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There is currently much debate about how much the genetic heritability of complex traits is due to very rare
alleles. This issue is important because it determines sampling strategies for genetic association studies.
Several recent theoretical papers based on a pleiotropic model for trait evolution suggest that it is possible
that a large proportion of the genetic variance could be explained by rare alleles. This model assumes that
mutations with a large effect on fitness also tend to have large positive or negative effects on phenotypic
traits. We show that conclusions based on standard diffusion results are generally applicable to simulations
of whole genomes with overlapping generations in a finite population, although the variance contribution of
rare alleles is somewhat smaller than theoretical predictions. We show that under many scenarios the
pleiotropic model predicts trait distributions that are unrealistically leptokurtic. We argue that this imposes
a limit on the relationship between fitness and trait effects.

A
widely sought goal in biology is to understand the genetic architecture underlying phenotypic variation.

In human genetics a distinction is made between Mendelian traits, usually affected by rare genes of large
effect, and complex traits where the genetic component of their variation depends on a number of

polymorphisms at different locations in the genome. Genome-wide association studies (GWAS) have endea-
voured to identify these locations, typically for traits associated with disease, yet by and large this has not been very
successful in unequivocally identifying a set of specific mutations that explain most of the heritability for any
particular trait. It would appear that there are many mutations involved, and the distribution of genetic effects of
individual mutations attenuates rapidly so that even with large sample sizes only a small fraction can be identified
with reasonable statistical certainty, and together these often explain only a small fraction of heritability: the
famous ‘‘missing heritability’’ problem1. However, if the requirement to positively identify a set of specific
mutations is dropped, then a large proportion of heritability can be predicted from individual genotypes with
a sufficiently dense marker set2. Although these observations together indicate that a large number of mutations
must be involved in causing genetic variation in most traits, there is still uncertainty whether these mutations are
very rare but with a large effect, or more common and with small effect3. This uncertainty raises the possibility that
variants with very low MAF (Minor Allele Frequency) but with large effect size could be contributing a large
proportion of the genetic variance of complex traits.

A useful modelling approach for examining these issues is one in which deleterious mutations have random
effects on a trait, the magnitude of which depends on their selective effect4–6. This joint distribution has been taken
as bivariate Wishart4, where the effects on fitness can be viewed as representing collective effects of the mutation
on traits other than that under study7. In a recent modification of this model by Eyre-Walker6 the deleterious
selection coefficient is assumed to be drawn from a gamma distribution. The trait effect of the mutation,
conditional on its selection coefficient, is drawn from a distribution that allows for either zero or increasing
levels of correlation between the absolute value of the trait effect and the selective effect. With this parameterisa-
tion it is possible to derive an expression for the proportion of the genetic variance in the trait due to all mutations
at a particular frequency6. This formulation allows the issue of missing heritability to be addressed inferentially in
terms of the proportion of genetic variance that is contributed by common or rare alleles. The main finding is that
unless the mean strength of selection is much weaker than the evidence suggests, or variance in the trait is
independent of fitness, the genetic variance of a complex trait will be due to derived mutations at a very low allele
frequency6. This lends support to the rare variant hypothesis for complex disease architecture and has implica-
tions for the design of future genotyping arrays and the necessary sample sizes. Recent studies8–11 have used
forward-time simulations to examine different scenarios, and have generally concluded that rare alleles of large
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effect may, indeed, explain a large proportion of genetic variance,
although this conclusion depends on the joint distribution of muta-
tional effects on traits and fitness.

