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Changes in response of a biological pathway could be a consequence of either pathway rewiring, changed
input, or a combination of both. Most pathway analysis methods are not designed for mechanistic rewiring
such as regulatory element variations. This limits our understanding of biological pathway evolution. Here
we present a Q-method to discern whether changed pathway response is caused by mechanistic rewiring of
pathways due to evolution. Themain innovation is a cumulative pathway interaction heterogeneity statistic
accounting for rewiring-specific effects on the rate of change of each molecular variable across conditions.
The Q-method remarkably outperformed differential-correlation based approaches on data from diverse
biological processes. Strikingly, it also worked well in differentiating rewired chaotic systems, whose
dynamics are notoriously difficult to predict. Applying the Q-method on transcriptome data of four yeasts,
we show that pathway interaction heterogeneity for known metabolic and signaling pathways is indeed a
predictor of interspecies genetic rewiring due to unbalanced TATA box-containing genes among the yeasts.
The demonstrated effectiveness of the Q-method paves the way to understanding network evolution at the
resolution of functional biological pathways.

M odular and hierarchical orderings of molecules in a cell give rise to the biochemical mechanisms
underlying functionally distinct biological pathways. Chemical reactions and physical interactions
among these molecules govern observed pathway response. We call genetic or epigenetic modifications

to the connections among molecules mechanistic rewiring. Both mechanistic rewiring and changed upstream
input, though two fundamentally different causes, can elicit divergent pathway responses. Under the overarching
goal to understand how evolution may have rewired a biological pathway, we aimed at discerning whether a
changed pathway response is likely a result ofmechanisticmodifications within the pathway or changed upstream
input to the pathway. Although other studies linked rewired gene interactions, e.g., TATA box variation, to gene
expression variability among related species1, methods for the rewiring analysis of functional pathways are
lacking.

Due to its cumulative nature, pathway analysis is more effective for interpretation of biological functions than
single-gene approaches at modest effect and sample sizes. Most pathway analysis methods, e.g., GSEA2, accrue
expression change of genes in a pathway. Some generalized statistical tests on collective ranks of genotype-
phenotype associations of all pathway genes3. They are, however, insensitive to pathway topology.

Available pathway topology databases4,5 promptedmethods to exploit such information. NetGSA6 used a latent
variable model, estimated by amixed linear model, to incorporate gene interactions in a pathway. SPIA7 also used
a static linear pathway impact model8 based on gene interactions. A recent review9 listed 22 topology-based
pathway analysismethods which were not designed to differentiate whether changed dynamics are a consequence
of pathway rewiring or changed pathway input. Their resulting top-ranked pathways are thus not necessarily
most mechanistically rewired.

ScorePAGE10 and Gene Set Co-expression Analysis (GSCA)11 adopted cumulative pairwise correlation scores
to evaluate gene interactions in a pathway, though GSCA also includes those not in the pathway topology.
ScorePAGE was not specifically designed for comparative pathway analysis across multiple experiments.
GSCA evaluates a divergence index calculated by the summation of absolute differential correlation and is highly
relevant to pathway rewiring. These methods are however not equipped for nonlinear or dynamical pathway
representations.
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After reviewing 33 pathway analysis methods, Khatri et al12 posed
six challenges to this research area.We present theQ-method tomeet
three of them. Specifically, we address the third challenge, the
annotation challenge: ‘‘missing condition- and cell-specific informa-
tion’’ by adapting an annotated pathway topology to context-specific
data, instead of using the topology exactly, to allow pathway rewiring.
Ourmain design consideration overcomesmethodological challenge
2 ‘‘inability to model and analyze dynamic response,’’ by adopting
nonlinear dynamical system models (DSMs). Responding to meth-
odological challenge 3 ‘‘inability to model effects of an external stim-
uli,’’ we distinguish whether observed dynamic changes are caused
by external stimuli or intrinsic pathway rewiring.
The Q-method discerns mechanistically rewired pathways by

comparative dynamical system modeling. We consider a DSM to
be conserved if it has the same parameters or coefficients with the
original model but the variables in the DSM are not required to have
the same initial values. On the other hand, a rewired or differential
DSM must have different parameters from the original model,
regardless of the initial values for model variables. Given a super-
pathway topology, we partially reconstruct the active interactions in
this pathway. All active interactions constitute one homogeneous
and two heterogeneous DSMs for a pathway under two conditions.
If the heterogeneous models are significantly supported by observed
data, the pathway is declared to undergo a mechanistic rewiring, or
differential; otherwise, it is conserved. In this paper, we reserve the
word differential for mechanistic differences and use the word diver-
gent for dynamical response differences. Using 12 modes from the
BioModels database13, the Q-method detected pathway rewiring
more effectively than GSCA in most cases. Chaotic dynamical sys-
tems are increasingly recognized inmolecular biology14,15, and theQ-
method successfully differentiated rewired Lotka-Volterra predator-
prey models. Using interspecies yeast transcriptomes, theQ-method
predicted rewired pathways consistent with TATA box disparity,
painting rewired mechanisms among four yeast species. When the
rate of change for biological quantities can be reliably estimated, our
results suggest broad applicability of the Q-method for detecting
pathway rewiring in dynamic biological networks at the mechanistic
level.

Methods
Overview of the Q-method. The Q-method tests whether a pathway is
mechanistically rewired across two conditions or species, as summarized in Fig. 1. It
also infers causal DSMs that best explain the observed time course data for each
condition. The input includes a given super-pathway topology and observed time
course dataD1 andD2 under each of two conditions. Partial pathway reconstruction is
first performed to infer active interactions in the super-pathway topology. This partial
reconstruction step can be done using many network inference methods and here we
use dynamical system modeling to capture rate of change information. It is partial
because only those inferred active interactions constitute one homogeneous and two
heterogeneous DSMs for a pathway under two conditions. The two heterogeneous
DSMs can be used to determine rewired interaction strength or topology across
conditions by statistically meaningful differences in model parameters. Three Q-
statistics and their statistical significance are calculated to characterize pathway
interaction homogeneity (Qc, pc), heterogeneity (Qd, pd), and total interaction
strength (Qt, pt). By pathway interaction heterogeneity/homogeneity, wemeasure the
cumulative difference/similarity in the manner that pathway elements interact across
conditions or species. By total interaction strength, we measure the overall dynamical
activity of a pathway. For example, a pathway already reaching a steady state in all
experimental conditions will have a low total interaction strength. The overall null
hypothesis is that the pathway is not rewired across conditions. Statistical significance
of the Q-statistics determines, as the output, whether changed pathway response can
be explained by mechanistically rewired DSMs under each condition. TheQ-method
software is freely available to non-commercial organizations at http://www.cs.nmsu.
edu/,joemsong/software/Q-method.

