these groups.
This result predicts significantly biased homogeneous HOIs with
alternating signs at successive orders of interaction and our data
analysis confirmed this prediction (Fig. 4). We also found that SS
explained 80% of the entropy due to structured homogeneous HOIs.
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SS was robustly observed across a range of time-bins (Fig. 5D) and
sizes of neural populations (Fig. 3C). Moreover, SS and the resulting
structure of HOIs arise in the simplest model of a neural population
that possesses a spiking nonlinearity and correlated inputs (the DG
model), where additional observation of SS is sufficient to decode
most information of input conveyed by different orders of HOIs.
These results suggest that excess SS is an important and ubiquitous
characteristic of neural population activity that summarizes its low-
dimensional structure in the combinatorial space of HOIs. We
identified alternating signs of HOIs up to the 5th order with
statistical significance in the analyzed data (Fig. 4C and D), and
the DG model displayed the predicted structure up to the highest
order of interaction (Fig. 6C). Based on these observations, we specu-
late that the predicted structure of HOIs beyond the 5th order should
be identifiable in future, given longer experimental recordings. We
also speculate that appropriate models5,15,21 of neural population
activity implicitly include excess SS as well as the resulting structure
of HOIs, as demonstrated in the DG model.
Multiple biological mechanisms may underlie the high SS prob-

ability observed and alternating signs of HOIs.While we have shown
that even simple thresholding units with correlated inputs can repro-
duce this structure, we do not exclude contributions from other
mechanisms. Indeed, we demonstrated the involvement of inhibitory
input in generating SS (Fig. 5). Under the blockade of GABAA recep-
tors, activities of neurons were almost completely synchronized.
Therefore HOIs of the population activity were significantly dimin-
ished. It is expected that neurons are almost fully synchronized and
fire regularly if inhibition is removed40. However, it may require
additional neuronal mechanisms with slow dynamics41,42 to robustly
account for the sparse synchronous activity observed in the current
data sets. While this result may simply indicate that inhibition is
necessary to place a network of neurons in a fluctuation-driven
regime43,44 for them to be sensitive to correlated input (c.f. Fig. 6),
itmay alternatively suggest the existence of clustered inhibitory input
that simultaneously shuts down a group of local neurons and pro-
duces excess SS. Inhibitory interneurons in the hippocampus have
diverging connections to principal neurons45 and show powerful
control over timing and rhythms of their spiking activity46,47. Such
inhibitory circuits are ideally suited to implement a winner-take-all-
like competition among groups of neurons, which are common in
models of hippocampal circuits aiming to reproduce place fields48,49.
Similar operations of hippocampal inhibitory circuits have also been
suggested for cellular assemblies50 and memory consolidation51.
Thus the excess SS in spontaneous activity reported here might be
related to functions requiring sparse information representationwith
a small fraction of active neurons. It is therefore interesting to see if
the same experimentalmanipulation of inhibition that influences, for
example, the sparse place field representation, also influences SS
during spontaneous activity.
Our study demonstrates that excess SS explains a large fraction of

the variability caused by complex HOIs in neural populations.
Although it was previously reported that HOIs fitted to several
representative activity patterns explain occurrence probabilities of
other general patterns18, this study did not normalize the model
probability distribution because of the computational complexity
associated with the normalization step. As a drawback, it was prev-
iously unknown how much of the variability associated with HOIs
was explained by a small number of representative activity patterns.
In contrast, the entropy maximization approach we have taken was
suitable to evaluate these quantities. More generally, virtually all
previous studies of HOIs14,19,20 attempted to fit multiple model para-
meters to the data rather than to extract the most prominent feature
in the space of HOIs. Note that the hHOI model fitted to the data
reproduces an observed histogram of the number of active neurons
in time bins (i.e., a population spike-count histogram). Thus the
hHOI model is equivalent to the K-pairwise model proposed in

Tkačik et al.20 although the two models utilize different features of
activity patterns to represent homogenousHOIs.We have found that
SS can parsimoniously summarize 80% of the specific structure of
hHOIs. Furthermore, successive orders of interaction have altern-
ating signs. This resulting structure extends the negative triple-wise
interactions previously found in local (v300mm) populations of 3
neurons17.
In sum, we demonstrate that representing HOIs using ‘‘silence’’

provides a much more concise description than the canonical
representation based on ‘‘activity’’. We conclude that significant SS
is a ubiquitous feature in neural population activity that expresses
apparently diverse HOIs across different orders.