The present study is motivated by two concerns. An advantage of
the method of Eyre-Walker is that it gives a useful expression for the
density of the variance of a complex trait. However, a possible lim-
itation of using a diffusion model is that an infinite population size is
assumed and, potentially more importantly, all loci are assumed to be
independent. We use a forward-time Moran model with infinite sites
and free recombination to compare directly with the analytical
results. A degree of linkage disequilibrium is generated in the model
because selection acts on whole genomes rather than individual loci.
We show that the variance contribution of low frequency alleles can
be lower than previously suggested6. This, we suggest, may be due to
Hill-Robertson interference12. This is an effect whereby there is a
reduction in the effectiveness of selection on multiple loci due to
association between positively and negatively selected alleles at dif-
ferent loci. The effect declines with an increasing recombination rate
but is still present in unlinked genes, in which the recombination rate
is 0.513. In addition, we highlight that the trait distribution implied by
this model is unrealistically leptokurtic, which we argue imposes an
upper limit on the magnitude of the correlation between trait effects
and selective effects.

Results
The model. We implemented a forward-time Moran model which
incorporates the relationship between fitness and trait effects as
previously described6. In this model there is no direct causal
relationship between the effect of a mutation on fitness and the
trait value. One justification of this is to imagine that mutations
affect a large number of traits, some of which are components of
fitness, and thus the fitness effect of any particular mutant represents
the combined effect of a mutation on all traits other than that under
study7. Details of our implementation are given in the Methods, and
are similar to those in an earlier study14. The joint distribution is
modelled6 by a gamma distribution for the scaled (deleterious)
selection coefficient, S 5 4Ns. The trait effect, z, is distributed as:

z~dSt(1ze) ð1Þ

where N is the diploid population size, e is a normally distributed
noise term with mean 0, and d takes the value 1 or 21 with equal
probability. Depending on the scaling parameter, t, z and S can be
independent (t 5 0), or more strongly correlated with increasing t.
(Note, however, that z and S are uncorrelated – only the absolute
magnitude of z depends on S.) This will be referred to below as the
power function model. Further details of the computer simulation
are provided in the Methods.

As described later, for many parameter values, the model of muta-
tional effects given by (1) results in an equilibrium trait distribution
across individuals that is highly leptokurtic. We therefore examined
the consequences of an alternative conditional distribution for the
trait effect given S, defined by:

z~d
A|S
BzS

(1ze) ð2Þ

where all parameters are as defined in equation (1), but t is replaced
by parameters A and B, which characterize a saturating function that
prevents extreme mutational effects on the trait. The motivation is
that there are mechanical, or homeostatic, or developmental con-
straints that prevent extreme changes. For additional biological real-
ism it might be preferable to apply such a saturating function to the
overall trait value of an individual. However this would then imply a
non-additive genetic model, which would make the interpretation of

the results more complex. The term
A|S
BzS

, as in Michaelis Menten

kinetics15, has gradient
A
B

near the origin and approaches the limit A

as S R ‘. We refer to this model below as the saturating function
model.

We implemented 5 different parameter combinations using the
original conditional distribution and 3 different combinations using
the proposed new function (Table 1). We present the relationship
between S and z for each model in Supplementary Figure S19. In all
models, we set haploid population size (2N) 5 10,000, where N is the
equivalent diploid population size, generation time 5 1, simulation
time 5 60,000 generations, genome mutation rate U 5 0.1, b (shape
parameter of gamma distributed strength of selection) 5 0.216, mean
e 5 0, standard deviation e 5 1. We chose �S 5 4N�s 5 3,000 or 30
(Table 1), where �s is the mean (deleterious) effect of mutations.
Most parameter combinations are chosen to compare with those in
the earlier study6. However, since we are additionally interested in the
distribution of trait and fitness effects within the population, the
choice of genomic mutation rate is important. We chose a value of
0.1 to give U�s 5 0.015 in the strong selection case and U�s 5 0.00015
for weaker selection. The strong selection case can be compared with
the range of estimates of U�s < 0.0013–0.018 in heterozygotes assum-
ing codominance17. The results presented here are based on 100
independent runs for each set of parameter combinations. It should
be noted that in the pleiotropic model the evolution of the system
depends only on the distribution of selective effects and not on the
trait effects. Hence only parameter combinations that modify selec-
tion will be expected to change the distribution of fitness across
individuals, and it is possible in principle to apply different pheno-
typic models to the same set of simulated data. However, to avoid
spurious correlations, we chose to implement separate sets of simu-
lations for all parameter combinations.