Representing pathways by dynamical system models. We represent pathway
mechanisms by DSMs. The key advantage of DSM is its ability to track rate of change
in a dynamical system. It is widely used inmathematical biology but disproportionally
under-explored for pathway analysis. With rate-of-change information, we are
theoretically equipped to distinguish the causes for observed differences in dynamics
between biological systems. Each node on a pathway is mapped to a variable in a
DSM. Via a system of additive nonlinear ordinary differential equations (ODEs), a

DSM quantifies the rate of change for each child variable as a function of its parent
variables. Each ODE uses a linear combination of linear, quadratic, and sigmoidal
terms as functions of parent variables. Linear terms delineate the simplest possible
interactions; quadratic terms can capture combinatorial effects; and sigmoidal terms
approximate transcription activation kinetics16 and capture basal activation, switch-
like or partial linear response, and saturation. Let a DSM contain p variables, each
representing the abundance of a molecule. Let xi(t) be the value of variable i at time t.

Let yi(t) be its rate of change. Let x tð Þ~ x1 tð Þ, . . . ,xp tð Þ� �>
be a vector representing

the state of the system at time t. Let PL
i , P

Q
i , and PS

i be the set of parent variable
indices giving rise to linear, quadratic, and sigmoidal terms for variable i.PL

i andP
S
i

are integer sets andPQ
i is a set of integer pairs. Now we can write the ODE for child

variable i as

yi tð Þ~ dxi tð Þ
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where b0 is a constant, b
L
l is the coefficient of the linear term involving variable l, bQq1 ,q2

coefficient of quadratic term involving variables q1 and q2, and bSs coefficient of the
sigmoidal term involving variable s, and ei is a noise term. hs is the value of variable s

producing half target occupation, i.e. when xs(t)5 hs, the term
x2s tð Þ

h2szx2s tð Þ is equal to

0.5. fi is the functional part of themodel. For clarity purpose, we omitted the subscript
i for all coefficients, or parameters, though they are indeed child specific.

Partial pathway reconstruction. We partially reconstruct four pathway DSMs and
compute residuals using the given super-pathway topology as a superset of all possible
interactions. Partial refers to the fact that a reconstructed DSM contains only a subset
of active interactions from the super-pathway topology. Directed-graph
representations of pathways can be extracted from Kyoto Encyclopedia of Genes and
Genomes (KEGG)17, BioModels, or other resources. Specifically, the first DSM uses
data under condition 1, the second with data under condition 2, the third with data
pooled from both conditions, and the fourth is a null model with only the constant
term b0 from the pooled data. Pooled data are obtained by combining the data sets
from all conditions.

We apply an F-test method to reconstruct the first three pathway DSMs by
estimating the parameters in the DSMs (see Supplementary Text 3.1 for full detail of
model estimation). The choice of parents in f̂i , a best estimate of fi, is constrained to be
a subset of all possible parents of node i as specified in the super-pathway topology.
We remark here that this first partial reconstruction step can be accomplished using
alternative causal network inference methods. The super-pathway topology is rel-
evant only if it indeed covers all possible interactions expected in a network.
Otherwise, a complete data-driven approach is more appropriate when sufficient
experimental data are available.

We use the term D1 to refer to all information under condition 1, including state

vector x(1)(t), derivative y 1ð Þ
i tð Þ of variable i, the number of time points sampled n1

occurring non-uniformly over time at T(1)5 {tkjk5 1, ..., n1}, observed data x(1)(tk) at

tk, and estimated derivative y 1ð Þ
i tkð Þ using penalized smoothing splines implemented

in the R package pspline. Symmetrically, we define D2 for condition 2, including

x(2)(t), y 2ð Þ
i tð Þ, n2, T(2), x(2)(tk), and y 2ð Þ

i tkð Þ.
We first obtain two heterogeneous pathway models for each condition. By com-

parative dynamical system modeling18, we partially reconstruct the best models
simultaneously for both conditions sharing a subset of interactions from the given
super-pathway topology. Interactions in the subset are active under at least one
condition. For condition 1, the estimated pathway DSM P(1) is

P 1ð Þ~ f̂ 1ð Þ
1 , f̂ 1ð Þ

2 , . . . , f̂ 1ð Þ
p

n o
ð2Þ

where f̂ 1ð Þ
i is the estimated model with m(1)(i) parameters for variable i. The model

complexity, or number of parameters, of P(1) is m 1ð Þ~
X p

i~1
m 1ð Þ ið Þ. Thus, the

residual sum of squares (RSS) for variable i is

RSS 1ð Þ ið Þ~
X
tk[T 1ð Þ

y 1ð Þ
i tkð Þ{f̂ 1ð Þ

i x 1ð Þ tkð Þ
� �h i2

ð3Þ

For condition 2, the DSM model is

P 2ð Þ~ f̂ 2ð Þ
1 , f̂ 2ð Þ

2 , . . . , f̂ 2ð Þ
p

n o
ð4Þ

with model complexity m 2ð Þ~
X

p
i~1m

2ð Þ ið Þ and

RSS 2ð Þ ið Þ~
X
tk[T 2ð Þ

y 2ð Þ
i tkð Þ{f̂ 2ð Þ

i x 2ð Þ tkð Þ
� �h i2

ð5Þ

We call P(1) and P(2) heterogeneous models because their parameters are optimized for
each condition.
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Novelty of our pathway analysis builds on two additional models, a homogeneous
model and a pooled null model, to be used to examine pathway homogeneity and also
as a reference for pathway heterogeneity. With pooled data D1|D2 and the sub-
graph obtained when determining P(1) and P(2), we get the pooled pathway DSM:

P 1,2ð Þ~ f̂ 1,2ð Þ
1 , f̂ 1,2ð Þ

2 , . . . , f̂ 1,2ð Þ
p

n o
ð6Þ

where f̂ 1,2ð Þ
i for variable i, estimated using the pooled data, hasm(1,2)(i) parameters.We

call P(1,2) the homogeneous model as it fits to data under both conditions. The model

has complexity m 1,2ð Þ~
X p

i~1
m 1,2ð Þ ið Þ and RSS for variable i

RSS 1,2ð Þ ið Þ~
X
tk[T 1ð Þ

y 1ð Þ
i tkð Þ{f̂ 1,2ð Þ

i x 1ð Þ tkð Þ
� �h i2

z
X
tk[T 2ð Þ

y 2ð Þ
i tkð Þ{f̂ 1,2ð Þ

i x 2ð Þ tkð Þ
� �h i2 ð7Þ

We write the pooled null model of the pathway by

P0~ f̂ 0i , f̂
0
i , . . . , f̂

0
p

n o
ð8Þ

where f̂ 0i is a constant function whose value is the time average of observed data yi(tk)

for variable i over pooled sample inD1|D2. Themodel complexity of f̂ 0i ism0(i)5 1.

The model complexity of P0 is thus m0~
X 0

i~1
m0 ið Þ with RSS for variable i

RSS0 ið Þ~
X
tk[T 1ð Þ

y ið Þ
i tkð Þ{f 0i x 1ð Þ tkð Þ

� �h i2
z

X
tk[T 2ð Þ

y 2ð Þ
i tkð Þ{f 0i x 2ð Þ tkð Þ

� �h i2
ð9Þ

With all RSS’s defined, we backtrack to give the criterion used to reconstruct the
pathwaymodels. To capture total interaction strength for both conditions for variable
i, we use the F-statistic

Figure 1 | Overview of the Q-method for detecting pathway rewiring. The input requires observed time course data from a pathway under multiple

conditions. The input also includes a super-pathway topology, which can be either retrieved from a pathway topology database or causally inferred from

the observed data. The first main step is to reconstruct partial pathway models – heterogeneous differential equation models specific to each condition.

The strength of interaction heterogeneity is calculated for each node. Also a homogenous differential equationmodel is created from data pooled from all

conditions. The second main step is to compute pathway interaction heterogeneity and homogeneity statistics and their statistical significance. The final

output is thus a set of statistics, includingQd and pdmeasuring the strength and statistical significance of mechanistic pathway rewiring. The thickness of

edges and the size of nodes indicate the strength of rewiring in the heterogeneous models; they indicate conservation in the homogeneous model.
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Ft ið Þ~
RSS0 ið Þ{ RSS 1ð Þ ið ÞzRSS 2ð Þ ið Þ� �� ��

ut ið Þ
RSS 1ð Þ ið ÞzRSS 2ð Þ ið Þ½ �=vt ið Þ ð10Þ

where ut(i)5m(1)(i)1m(2)(i)2m0(i) and vt(i)5 n11 n22 (m(1)(i)1m(2)(i)) are the

numerator and denominator degrees of freedom. The parent variables involved in f 1ð Þ
i

and f 2ð Þ
i were selected to minimize the p-value of Ft(i).

In summary, partial pathway reconstruction produces four DSM models with
RSS’s for comparative pathway analysis. In contrast to full network reconstruction
without pathway topology, partial pathway reconstruction is efficient with a greatly
reduced search space of interactions spanned only by sub-graphs of the given super-
pathway topology. As pathway conditions and cellular contexts are often not encoded
in a database, partial reconstruction tailors a pathway to observed data. This strategy
is effective when a pathway topology is inclusive of interactions known to occur in
some molecular contexts but not necessarily all active in the current experiment.
Although the pathway DSMs share a subgraph topology, an interaction or edge in the
subgraph can be considered deleted in a condition if the DSM parameter corres-
ponding to that interaction approaches zero under the condition.

Q-statistics for pathway homogeneity and heterogeneity. Changed pathway
response can be caused by various modifications to biological mechanisms.
Mutations in promoter sequences, the presence or absence of enhancer or silencer
regions, mutations in general transcription factors, chromatin remodeling, or
changes in upstream promoter regions of genes may all alter dynamics of regulatory
pathways. Parameters in heterogeneous pathway models P(1) and P(2) may differ
numerically due to noisy observations even when the underlying systems are
identical. Direct numerical comparison of the two models would lead to high false-
positive rates for differential pathways. Instead, using the four pathway models and
their residuals, we develop a statistically reliable framework to evaluate pathway
homogeneity and heterogeneity across conditions.

Homogeneity is the improvement of homogeneousmodel P(1,2) over the pooled null
model P0. We compute the overall homogeneous RSShom of P(1,2), indicating its
absolute goodness-of-fit to the data, by adding the individual RSS’s for each variable

RSShom~
Xp
i~1

RSS 1,2ð Þ ið Þ ð11Þ

Heterogeneity is the improvement using two models P(1) and P(2) over a single pooled
model P(1,2). We measure the overall heterogeneous RSShet of P(1) and P(2), also indi-
cating their absolute goodness-of-fit to the data, by

RSShet~
Xp
i~1

RSS 1ð Þ ið ÞzRSS 2ð Þ ið Þ
h i

ð12Þ

To account for a pathway being active in neither condition, we also consider RSSnull of
the pooled null model P0

RSSnull~
Xp
i~1

RSS0 ið Þ ð13Þ

Although an RSS indicates model goodness-of-fit, it is unfair to compare them
directly because of unequal model complexity. Instead, we compute their RSS dif-
ferences normalized by degrees of freedom as in an F-test. To capture pathway
interaction heterogeneity across conditions, we measure the normalized difference
between RSShom and RSShet by

Qd~
RSShom{RSShetð Þ=ud

RSShet=vd
ð14Þ

where ud 5 m(1) 1 m(2) 2 m(1,2) and vd 5 n1 1 n2 2 (m(1) 1m(2)) are the numerator
and denominator de grees of freedom. A high Qd value for pathway interaction
heterogeneity provides strong evidence for a pathway to have been rewired across
experimental conditions.