Methods
Recording method. Hippocampal slice cultures were prepared from postnatal day 7
Wistar/ST rats (SLC) (either male or female). Entorhino-hippocampal stumps were
cultivated on membrane filters using 50% minimal essential medium, 25% Hanks’
balanced salt solution, 25% horse serum, and antibiotics in a humidified incubator at
37uC in 5% CO2 and were used for experiments on days 7 to 14 in vitro. On
experimental days, slices were washed with oxygenated artificial cerebrospinal fluid
(aCSF) consisting of (mM) 127NaCl, 26NaHCO3, 3.3 KCl, 1.24 KH2PO4, 1.2MgSO4,
1.2 CaCl2, and 10 glucose and bubbled with 95% O2 and 5% CO2. They were then
transferred to a 35-mmdish filled with 2 ml of dye solution and incubated for 40 min
in a humidified incubator at 37uC in 5% CO2 with 0.0005% Oregon Green 488
BAPTA-1 (OGB-1) AM (Invitrogen), 0.01% Pluronic F-127 (Invitrogen), and 0.005%
Cremophor EL (Sigma-Aldrich). They were recovered in aCSF for. 30 min and
mounted in a recording chamber at 32uC and perfused with aCSF at a rate of 1.5–
2.0 ml/min for . 15 min. Hippocampal CA3 pyramidal cell layer was imaged at
10 Hz using a Nipkow-disk confocal microscopy (CSU-X1; Yokogawa Electric), a
cooled CCD camera (iXonEM1 DV897; Andor Technology), an upright microscope
with a water-immersion objective lens (16 3, 0.8 numerical aperture, Nikon).
Fluorophores were excited at 488 nmwith a laser diode and visualized with a 507-nm
long-pass emission filter. The recording lengths varied from 600 sec to 3300 sec
(600 sec (n 5 9); 1200 sec (n 5 4); 310, 610, 700, 900, 1100, 1800, 3300 s (n 5 1)).
Picrotoxin was bath-applied at a concentration of 50 mM to 9 slices (600 sec (n5 7)
and 350 s (n 5 2)). After identification of cell types, the regions of interest (ROIs)
were carefully placed onto the cell bodies. The fluorescence change (DF/F) was
calculated asDF/F5 (Ft–F0)/F0, where Ft is the fluorescence intensity at time t, and F0
is the baseline averaged for 50 s before and after time t. For neurons, event times were
reconstructed from the onsets of Ca21 transients3,27,28. The signals were then inspected
by eye to remove erroneously detected noise. The data is available online (http://gaya.
jp/data). Under the same condition as described above, membrane potentials were
whole-cell recorded at I 5 0 from pyramidal cells (n 5 7) visually identified under
infrared differential interference contrastmicroscopy. Patch pipettes (326 MV) were
filled with a solution consisting of (in mM) 120 K-gluconate, 10 KCl, 10 HEPES, 10
creatine phosphate, 4MgATP, 0.3Na2GTP, and 0.2 EGTA. The signal was digitized at
10 kHz and filtered with a band of 1–2000 Hz. Liquid junction potentials were not
corrected. Experiments were performed with the approval of the animal experiment
ethics committee at the University of Tokyo (approval No. P24-6) and according to
the University of Tokyo guidelines for the care and use of laboratory animals. All
efforts weremade tominimize the animals’ suffering and the number of animals used.

Selection of groups of neighboring neurons. From each slice, we selected 50 distinct
overlapping groups, each consisting of 10 nearest-neighbor neurons, based on the
following procedure. In each slice, we estimated the density of spatial distribution of
the cells in the recorded area of CA3 by an optimized 2-dimensional kernel density
estimation method52. We then sampled a spatial point from the estimated density,
and selected the 10 neurons nearest to the point. We repeated this procedure until we
obtained 50 distinct groups (we discarded groups of neurons if the exactly same group
of 10 was previously selected). The neurons with low activity rates (less than 0.01 Hz)
were excluded from this analysis. In addition, we changed the number of neurons in a
group from 3 to 14 to investigate effect of the group size (Fig. 3C). We sampled up to
50 groups per slice following the same sampling procedure described above. Finally,
we sampled non-overlapping groups of N~3, � � � ,14 neurons. Note that we can
sample only a small number of groups from each slice if groups are stochastically
sampled by the above-mentioned method. Thus, we took the following procedure to
efficiently select non-overlapping groups from each slice. First, we fitted a 2-
dimensional Gaussian density function to the spatial distribution of cells in each slice.
We then determined the first principle component, and scored the positions of
neurons along the first principle axis. We selected neurons that are nearest neighbors
in terms of this score as a group. To determine the number of groups sampled from
each slice, we computed the maximum number of non-overlapping groups that can
be sampled from each of all slices. We used the smallest number of groups among
them to sample an equal number of groups from each slice.