The distribution of fitness and the trait. In simulations where the
mean selective effect of mutations is high (�S 5 3,000) there is a highly
skewed distribution of fitness within the population (Figure 1), where
around 1.5% of individuals have fitness less than 0.5. By contrast,
when the selective effect is lower (�S 5 30; Figure 1 model b) the
distribution of individual fitness is close to the maximum value of
1. The different distributions for strong and weaker selection are
explained by noting that with a genomic mutation rate of 0.1,
1,000 new mutations are expected to arise in the population each
generation. Prior to selection, new mutations for high or low �S have a
gamma distribution with�s of respectively 0.15, and 0.0015, giving rise
to the observed tails in the figures.

The distribution of the trait across individuals in the population
tends to be highly leptokurtic (Figure 2). The trait distributions rep-
resent the breeding values (genetic effects only) without envir-
onmental effects. Note that the raw scale in which the trait effects
are measured is arbitrary, and depends on the formulation used in
equations 1 and 2, following Eyre-Walker6, and is thus a (non-linear)
function of the mean strength of selection. Kurtosis is most pro-
nounced when the absolute trait effect is linearly or greater than
linearly related to fitness (t .5 1). When selection is weak (model
b) or when the absolute trait effect and fitness are uncorrelated
(model c), the trait distribution has less extreme tails. In our alterna-
tive model we find that when the mutational effects on fitness and
absolute trait value are the same for small effect sizes (i.e. A and B are
equal) the distributions are leptokurtic irrespective of a threshold of
A 5 B 5 10,000 or A 5 B 5 4,000 (Figure 2, models f, h). However,
when the mutational effect on the trait is much stronger than on
fitness (Figure 2, model g; A 5 4,000 and B 5 40; gradient for small
effects , 100) we see a more closely normal distribution, similar to
the uncorrelated (t 5 0) case for the original model. In this latter
model the trait effect associated with rare low-fitness variants is
truncated and hence the effects of individual mutations on the trait
are less leptokurtic than in the former two models.

www.nature.com/scientificreports
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The genetic architecture of the trait. The empirical allele frequency
spectrum in the simulations very closely matches the theoretical
expectation, with the exception of the lowest frequency, which is
slightly higher than expected (Figure 3). This can be explained by

the high mutation rate and mode of selection in the Moran model.
Low fitness individuals may have new mutations, which will be in the
lowest frequency class, that are unlikely to be copied through
reproduction. Because selection does not act on the death rate,

Figure 1 | Distribution of fitness from run 1 of each model. These are representative of the 100 replicate runs with each parameter combination. The

model parameters are given in Table 1. As explained in the text, with the exception of model b, the same evolutionary model is implemented and hence the

distribution of fitness is expected to be the same. The whiskers extend from the 25th and 75th percentiles to values within 1.5 x the inter-quartile range25.

Table 1 | Parameters of models implemented

Model Parameter combinations Comment

a �S 5 3,000, t 5 1 Original EW model
Strong selection
Absolute trait effect and fitness effect linearly correlated

b �S 5 30, t 5 1 Original EW model
Weak selection
Absolute trait effect and fitness effect linearly correlated

c �S 5 3,000, t 5 0 Original EW model
Strong selection
Absolute trait effect and fitness effect uncorrelated

d �S 5 3,000, t 5 0.5 Original EW model
Strong selection
Absolute trait effect and fitness effect weakly correlated

e �S 5 3,000, t 5 2 Original EW model
Strong selection
Quadratic relationship between absolute trait effect and fitness effect

f �S 5 3,000,A 5 10,000,B 5 10,000 Saturating function
Strong selection
Absolute trait effect threshold of 10,000 before noise term (1 1 e)
Linear relationship between trait and fitness near origin with gradient 1 before

noise term d(1 1 e)
g �S 5 3,000,A 5 4,000,B 5 40 Saturating function

Strong selection
Absolute trait effect threshold of 4,000 before noise term (1 1 e)
Linear relationship between trait and fitness near origin with gradient 100 before