To capture pathway interaction homogeneity across conditions, we measure the
normalized difference between RSSnull and RSShom by

Qc~
RSSnull{RSShomð Þ=uc

RSShom=vc
ð15Þ

where uc5m(1,2)2m0 and vc5 n11 n22m(1,2) are the numerator and denominator
degrees of freedom. A high Qc value for pathway interaction homogeneity suggests
that a pathway has a consistent wiring behavior across conditions.

To capture total pathway strength for both conditions, we measure the normalized
difference between RSSnull and RSShet by

Qt~
RSSnull{RSShetð Þ=ut

RSShet=vt
ð16Þ

where ut5m(1) 1m(2) 2m0 and vt5 n11 n22 (m(1) 1m(2)) are the numerator and
denominator degrees of freedom. A high Qt value for overall pathway involvement
suggests strong interaction patterns are observed for the pathway regardless of con-
served or differential.

The pathway decomposition rule. Pathway homogeneity Qc, heterogeneity Qd, and
total strength Qt mathematically constrain each other. From their definitions in Eqs
(14), (15), and (16), we obtain

log 1z
ut
vt
Qt

	 

~ log 1z

ud
vd

Qd

	 

z log 1z

uc
vc
Qc

	 

ð17Þ

We call this relationship the pathway interaction decomposition rule, extending the
decomposition rule for a single interaction across conditions18. In this rule, the total
pathway interaction strength is decomposed to pathway homogeneity and
heterogeneity. Therefore, knowing two of the three statistics entails the third. Given
the total interaction strength, homogeneity and heterogeneity counterbalance each
other. Less obviously, two heterogeneous systems can still have none-zero
homogeneity, which allows differing systems to share certain commonality. For
example, a transcription factor can regulate a target gene differentially due to genome
evolution between two species. The binding affinity in one species can be higher than
the other species, though resulting in positive regulation in both cases. A pathway
containing such transcription factors can thus exhibit high heterogeneity due to the
changed binding affinity and also certain non-zero homogeneity due to the consistent
positive regulatory effect.

Deciding pathway rewiring by statistical significance. Based on statistical
significance of observed pathway homogeneity and heterogeneity, we decide whether
a pathway is conserved or differential. Under standard normality assumptions for the
F-test as in regression analysis, Qc, Qd, and Qt follow asymptotic F-distributions with
their respective numerator and denominator degrees of freedom under the null
hypotheses19. The resulting p-values pc, pd, and pt are statistical significance of
pathway homogeneity, heterogeneity, and total interaction strength.

To address the potential violation of the normality assumption for the residuals,
dependent nodes in a pathway, or evaluation of multiple pathways, we use a per-
mutation test to adjust statistical significance of Qd and Qc. We randomly sample
nodes in the entire system to form new pathways and permute their conditions. The
permuted Q’d and Q’c values give empirical null distributions, and statistical sig-
nificance pd and pc of the originally observedQd andQc are determined by the fraction
of permutations with Q’d§Qd and Q’c§Qc .

Finally, if pathway heterogeneity is significant at a given type I error a-level, i.e., pd
# a, the pathway is differential regardless of homogeneity; the pathway is conserved if
homogeneity is significant at pc # a and the heterogeneity is insignificant (pd . a);
otherwise, there is insufficient evidence to declare a differential or conserved pathway
across conditions.

Results
Advantage of Q-method over its alternatives. To evaluate the
performance of Q-method, we simulated data from 12 curated
dynamic models (Table 1) in the BioModels database13 and
compared it with the GSCA method. These models are some of the
best representations of classical biological processes with complex
dynamics supported by a large amount of experimental data. They
are composed of nonlinear ODEs in different forms from our
additive nonlinear model in Eq. (1). As it is rarely practical to
know the correct mathematical forms for a real biological system,
we test if our method, by approximating the ODEs, answers the
differential/conserved question sufficiently well. Each model is
treated as a pathway. We simulated biological variations by
changed coefficients in the differential equation models. For
example, protein-binding affinity could be changed because of
mutations in the protein amino acid sequence and this leads to a
different affinity constant in a rewired model. Another example is
that changed protein-DNA binding affinity due to sequence
variation in the binding motif can also be reflected as a changed
coefficient in the transcription regulation kinetics.
We generated ground truth of conserved and differential models

from original models in BioModels database13. A conserved model is
the same with an original model but with a changed initial state,
which can have a dramatic effect on the system response. The initial
value of a variable was changed by adding a random number uni-
formly distributed in [L, U] to the original initial state. L and U are
determined bymodel sensitivity to the initial state. Toomuch change
can break a relationship between variables due to numerical instab-
ility. To create a differential model, parameter values in the original
model are multiplied by a random number normally distributed with
mean m and standard deviation s. To avoid numerical instability, m
and s vary depending on model sensitivity to parameters. To cover
diverse initial states and parameters, we generated 100 conserved and
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100 differential models for each original model. Given a model and
its initial state, we simulated time courses and added noises at signal-
to-noise ratios (SNRs) of 100, 20, 10, or 0 dB. The time courses were
generated by solving ODEs in each model using R package deSolve20,
and sampled at 100 time points, uniformly spaced with a model-
dependent time interval. The perturbation values for each model
are described in Table 1, and the runtime of the simulation study
on each model is given in Table 2.
Given a pair of time courses andmodel (pathway) topology, theQ-

method decides if they are from a pair of conserved (negative) or
differential (positive) models based on pd and a. The decision is
compared with the ground truth to tabulate the numbers of false
positives and true positives at different a-levels to produce a receiver
operating characteristic (ROC) curve.
We first demonstrate the performance of the Q-method on differ-

entiating a rewired cell division cycle model21. This model describes
dynamical interactions of cdc2 and cyclin in cell devision cycle with
cubic terms not covered by our ODEs. The topology of the model is
shown in Fig. 2a and the rewiring parameters of this model are given
in Table 1. Here an edge incident upon the EmptySet represents
degradation of a molecule and edge from the EmptySet represents
synthesis of a molecule. Depending on activity of the protein com-
plex maturation promoting factor (MPF, or Cyclin_Cdc2-P (M) in