Model fitting and a test of simultaneous silence. First, we fit to binary population
activity data (see Fig. 1F in Results) the pairwise maximum entropy model8,9,31,

p2(x1,:::,xN )* exp
X

i
hixiz

X
ivj

hijxixj
h i

, where xi is a binary variable of 0 or 1.
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Here the parameters of the model, hi,hij
� �

, were fitted by a maximum likelihood
principle, hMLE~ argmax

h
l hð Þ, where l hð Þ is the log likelihood of the data under the

model. The nonlinear fitting was performed using a custom convex optimization
program in Matlab. We then fit to the same data a maximum entropy model that
augments the pairwise model with a single term to account for the observed
probability of SS in addition (the SS model, see Eq. 1 in Results). The increase in
likelihood over the pairwise model seen after adding a parameter for the SS is related
to the reduction in entropy by 2 lss{l2ð Þ~2T H2{Hssð Þ, where lss and l2 are the log
likelihood of the data under the SS model and the pairwise model respectively, and T
is the number of observed patterns (bins). Under the null hypothesis of no such SS
term, the variability in themodel estimation due to finite samples make the difference
in log likelihood following a x2-distribution with one degree of freedom as
2 lss{l2ð Þ~x2 1ð Þ11. The p-value of the observed likelihood increase was computed using
this null distribution. The p-values were further corrected by the Benjamini-
Hochberg-Yekutieli multiple comparison correction method that is applicable to
dependent tests, usingMatlab code written by Groppe et al.53,54 This method controls
the proportion of tests that incorrectly declare significant SS (the false discovery rate).

A dichotomized gaussian (DG) model. The DGmodel is a threshold neuron model
with Gaussian input signals33–36. The binary output of the i-th neuron (i~1, � � � ,N) is
given by Xi~1 ifuiw0 or Xi~0 ifuiƒ0, where u~ u1,u2, � � � ,uNð Þ’ is drawn from a
multivariate Gaussian distribution with mean c~ c1,c2, � � � ,cNð Þ’ and a covariance
matrix L whose diagonal is 1 as u~N c,Lð Þ. Note that ’ describes matrix (or vector)
transpose. Here we consider a homogenous neuron pool: the mean is all fixed at
ci~{h and the off-diagonal elements of L are all fixed at cin. The probability that
individual output neurons are in an active state is given by g1~W {hð Þ, where W is
the one-dimensional cumulative distribution function (CDF) of a zero-mean, unit
variance Gaussian distribution. The probability of simultaneous activity of 2 neurons
is given by g2~W2 {h,cinð Þ,whereW2 is the 2-dimensional Gaussian CDF with zero-
means, unit variances, and a off-diagonal correlation coefficient cin. The correlation
coefficient between 2 output neurons is given by cout~g2{g21

�
g1 1{g1ð Þ.

The probability distribution of population activity has a simple analytical
expression in this model. Note that the correlated inputs can be written as
ui~

ffiffiffiffiffiffiffiffiffiffiffiffi
1{cin

p
viz

ffiffiffiffiffi
cin

p
e{h, where vi is a unit variance white Gaussian noise

vi*N 0,1ð Þ specific to each neuron, and e*N 0,1ð Þ is an input noise that is common
across all neurons. The conditional probability of a single neuron spiking given the
common input e is given by33

f eð Þ~ 1ffiffiffiffiffi
2p

p
ð?
h{e

ffiffiffiffiffi
cin

p� �
=

ffiffiffiffiffiffiffiffiffiffiffiffi
1{cin

p e{u2=2du~
1
2

1{erf
1ffiffiffi
2

p h{e
ffiffiffiffiffi
cin

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1{cin

p
� 	� 	

: ð3Þ

The probability that exactly m neurons are active and N{m neurons are inactive is
given

pDG mð Þ~E N
m

� �
f eð Þm 1{f eð Þð ÞN{m
 �

, ð4Þ
where the expectation is performed with respect to the common input noise, e. Note
that the binomial factor N

m

� �
sums all possible combinations of population activity

patterns with m active neurons. In order to obtain the probability mass function for
the finite population size N , we numerically computed the above equation. On the
other hand, the same population-count probabilities are described by

p mð Þ~ N
m

� �
exp

Xm

k~1
Fk mð Þhk{y

h i
: ð5Þ

Here Fk mð Þ~ m
k

� �
(k~1, � � � ,N) is the k-th order feature of the hHOI model, which

counts all combinations of choosing k neurons out of m active neurons, and y is a
normalization factor. Thus, by solving linear equations, log p mð Þ~ log pDG mð Þ for
m~0,1, � � � ,N , we obtain the parameters, hk (k~1, � � � ,N), and the normalization
factor y.