noise term d(1 1 e)
h �S 5 3,000,A 5 4,000,B 5 4,000 Saturating function

Strong selection
Absolute trait effect threshold of 4,000 before noise term (1 1 e)
Linear relationship between trait and fitness near origin with gradient 1 before

noise term d(1 1 e)

www.nature.com/scientificreports
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these individuals will only be removed at a rate proportional to 1/
(2N) irrespective of their fitness. Thus there is a small accumulation
of the lowest frequency class in comparison with the diffusion model.

The proportion of genetic variance explained by alleles in any
frequency class is again broadly similar for simulation and theory
(Figure 4). Thus our results support those of Eyre-Walker that, for
some parameter combinations, it is possible for very rare alleles to
explain a large proportion of the genetic variance in a trait. However
two main discrepancies stand out. First, the variance contribution of
the lowest frequency class typically appears anomalously larger than
expected given the trend in higher frequency classes (Figure 4: mod-
els a, d, e, f, h), and larger than the theoretical predictions (Figure 4:
models a, d, e, f). This pattern is expected given the observations for
the lowest frequency class in Figure 3: there is an excess of new
deleterious singletons with large trait effects.

Secondly, ignoring the outlier for the lowest frequency class, there
is a general tendency for low frequency alleles to explain a lower
proportion of the variance than expected from the theoretical distri-
bution (Figure 4: models a, b, d, e, f, g, h). The only exception to this is
model c, where there is no detectable discrepancy between theory
and simulations. The strongest discrepancy is for models b and g.
Interestingly, although the distributions seem similar, the parameter
settings are very different. An additional set of simulations with
weaker selection (�S 5 3, t 5 1) in the power-function model also
shows an appreciable discrepancy (see Supplementary Figure S17).
These discrepancies are likely to be due to interference in the selec-
tion of mutations because even though our model assumes a recom-
bination rate between loci of 0.5, selection occurs on whole genomes
in the simulation rather than on individual loci as assumed in the
diffusion model. As noted earlier, equivalent results would have been
obtained if the trait effects were added at the end of the simulations.
Thus the effect must be due to a deficit of deleterious mutations in the
low frequency classes, and consequent excess of such mutations in
the higher frequency classes, even though the overall frequency spec-
trum closely matches theoretical expectations (Figure 3). Selection is
less efficient in removing deleterious mutations, which will also have
large trait effects, allowing them to drift to higher frequencies. The

reduction in efficiency of selection is in line with earlier results on
interference and the Hill-Robertson effect12.

We calculated the difference in the proportion of the genetic vari-
ance due to mutations with frequency less than or equal to 0.01
between the analytical and empirical results for models a–h using
numerical integration over the plotted points in Figure 4 in this fre-
quency interval (between 24 and 22 log10 allele frequency). The
results are presented in Supplementary Table S2. As expected given
Figure 4, models b and g had a 20% and 13% lower proportion in the
simulation. The other models had differences between 0% and 2%.

To examine the relationship between the kurtosis of the trait distri-
bution and the extent to which rare alleles were responsible for the
variance in the trait (Figure 5), we calculated the mean kurtosis of the
trait distribution across the 100 runs of each model and plotted this
against the variance weighted mean frequency using the data in Figure 4.

These results show that, for both our models of mutational effects,
those scenarios in which rare alleles explain a large proportion of the
variance have highly leptokurtic trait distributions, whereas models
in which most of the variance is explained by alleles at intermediate
frequency are associated with more normal trait distributions
(Figure 5). The empirical relationship between the variance-
weighted mean frequency and kurtosis does not appear to differ
between the saturating function model and the power function
model in any consistent way (Figure 5).