Fig. 2a), this pathway operates between an oscillation and an excit-
able domain. Full detail of chemical reactions in this model can be
retrieved as BIOM0000000005 from the BioModels database13. After
applying the Q-method on time course data simulated from 100
conserved and 100 rewired versions of this model, we plot the
ROC curves (Fig. 2b–e) at four SNRs and show that the Q-method
is effective even at a high level of noise when SNR is 0 dB.
Supplementary Figures S1 to S4 further show ROC curve perform-
ance of our method at four SNRs for all 12 BioModels, which cover
cell division cycle, circadian oscillations, intracellular calcium oscil-
lations, glycolysis, synthetic gene-metabolic oscillator, and mitosis.
To demonstrate the advantage of Q-method, we also applied the

original code of GSCA to exactly the same data in this simulation
study. By summing up differential correlation between all time-
course pairs of elements on a pathway across two conditions,
GSCA calculates a dispersion index to determine differential path-
ways. Supplementary Figures S1 to S4 overlay the resulting ROC
curves with those of theQ-method at all four SNRs – the ROC curves
of GSCA are qualitatively less satisfactory in most of the models at
most noise levels than the Q-method.
Table 3 summarizes average areas under the curve (AUCs) at

different noise levels, demonstrating overwhelming strength of the
Q-method over GSCA. TheQ-method outperformed GSCA in AUC

Table 1 | Setup of BioModels simulation studies for each model. These values are used to perturb original models from the BioModels
database13 to generate conserved and differential pathway models

Model name

Mean Std Upper bound Lower bound Start time End time Time step

m s U L t0 t100 Dt

BIOMD0000000005: Interactions of cdc2 and
cyclin in cell devision cycle21

3 0.1 0.005 0.001 0 100 1

BIOMD0000000008: Cell division cycle dynamics28 2 0.1 0.5 0.1 0 100 1
BIOMD0000000021: Circadian oscillations of
PER & TIM proteins in Drosophila29

2 0.1 0.009 0.005 0 20 0.2

BIOMD0000000035: Circadian oscillations30 3 0.1 0.5 0.1 0 40 0.4
BIOMD0000000042: Oscillations in glycolysis31 1.8 0.1 0.05 0.03 0 100 1
BIOMD0000000043: Intracellular calcium oscillations32 1.095 0.001 0.04 0.02 0 10 0.1
BIOMD0000000045: Intracellular calcium oscillations32 1.9 0.01 0.05 0.01 0 30 0.3
BIOMD0000000061: Glycolysis in S. cerevisiae33 1.1 0.01 0.005 0.001 0 30 0.3
BIOMD0000000067: Synthetic gene-metabolic oscillator34 3 0.01 0.009 0.001 0 100 1
BIOMD0000000069: Activation of Src at mitosis35 2 0.1 0.05 0.01 0 50 0.5
BIOMD0000000073: Mammalian circadian clock36 2 0.1 0.09 0.05 0 300 3
BIOMD0000000078: Mammalian circadian clock36 2 0.1 0.9 0.1 0 400 4

To create a differential model, each parameter in the original model was multiplied by a random number normally distributed with mean m and standard deviation s. The initial value of a variable was
changed by adding a random number uniformly distributed in [L, U] to the original initial state. Given a model and its initial state, we sampled time points at t0 to t100, uniformly spaced with a model-
dependent time step Dt.

Table 2 | Runtime of BioModels simulation studies for eachmodel. Runtime for each BioModels model13 includes simulation and comparison
of 100 pairs of conserved models, and 100 pairs of differential models, based on the same original model

Model name Number of molecular species Runtime (seconds)

BIOMD0000000005 9 539
BIOMD0000000008 5 176
BIOMD0000000021 10 341
BIOMD0000000035 10 2194
BIOMD0000000042 15 1567
BIOMD0000000043 5 209
BIOMD0000000045 4 396
BIOMD0000000061 25 4260
BIOMD0000000067 8 194
BIOMD0000000069 10 248
BIOMD0000000073 16 740
BIOMD0000000078 16 811

The simulation programwas implemented in R and theQ-methodwas implemented in amixture of R andC11 programming languages. The runtime also includesGSCA implemented in R. The runtimewas
obtained on an iMac with 2.93 GHz Intel Core i7 16 GB 1333 MHz DDR3 memory running OS X 10.10.1.
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a

f

Figure 2 | Q-method remarkably outperformed differential correlation in detecting rewired cell division cycle models. Fundamental limitations are

inherent with differential correlation based methods on tracking trajectory shape but not rate of change. Nonlinear dynamic behavior in rewired cell

division cycle model is captured by the Q-method but not GSCA. (a) The topology of the original cell division cycle model (BioModels ID

BIOM0000000005) used in the pathway analysis. (b–e) The four plots show the ROC curves and area under the curves (AUCs) of the Q-method (blue

solid lines) and GSCA (orange dots) detecting rewiring in 100 conserved and 100 differential/rewired models based on the original cell division cycle

model at SNRs of (b) 100, (c) 20, (d) 10, and (e) 0 dB. The true positive rate is the ratio of correctly detected rewired models among all truly rewired

models. The false positive rate is the ratio of incorrectly detected rewired models among all truly conserved models. Although the performance of Q-

method deteriorates as noise increases, the increasing trend of GSCA’s AUCs suggests that it is inadequate to keep track of mechanistic differences in this

dynamical system. (f) Phase planes of the original (blue), conserved (green), and rewired (red) models are shown for each pair of directly interacting

molecules. ‘‘1’’ marks the initial state. Phase planes depict interactions amongCdc2, Cyclin, and their complexes. Between the original and the conserved

models, many interactions such as CP R C2 show a substantial change in the shape of the trajectory, but less from the original to rewired model.

Differential correlation relies on superficial difference/similarity of trajectory footprint, which is neither sufficient or necessary for differential/conserved

models. Q-method tracks the rate of change to resolve this issue.