We quantify the signal-to-noise ratio for estimating the input correlation, cin, based
on the population activity of the homogenous DGmodel as follows. A small change in
cin is inferred from a vector of observation, Fobs mð Þ~ Fs1 mð Þ, � � � ,Fsr mð Þð Þ’ , where
indices sj[ 1, � � � ,Nf g j ¼ 1, � � � ,rð Þ specify a subset of r features that are taken into
account for the inference. The signal for detecting the input correlation is given by

LE Fobs mð Þ½ �
=Lcin

and the noise of the observation is quantified by Cov Fobs mð Þ½ �, where E :½ � is
the expectation and Cov :½ � is the r|r covariance matrix calculated using pDG mð Þ
defined above. Together, the signal-to-noise ratio is given by
LE Fobs mð Þ½ �

Lcin

’

Cov Fobs mð Þ½ �{1LE Fobs mð Þ½ �
Lcin

38,39. In the paper, we specifically consider

three types of observations as Fobs mð Þ: the full observation F1 mð Þ, � � � ,FN mð Þð Þ’ , the
activity rates of individual and pairwise neurons F1 mð Þ,F2 mð Þð Þ’ , and these activity
rates plus the SS rate F1 mð Þ,F2 mð Þ,dm,0ð Þ’ , where di,j represents Kronecker’s delta.
Notably, when all the features F1 mð Þ, � � � ,FN mð Þð Þ’ are observed, the above signal-to-
noise ratio becomes equivalent to the Fisher information55 of the input correlation,

i.e., E {
L2

Lc2in
log pDG mð Þ

� 
, and thus upper-bounds the accuracy of unbiased

estimators of cin based on the population activity. See56,57 for information in subset

features achieved by a general optimal nonlinear decoder as assessed by the Fisher
information.
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This Article contains typographical errors.

In the Results section under subheading ‘Simultaneous silence and HOIs of hippocampal neurons’

“The parameters {θi,θij} were adjusted to fit these statistics.”

should read:

“The parameters {θi,θij} were adjusted to fit these statistics.”

In the Results section under subheading ‘Simultaneous silence is a ubiquitous feature of HOIs’

“By expanding the SS term into the standard HOI-coordinates, we obtain

∏ ∑ ∑ ∑ ∑θ θ θ θ θ θ( − ) = − + − + .
< < < < < <

x x x x x x x x x x x1 ”
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i
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i
i j

i j
i j k

i j k
i j k l

i j k l0 0 0 0 0 0

should read:

“By expanding the SS term into the standard HOI-coordinates, we obtain

∏ ∑ ∑ ∑ ∑θ θ θ θ θ θ( − ) = − + − + − .
< < < < < <

x x x x x x x x x x x1 ”
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In the Result section under subheading ‘Alternating signs of HOIs predicted by SS’, equation (2)

∑ ∑ ∑ ∑θ θ θ( , , ) ∼
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should read:

∑ ∑ ∑ ∑θ θ θ( , , ) ∼
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In the Methods section under subheading ‘A dichotomized gaussian (DG) model’,

“The binary output of the i-th neuron ( = , ,i N1 ) is given by =X 1i  if >u 0i  or =X 0i  if ≤u 0i , 
where = ( , , , ) ′u u u uN1 2  is drawn from a multivariate Gaussian distribution with mean 
γ γ γ γ= ( , , , ) ′ N1 2  and a covariance matrix Λ whose diagonal is 1 as γ Λ( , )

∼uN .”

should read:

“The binary output of the i-th neuron ( = , ,i N1 ) is given by =X 1i  if >u 0i  or =X 0i  if ≤u 0i , 
where = ( , , , ) ′u u u uN1 2  is drawn from a multivariate Gaussian distribution with mean 
γ γ γ γ= ( , , , ) ′ N1 2  and a covariance matrix Λ whose diagonal is 1 as γ Λ∼ ( , )u N .”

In addition,

“The correlation coefficient between 2 output neurons is given by η η η η= − / ( − )c 1out 2 1
2

1 1 .”

should read:

“The correlation coefficient between 2 output neurons is given by η η η η= ( − )/ ( − )c [ 1 ]out 2 1
2

1 1 .”

In addition,

“The probability that exactly m neurons are active and N-m neurons are inactive is given”

should read:

“The probability that exactly m neurons are active and N-m neurons are inactive is given by”

In addition,

“The signal for detecting the input correlation is given by ∂ ( )

/∂
E F m

c
[ ]obs

in
 and”

should read:

“The signal for detecting the input correlation is given by ∂ ( )

∂

F m
c

E[ ]obs

in
 and”
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