Discussion
Stimulated by the difficulties of explaining an appreciable fraction of
complex trait variation despite the availability of extensive data on
the genome of individuals, there has been a renewal of interest in
evolutionary models of quantitative genetic variation8–11. This fol-
lows from earlier developments4,18, in which much of the analytic
theory has been developed. The research focuses on the proportion of
genetic variability that can be explained by rare variants, and is
significant because, until very recently, the large scale genotyping
used in most GWAS studies has involved SNPs that have previously
been ascertained in a small panel of individuals, and are necessarily
therefore biased towards the effects of common variants.

Figure 2 | Distribution of the trait from run 1 of each model. These are representative of the 100 replicate runs with each parameter combination.

The model parameters are given in Table 1. Trait values were standardised for each model by subtracting the mean and dividing by the standard deviation.

The whiskers extend from the 25th and 75th percentiles to values within 1.5 x the inter-quartile range25.

www.nature.com/scientificreports
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One aim of this current study has been to compare the analytical
predictions of the proportion of variance explained by genes in dif-
ferent frequency classes with results from simulations of a finite
population. In general we find that the predictions are close, although
there is appreciable discrepancy for some parameter values, which
may be explained by Hill-Robertson interference12. The second aim
has been to investigate the implications of the pleiotropic model for
the underlying trait distribution. Here, we observe in our simulations
that models in which rare alleles explain a large proportion of the
variance give rise to extremely leptokurtic trait distributions, and vice
versa. Is the degree of kurtosis implied by the rare alleles model
realistic? There appear to be no systematic surveys of the distribution
of estimated breeding values, and therefore it is difficult to be sure
that the kurtosis recorded in the simulations is extreme. However, on
the assumption that most traits do not show extreme kurtosis, and
given levels of heritability of 0.5, simple Monte Carlo simulations,
assuming Gaussian environmental effects, would suggest that kurtosis
in breeding value cannot markedly exceed 10 without notable depar-
ture from normality of the trait itself. Taking kurtosis in breeding

value of 10 as a somewhat arbitrary cut-off, this would leave models b,
c, d, and g as potentially compatible with observations – that is: the
weak selection case (�S 5 30), the case with no correlation between
trait and fitness (t 5 0), and the two low correlation cases (power
function model t 5 0.5; saturating function model, B 5 40). Human
height, for example, which exhibits high heritability19, is not lepto-
kurtic. It is possible, however, that if levels of heritability are less than
0.5, then our argument is not as strong.

It has been noted6 that �S 5 30 is unrealistically low, given empirical
site-frequency spectra. It should also be noted that some of the excess
kurtosis in our simulations will be due to the deleterious mutations
that contribute to the excess of singletons in the allele frequency
spectrum (Figure 3) and also contribute to the excess variance for
singletons in Figure 4. This is a feature of the Moran model, and yet is
not biologically unrealistic given that individuals with extreme traits
may indeed be unlikely to reproduce.

A limitation of the present study is that it does not consider a
realistic demography, and although the population size used is
approaching current estimates of the human effective population

Figure 3 | The distribution of mutation frequencies (0.0001–0.9999) according to theory (black) and simulation (red) for S̄ 5 3,000. The simulation

distribution was created by pooling the frequencies of mutations across models a, c, d, e, f, g and h.

www.nature.com/scientificreports
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Figure 4 | The density of the variance of the trait as a function of allele frequency. The parameters for panels a–h are provided in Table 1 and are (a)
�S 5 3,000, t 5 1 (b) �S 5 30, t 5 1 (c) �S 5 3,000, t 5 0 (d) �S 5 3,000, t 5 0.5 (e) �S 5 3,000, t 5 2 (f) �S 5 3,000,A 5 10,000,B 5 10,000 (g) �S 5 3,000,

A 5 4,000,B 5 40 (h) �S 5 3,000,A 5 4,000,B 5 4,000. The solid green lines (a–e) show the analytical predictions from the theory in Eyre-Walker6, and the

blue lines (f–h) are from numerical integration using the saturating function model. The open grey circles give fitted values for each frequency after

smoothing using 100 replicate simulations, as described in Methods. The dashed lines give a 95% confidence interval for the fitted values.