Table 3 | The Q-method gains an overwhelming advantage over GSCA in average area under the ROC curves and their standard
deviations

Average area under the ROC curve
SNR 5 100 dB 20 dB 10 dB 0 dB

Q-method 0.98 6 0.027 0.90 6 0.15 0.79 6 0.17 0.63 6 0.11
GSCA 0.49 6 0.38 0.52 6 0.35 0.55 6 0.30 0.53 6 0.17

The results were obtained on 12 BioModels at four different signal-to-noise ratios (SNRs). A larger area under the curve (AUC) indicates a better performance.
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in 48 ROC curves and it performed slightly worse in only 7. The two
methods are comparable in several models as illustrated in
Supplementary Figures S5 and S6. Nevertheless, pair-wise differ-
ential correlation, used byGSCA, can be ineffective in approximating
change in linear18 or nonlinear interactions.
The phase planes for the cell division cycle model in Fig. 2f illus-

trate the problems with differential-correlation-based approaches
leading to underperformance as exhibited in Fig. 2b–e. With differ-
ent initial states applied to the original (blue) and the conserved
(green) models, the systems show divergent responses in all three
variables. For example, the phase plane between Y and pM would
apparently confuse a differential-correlation-based approach to
determine strongly changed correlation coefficients between the ori-
ginal and the conserved models, despite the same differential equa-
tions were used to generate the trajectories. Additionally, the original
(blue) and the rewired (red) models almost always show similar
responses in this simulation, e.g., in the phase plane between M
and C2. This would lead to small differential correlation and miss
contribution to rewiring from this pair of molecules. In fact, none of
the 8 phase planes demonstrates a strong difference in correlation
coefficients between the rewired and the original models. This
explains the far worse performance of GSCA for this model shown
in Fig. 2b–e. In contrast, the Q-method tracks deeper into the rate of
change and is thus more resistant to superficial differences or sim-
ilarities in trajectory shape.
A rewired pathway does not require all molecular species in the

system to undergo differential interactions. The Q-method thus also
reports the interaction heterogeneity p-value pd for each individual
molecular species. This pd value of a molecule is the statistical sig-
nificance ofQd computed when the pathway includes only this mole-
cule and its immediate parents. The box plots of the interaction
heterogeneity p-values in the cell division cycle model under the
SNR of 100 are shown in Fig. 3. This will allow one to select those
molecules most responsive to pathway rewiring. The MPF, the pro-
tein complex M formed by Cyclin and Cdc2-P, shows a full hetero-
geneity range on data from both conserved and rewired models. This
indicates that it is a very important molecular species responding
robustly to rewiring. In fact, one of the most important kinetic rate
constant k4 determines how fast the M complex is formed by depho-
sphorylation of Cdc2 in the pM complex. The value of k4 directly
controls the state of cell cycle division: the system moves from the
excitable domain to the oscillatory domain as k4 increases. In this
manner, one can infer potential genotype modifications, e.g., k4,

through the most responsive phenotypes, e.g., the abundance of
the M complex.

Differentiating chaotic dynamical systems. Chaotic gene expres-
sion oscillation has been observed in pluripotent cells, though lost in
differentiated cells15. Chaos is also believed to maintain stable gene
expression patterns in robust mutants14. A tiny change to initial
conditions of a chaotic system can have a dramatic effect on its
dynamics. This makes predicting their behavior challenging. Chaos
is, however, deterministic. For this reason, we contemplate that for
given observed chaotic dynamic behavior, distinguishing conserved
or differential underlying chaotic systems is possible.
To understand theQ-method performance on chaotic systems, we

used a 3-variable Lotka-Volterra (LV) model of predator-prey sys-
tems that can exhibit chaotic behavior with certain parameters. The
LV model is defined by

dx1
dt

~x1 b1 1{x1ð Þzb2 1{x2ð Þzb3 1{x3ð Þ½ � ð18Þ

dx2
dt

~x2 b4 1{x1ð Þ{b5 1{x2ð Þzb6 1{x3ð Þ½ � ð19Þ

dx3
dt

~x3 b7 1{x1ð Þzb8 1{x2ð Þzb9 1{x3ð Þ½ � ð20Þ

where x1, x2, and x3 are variables and b1 to b9 are model parameters.
The LVmodel, originated frommodeling biochemical reactions, has
been widely used to model competitive relationships in ecology and
also economics. Its dynamics can exhibit point attractors, limited
cycles, and chaos, depending on the parameter choices. From the
original model, we also created conserved and differential models as
ground truth and then simulated data from all models with noise
added. Figure 4a shows dynamics of the original LV model in its
chaotic mode; a conserved LV model with a changed initial state;
and a rewired LV model with changed parameters but the same
initial state with the original model. The time courses suggest that
the rewired model diverged before the 3rd time point and the con-
served model also diverged but at around time point 15. The phase
planes of the LV model in Fig. 4b suggest that the differential cor-
relation measure will not be much discriminative between the
rewired and conserved models, because the similar footprints of
the trajectories indicate the correlation coefficients among the three
models are numerically close.

Figure 3 | Individualmolecular species respond to pathway rewiring differently in conserved and rewired cell cycle divisionmodels.The box plot shows
the detected range of interaction heterogeneity p-value pd of individual molecular species in 15 conserved and 15 rewired models at an SNR of 100. A

smaller p-value is associated with stronger interaction heterogeneity. In addition to the seven species defined in Fig. 2a, two implicit mathematical

molecular species are included in the model: YT and CT representing total cyclin and total cdc2, respectively. The molecular species (M, CT) with full

range in [0,1] of p-values are the most sensitive to rewiring; those (CP, YT) with p-values towards 1 are not responsive to the rewiring; and those

(EmptySet, C2, pM, Y, YP) with p-values towards 0 are overly sensitive to rewiring and are thus subject to noise influence.
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Applying both theQ-method andGSCA on the simulated data, we
obtain ROC curves at four noise levels in Fig. 4c–f. At each noise level
for eachmodel, we generated 100 noisy trajectories containing 3 time
courses—one for each variable. Then we formed 100 pairs of traject-
ories from the original and the conservedmodels, and 100 pairs from
the original and the rewired models. Each pair is the input to Q-
method/GSCA, and the output is a decision pd-value/divergence
index evaluating strength of rewiring. It is somehow unexpected that
GSCA performed well at a low noise level (SNR5 100 dB), suggest-
ing comparison of chaotic systems is approachable. Nonetheless, the
Q-method demonstrated an enormous advantage at both low and

intermediate noise levels. Therefore, this example establishes the
possibility to distinguish mechanistically changed chaotic systems.