www.nature.com/scientificreports
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size it does not consider the effect of recent large population size,
which will be important in determining the frequencies of recent
mutations20. These aspects have been recently investigated10,11. In
particular the study of Lohumueller10, using Eyre-Walker’s model6

for mutant effects in a forward-time simulation, finds that when the
trait and fitness are partially correlated recent population growth
increases the contribution of rare variants to the trait genetic vari-
ance. Under all demographic scenarios investigated when t 5 0.5
more than half of the additive genetic variance in the trait is caused by
very rare alleles (,0.5% allele frequency). When t 5 0, he finds that
most of the additive genetic variance is caused by common muta-
tions, irrespective of the level of population growth.

Recently it has been shown9, using a forward-time simulation
package for genome modelling21, that, when t 5 1 or t 5 0, the
Eyre-Walker model does not accurately predict results from pub-
lished studies of Type II diabetes, whereas values of t between 0 and
0.5 cannot be ruled out. This approach points the way forward for
using simulation-based analyses to calibrate models of complex trait

architecture using published studies. The conclusions of the diabetes
study9 are consistent with those of the present study which suggests
that only values of t of 0.5 or lower give levels of kurtosis in the
distribution of phenotypic traits that are close to normal once envir-
onmental variation is included.

A further limitation of the present study is that it only explores a
fraction of the range of possible joint distributions between muta-
tional effects on fitness and on the trait. Our saturating function
model, however, does not appear to produce qualitatively different
results from the model of Eyre-Walker. It is likely that the Wishart
distribution used by Hill and Keightley4 would also give similar
results. A limitation of the saturating model is that it assumes an
absolute buffering effect of the mutational effect on the trait rather
than relative to the trait value of the individual. An improved model
would allow for phenotypic or developmental constraint, although
implementing this would be a non-additive model. In addition, we
have assumed that all fitness effects are deleterious which does not
accurately reflect the true distribution10. These scenarios are usefully

Figure 5 | The log10 mean kurtosis of the trait distribution computed using the R moments package for each model plotted against the variance
weighted mean allele frequency (as displayed in Figure 4). Black points represent the original Eyre-Walker models (a–e) and white points represent the

new models (f–h). (Komsta L., Novomesty F. moments: Moments, cumulants, skewness, kurtosis and related tests. R package version 0.13. (2012))

www.nature.com/scientificreports
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modelled through forward simulations, but do not fit into the theor-
etical framework of the present study. Furthermore, the assumptions
of the underlying modelling approach need further consideration
given arguments that pleiotropy is not universal and that most muta-
tions affect a limited number of traits22.

Our study confirms that rare variants can explain a large propor-
tion of the genetic variance of complex traits. However, selection on
whole genomes within our finite population framework leads to
interference effects that lead to a marginal reduction in the variance
contributed by rare variants. In addition we note that for many
parameter values the pleiotropic model implies a highly leptokurtic
trait distribution, and we argue that this imposes an upper limit on
the strength of the relationship between trait effects and fitness
effects of mutations, in line with recent observations9.

Methods
Forward-time simulations. The simulations are implemented in C, using the GNU
GSL library23 for random number generation. A parameter file specifies the haploid
population size (2N), the length of the simulation, the generation time, the genome
mutation rate U, the shape parameter, b, of the gamma distribution for selection, the t
parameter in the conditional distribution for the trait value given by equation (1) (or
A and B for the case of the new equation (2)), the mean strength of selection �S, the
mean and standard deviation of e (equation (1) and (2)) and the purge interval.
The purge interval was used to specify how often we removed fixed mutations from
the population to speed up computation time.

We model a population of 10,000 haploid individuals, characterised by a trait value,
fitness value and a linked list of mutations which affect the fitness and the trait. The
genome of each individual is regarded, for computational convenience, as a single
chromosome. We implement an infinite sites model of mutation with free recom-
bination between sites14. The population size remains fixed throughout the simu-
lation and each birth event is matched with a death. At the outset, each individual has
an arbitrarily chosen trait value of 100 and a fitness value of 1, and carries no
mutations. Birth-death events occur according to an exponential random variable
with expectation 2 x Generation time/Haploid population size. At each event an
individual is chosen uniformly randomly to be replaced. Its genome is replaced by
that of two individuals, sampled with replacement from the entire population
(including the individual that is replaced) in proportion to their current fitness. Thus
it is possible that an individual replaces itself. In copying the genome of the two
parental individuals (which might be identical) there is an equal probability that
either individual transmits its copy of the allele at each segregating site (i.e. the
recombination rate is 0.5). Mutations occur at a rate U per genome and only occur at
birth. At each birth event the number of mutations is simulated as a Poisson random
variable with expectation U. The fitness effect, s, of a mutation is generated by
sampling S from the gamma density assumed by Eyre-Walker6 (equation (3)) and
transforming as s 5 S/4N.

D(S; S,b)~
(

b

S
)bSb{1e{

bS

S

C(b)
ð3Þ

The marginal fitness for that locus is then (1-s). Any values of s generated that are
greater than 1 are assigned the value 1 in the simulation (and the corresponding value
of S fixed at 4N). Conditional on S, the trait value is simulated by using either (1) or (2)
depending on the model. Trait effects are assumed to be additive across loci. To avoid
individuals with negative fitness, fitnesses are assumed to be multiplicative across loci.
It should be noted that in the current pleiotropic model there is no need to include
trait effects during the running of the simulation, and these could be added afterwards.

Computing variance contributions. The state of the simulation was outputted at
regular intervals in order to assess convergence to equilibrium. The final state of each
simulation was combined across 100 replicates, and analysed using R (R Core Team.
R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. (2014)). The aim of the analyses is to compute the
contribution by individual loci to the trait variance, which assumes that trait effects
are uncorrelated across loci. Loci are not independent due to shared ancestry (with
recombination rate 0.5). However, because selection does not act on the trait effects,
and because the trait and fitness effects of mutations are uncorrelated, the trait effects
are expected to be uncorrelated across loci. However, due to sampling, there will be
some residual covariance and rather than ignore this we compute the contribution to
the variance by a particular locus as the sum of the column (equivalently row) entries
in the trait covariance matrix for this locus. The sum of the elements of the covariance
matrix is equal to the total variance in the trait. We show the proportion of the
variance in the trait due to covariance terms in Supplementary Table S1.

The variance contributions were summed for all mutations of the same frequency
from 1 to 9,999 out of 10,000 individuals. Unobserved frequencies had zero variance
contribution. The variance contribution for each allele frequency (from 0.0001 to
0.9999) was then averaged across the 100 runs (and hence any frequency class that
was never observed across the 100 runs had zero variance contribution). Some

variance contributions close to zero were negative because of the inclusion of cov-
ariance terms.

The averaged variance contributions for each allele frequency class were smoothed
within models using the R lokern package to remove noise (Herrmann E., Maechler
M. lokern: Kernel Regression Smoothing with Local or Global Plug-in Bandwidth. R
package version 1.1–5. (2013)). The smoothing was performed after log10 trans-
formation of the allele frequencies. The fit was obtained, using the function glkerns(),
by supplying an estimate of the variance of the mean variance contribution for each
allele frequency, x. This estimate was obtained by computing the observed variance of
the variance contribution among the 100 replicates, and then dividing by 100 to
obtain an estimate of the variance of the mean. A smoothed estimate of this variance
was then made by using glkerns() with default parameter settings. To do this the
square root of this variance (i.e. the standard error) was supplied, and then the
smoothed value was squared. This was supplied to glkerns(), along with the mean
variance contribution for each x. We specified that the values of x were designed
rather than random, and chose defaults for all other parameters. The predicted values
were multiplied by the coefficient loge(10)x, where x is the allele frequency. At this
stage all estimated variance contributions ,0 were considered negligible and set equal
to 0. This function was then converted to a density by computing an approximate
normalising constant using the trapezoidal rule. This can then be compared with the
analytical solution obtained by Eyre-Walker6, expressed as V(x)/VT, the variance
contributed by all mutations of frequency x divided by the total variance in the trait.
Bootstrap estimates were computed by simulating 2,000 new data sets obtained by
adding re-sampled residuals to the fitted values of the initial fit24. To account for non-
constant variance the 50 closest residuals were chosen for each point. Detailed genetic
variance plots showing the creation of Figure 4 are provided in the Supplement.