Prioritizing functional pathway rewiring among evolving yeasts.
Although network rewiring is expected among related yeast species
because they are mechanistically different biological systems, we
hypothesize that the various functional pathways in them are not
rewired to the same extent.We thus apply theQ-method to prioritize
rewiring of 68 known KEGG pathways in yeast and reveal a
consistent association between pathway interaction heterogeneity
and TATA box disparity—a form of pathway rewiring. This thus

a

b

Figure 4 | Advantage of the Q-method on differentiating chaotic dynamical systems. Responses can be divergent with both conserved and rewired

versions of a 3-variable chaotic Lotka-Volterra model. (a) The time courses are almost noise-free at an SNR of 100 dB. Reponses of the rewired model

(orange dots) diverged from the original (blue solid lines) at the time of about 3; the time course of the conserved model (green dashes) is similar to the

original at early time points but also diverged around time 15. The original and the rewired LVmodels start at the initial state of (1.500, 1.500, 1.500). The

rewiredmodel has changed parameters from the originalmodel. The conservedmodel starts at (1.504, 1.510, 1.509). (b) Phase planes demonstrate chaotic

dynamic behavior of the 3-variable Lotka-Volterramodel. Each group of three phase planes in one grey box is for one pair of variables in the rewired (red),

conserved (green), and original (blue)models. ‘‘1’’ marks the initial state.Most trajectories appear to differ substantially. This presents amajor challenge

to most pathway analysis methods not based on rate of change. (c–f) The four plots show ROC curves and their AUCs of the Q-method and GSCA on

comparing the 100 rewired and 100 conserved Lotka-Volterra models at SNRs of (c) 100, (d) 20, (e) 10, and (f) 0 dB. The true positive rate is the ratio of

correctly detected rewired models over all truly rewired models. The false positive rate is the ratio of incorrectly detected rewired models over all truly

conserved models. Although the performance of both methods deteriorate as noise increases, differences in the AUCs again suggest a remarkable

advantage of Q-method over GSCA.
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offers a connection between mechanistic rewiring and observed
divergent dynamics among the yeasts at a pathway scale.
Divergence in expression of single genes has been at least partially

explained by the presence of TATA box in the promoter region of the
genes1. TATA box is a short DNA sequence found in the promoter
region of some genes and is highly conserved in eukaryotes. It is the
binding site for general transcription factors or histones to facilitate
or block transcription. Tirosh et al1 measured time-course transcrip-
tomes of four yeast species (S. cerevisiae, S. paradoxus, S. mikatae,
and S. kudriavzevil) in response to five environmental stresses
including DNA damage, heat shock, oxidative stress, carbon source
switch, and nitrogen starvation. Using this data set (Gene Expression
Omnibus accession number GSE3406), we examined 68 metabolic
and signaling pathways from KEGG17 and performed on each path-

way
4
2

	 

~6 comparative runs for its rewiring across the four yeast

species. The setup and complete result of this study are detailed in
Supplementary Text 3.3.
The obtainedQd-statistics are normalized toQ�

d for comparability
across pathways and also for regression analysis. The median path-
way interaction heterogeneity score among the six pairs of species
was used to summarize the overall heterogeneity of each pathway
among the four species. They are summarized in Supplementary
Table S1. Although the various metabolic pathways show wide range
of median pathway heterogeneity, cell signaling and cell cycle path-
ways are among the most conserved pathways among the four yeast
species. The large pathway heterogeneity variation observed among
the pathways supports our hypothesis of unequal extent of pathway
rewiring among the yeasts. This result can thus help us zoom into the
most unique pathways that drive different phenotypes.
We next examined whether TATA box disparity is a factor con-

tributing to the observed pathway heterogeneity. We define pathway
TATA box disparity between two species as the ratio of the number
of genes with a TATA box in only one species to the number of genes
with a TATA box in either species within a pathway. Normalized
pathway heterogeneity and TATA box disparity, given in
Supplementary Table S2 for all pathway pairs among the four species,
exhibit a strong positive correlation at P 5 1.09 3 10223 (Fig. 5(a)),
complement to the conclusion that the presence of TATA box in the
promoter of a gene increases its expression variability1. For example,
the nitrogen metabolism pathway showed a remarkably positive cor-
relation between normalized pathway heterogeneity and pathway
TATA box disparity. Nitrogen metabolism is necessary to reduce
intracellular nitrogen toxicity in response to ammonium. The path-
way varied in conservation between species in terms of gene express-
ion and the conservation of TATA boxes. Between S. paradoxus and
S. cerevisiae the normalized heterogeneity was low (20.6) with low
TATA box disparity (40%) yet between S. paradoxus and S. kudriav-
zevii the normalized heterogeneity was high (7.54) with 100% TATA
box disparity. By hierarchical clustering, a tree is obtained based on
the pathway heterogeneity between pairs of the four yeast species
(Fig. 5(b)). S. paradoxus shared a common ancestor more recently in
the last 10 million years with S. cerevisiae than it did with S. kudriav-
zevii in the last 20 million years22, which partially explains the differ-
ences in heterogeneity of this pathway. This pathway is biologically
interesting as it has remained relatively conserved between some
species yet has diverged greatly between others which demonstrates
that although a pathway may seem conserved with low TATA box
disparity, it is possible that between another species of the
same genus that the same pathway can become highly rewired
with evolutionary time. See discussion of additional pathways in
Supplementary Text 3.3.4.