To account for a finite population size we modified the calculation of Eyre-Walker
(equation 7 in the original paper6), using the Mathematica notebook kindly supplied
by the author, to have integration limits from 0.0001 to 0.9999 so that the analytical
solution could be compared with the simulation results (Wolfram Research, Inc.,
Mathematica, Version 8.0, Champaign, IL (2010)). The updated expression for V(x)/
VT, the density of the variance, is thus

Zeta(2tzb,xz b
�S ){Zeta(2tzb,

�Szb
�S )

Zeta(2tzb{1,az b
�S ){Zeta(2tzb{1,bz b

�S )

2tzb{1
z(a{b)Zeta(2tzb,

�Szb
�S )

ð4Þ

where x is the allele frequency and Zeta is the Hurwitz Zeta function, with integration
limits of a 5 0.0001 and b 5 0.9999. We then approximated the Hurwitz Zeta
function in R and superimposed the analytical solution into the plot with a coefficient
of x.loge(10) to achieve a change of variables to the log10 allele frequency scale. Before
plotting we added an additional numerical normalisation. (With the change of vari-
ables to a log scale there is necessarily some granularity in the estimation of the density
at the left hand end of the plots because this is evaluated only at the points (1/10000),
(2/10000),… etc. Thus even if the relative frequency evaluated at these points is directly
proportional to the diffusion density there is potential discrepancy when plotting the
theoretical density with that evaluated from the simulations, arising from the
approximate nature of the trapezoidal integration used to scale the simulated points. In
order to minimise this, to ensure that the theoretical and simulation results are com-
pared on the same scale, we have therefore adjusted the diffusion prediction by also
using trapezoidal integration based on the same evaluation points. In this case, for most
models, the integration constant for the theoretical density deviates from 1 by ,0.001,
and is undetectable in the figures, but for model e, because most of the density is
concentrated towards zero, there is appreciable discrepancy of around 0.08.)

The approach taken for comparing the discrete simulation results with the con-
tinuous analytical solution6 can be justified as follows. We equate the sample average
variance contributed by all mutations of frequency x in our simulations, T(x), with the
expected variance contribution in the interval (x,x 1 Dx), approximated by DxV(x),
where V(x) is the diffusion solution6 andDx 5 1/(2N 2 1). In the limit as N R ‘, T(x)
R 0, and (2N 2 1)T(x) R V(x) in expectation. Our normalised function estimates
V(x)/VT, where VT 5 #V(x), because it estimates DxV(x)/

P
(DxV(x)) 5 V(x)/P

(V(x)) R V(x)/VT as N R ‘.
The variance contribution under the saturating function model (equation (2)) was

obtained numerically in Mathematica. In this case we substitute equation (2) for
equation (1) and evaluate the integral in equation 3 of Eyre-Walker, by integrating
over e analytically and integrating over S numerically using the NIntegrate function.
This was then subject to the same change of variables approach, and normalisation
using trapezoidal integration, for comparable plotting with the empirical data.

To obtain the site frequency spectrum shown in Figure 3, we solved the following
analytically using Mathematica

ð?

0

(
b

S
)bSb{1e{bS=S

C(b)
|2(

1{eS(1{x)

x(1{x)(1{eS)
)dS ð5Þ

The left hand side of expression (5) is equation 2 of Eyre-Walker6 and the right
hand side is equation 4 of Eyre-Walker6. It is the expected passage of time for
mutations at frequency x with selective strength S.
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