Discussion
When the sample size of an experiment is small, linear or nonlinear
correlation has been widely used to infer interactions in molecular

networks for mathematical convenience and statistical efficiency.
However, correlation is not the language for dynamics in biological
systems. Instead, it is the control of the rate of change (derivative) of a
target molecule by a regulator molecule that is most often character-
ized in established mathematical models of molecular interactions.
Description of such control is typically given in the language of
differential equations. In signal transduction models, the rate at
which a protein is phosphorylated is mediated by the corresponding

Figure 5 | Pathway heterogeneity between transcriptomes predicts
evolutionary relationships among four yeast species. The four yeast
species are S. kudriavzevii, S. cerevisiae, S. mikatae, and S. paradoxus. (a)

Normalized pathway heterogeneity is associated with TATA box disparity

between genomes across four yeast species. Each point represents

heterogeneity and TATA box disparity of one of 68 pathways between one

of 6 possible pairs among 4 yeast species. (b) Clustering of the yeast species

by normalized heterogeneity of the nitrogen metabolism pathway

generates a tree consistent with the evolutionary relationship among the

four yeast species. A qualitatively identical phylogenetic tree22 suggests that

S. kudriavzevii diverged from S. cerevisiae within the last 20 million years,

followed by the divergence of S. mikatae, and then the split of S. paradoxus

within the last 10 million years.
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kinase23; in transcription kinetics models, binding-site occupancy by
transcription factors is used to calculate the rate of change of target
RNAs via differential equations24; in metabolic network models,
reaction rates are again determined by enzyme concentration25. As
the rate of change of molecule abundance in these models is not
constant, the correlation coefficient between cause and effect vari-
ables changes with the concentration of the causative factors. This
implies that differential correlation between variables in even two
conserved systems is not always zero. Therefore, differential-correla-
tion-based pathway analyses could flag conserved pathways as
rewired or vice versa due to its overly simplistic treatment of system
dynamics using only trajectories but not their derivatives.
We have thus demonstrated that Q-method can overcome the

inadequacies of differential-correlation-based pathway rewiring
detection approaches. The nearly zero AUC under the ROC curves
of GSCA in some cases, e.g., BIOMD0000000005 (Fig. 2b,c,d) and
BIOMD0000000067 (Supplementary Fig. S1 to S4) appeared to sug-
gest a systematic bias which could have been corrected by reverse
each pathway rewiring decision made by GSCA. However, doing so
wouldmake GSCA unfavorably score a nearly zero AUC in other cases,
e.g., BIOMD0000000021 and BIOMD0000000035 (Supplementary
Fig. S1, S2, S3). This large inconsistency of GSCA performance reveals
the inherent flaws of the different-correlation paradigm when used to
study dynamical systems. As GSCA examines linear dependencies
among variables in observed trajectory patterns, it can make false
positive decisions when the trajectory patterns are divergent simply
as a consequence of different initial states of the same pathway; on
the other hand, when two trajectory patterns from a rewired pathway
are dynamically traversed differently but happen to share a similar
shape and thus correlation coefficients, GSCA could make false nega-
tive decisions.Q-method overcomes all these issues by detecting poten-
tially nonlinear patterns utilizing both the rate of change and the
trajectory pattern.
The usefulness of Q-method depends on the availability of time

course data and accurate estimation of the rate of change. Although
not all experimental design offers such opportunities to study path-
way rewiring, high-resolution temporal sampling technologies are
being rapidly developed to study vaccine response26 or record spa-
tiotemporal trajectories of molecules27. The requirement of a given
super-pathway topology is not a limiting factor to the Q-method as
the topology can be alternatively obtained using various network
inference approaches. The BioModels testing data set used in our
study covered a broad spectrum of biological processes including cell
cycle, circadian clock, glycolysis, metabolic oscillation, and calcium
oscillation. We also tested and compared methods on a chaotic
Lotka-Volterra predator-prey system. The corresponding bench-
mark results supported the effectiveness of the Q-method. It is
informative to point out thatmost examples we tested exhibited large
dynamic ranges, a necessary condition to track howmechanistically-
rewired pathways may differentially respond to external stimuli.
When no such wide dynamic ranges are recorded with the observed
data, it is possible that a rewiring decision could be unreliably made,
by either the Q-method or other methods based on rate-of-change
variations. Under sufficient data conditions, by discerning whether a
pathway has been mechanistically rewired, the Q-method can elim-
inatemany pathways with divergent responses only as a consequence
of pathway input, instead of rewiring. In order to determine what
biological variations may have caused the rewiring, one will need to
investigate additional information regarding the rewired pathway.
This can include sequences of the involved proteins or transcripts
and their methylation profiles or histone modification data. For
example, when both genome sequences and gene expression are
provided for the species being compared for rewiring, we can assoc-
iate TATA box sequence presence/absence for each gene with its
calculated interaction heterogeneity based on expression levels. In
this manner, we can establish amodel where TATA box disparity is a

model parameter to predict interaction heterogeneity or rewiring.
This will eventually lead to testable hypotheses on the biological
causes for rewiring. We thus evaluated how detected pathway rewir-
ing as a phenotypical change could be indicative of the underlying
genotypical modifications among four yeast species. Based on gene
expression data demonstrating large dynamic ranges collected in
these yeasts subjected to five stress conditions, we found a strong
positive correlation between pathway interaction heterogeneity and
TATA box disparity. This confirms the power of Q-method to dis-
cover pathway rewiring indeed explainable by genotypical variations
in biological systems.

Conclusions
The Q-method has addressed three challenges called forth by Khatri
et al12, by explicitly modeling pathway dynamics, distinguishing
mechanistic versus superficial changes, and requiring an inclusive
but not necessarily exact pathway topology as input. Simulation
studies on diverse types of model, including chaotic systems, suggest
the effectiveness and generality of the Q-method. Most importantly,
the Q-method predicted rewired pathways by their interaction het-
erogeneity across yeast species. The correlation between pathway
heterogeneity and TATA box disparity suggests a potential effect-
cause relationship linked by the inferred pathway rewiring. The Q-
method is readily extendable tomultiple conditions with the number
of heterogeneous models equal to the number of conditions. The
principle that we have established to compare ODE models is highly
innovative. Although we have illustrated the Q-method using an
additive nonlinear DSM, the same principle is immediately general-
izable to other forms of ODE models. As time course experimental
design, genome sequences, and epigenome markers become increas-
ingly available, we expect that theQ-method will link observed chan-
ged dynamics to various causative genetic and even epigenetic factors
at the pathway level pointing to evolved biological functions.
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