Abstract
The increasing demands in security and reliability of infrastructures call for the optimal design of their embedded complex networks topologies. The following question then arises: what is the optimal layout to fulfill best all the demands? Here we present a general solution for this problem with scalefree networks, like the Internet and airline networks. Precisely, we disclose a way to systematically construct networks which are robust against random failures. Furthermore, as the size of the network increases, its shortest path becomes asymptotically invariant and the density of links goes to zero, making it ultrasmall world and highly sparse, respectively. The first property is ideal for communication and navigation purposes, while the second is interesting economically. Finally, we show that some simple changes on the original network formulation can lead to an improved topology against malicious attacks.
Introduction
The tremendous increase in complexity of infrastructural networks, like the Internet and those related with transportation and energy supply, is mandatorily accompanied by requirements of higher standards of system reliability, security and robustness. This trend can only be sustained if these complex networks have the right structure. Under this framework, the scalefree property, present in many real networks, determines important aspects related with their functionality^{1,2,3,4,5}. However, while scalefree networks are usually quite robust against random failures, they typically break down rapidly under malicious attacks^{6,7,8,9,10,11}. Numerical studies have recently revealed that this weakness can be mitigated if their structure becomes onionlike, which means that nodes of equal degree are connected among each other and to nodes of higher degree^{12,13}. Since then, the properties of onionlike structures have been extensively investigated^{14,15,16,17,18,19,20,21,22,23}. Based on this insight, here we will address the challenge of providing a paradigm for complex networks with better topology. More precisely, we show that it is possible to design a family of scalefree networks which are robust to random failures and considering some modifications, we can improve the resilience against malicious attacks. Additionally, these networks also exhibit other improved properties, like a finite shortest path and extreme sparseness in the thermodynamic limit, which substantially increases communication and reduces costs. Thus these new networks become potential candidates for the design and implementation of complex infrastructural networks.
In the deterministic network model introduced here, the nodes belonging to a given shell have intrashell and intershell connections and the most connected nodes (hubs) are localized in the innermost shells. The network is recurrently expanded in such a way that every new generation corresponds to the addition of a new shell. Examples of these networks with four shells are shown in Figs. 1(a) and (b). Here we coin the name mandala network for this new family of graphs. In the first case, thereafter called network A, the first generation consists of a nucleus with three central nodes forming a complete graph (first shell). From each node in this nucleus, two new nodes emerge to form a connected ring of six nodes, composing the second shell of the second generation network. Following this iterative process, the third shell in the third generation network has an additional connected ring with twelve nodes, which, at this point, must also be linked to their respective ancestral nodes in the first and second shells. The same rules then apply for all new shells present in higher generation networks. This design therefore imposes that nodes at the same shell have the same degree. More precisely, the degree k_{ig} of a node at the ith shell in the gth network generation is given by,
Defining n_{i} as the number of nodes in the ith shell, by construction, we have that n_{i}_{+ 1} = 2n_{i}. From this relation, the number of nodes in the network is given by , where the summation is over the total number g of shells.
In fact, the network described so far in Fig. 1(a) is a particular case resulting from the recursive method proposed here to generate an ensemble of scalefree networks. For example, in Fig. 1(b) we show another example of mandala network, thereafter named network B. Precisely, the method depends on a set of three parameters, (n_{1}, b, λ), namely, the number of nodes in the first generation, n_{1}, the number of new nodes added to each node in the more external shell, b and the scale factor, λ, for node degree in successive generations. Therefore, Eq. (1) can be written in a more general form as, k_{ig} = bλ^{g}^{− i} + (i − 1) and n_{i}_{+ 1} = bn_{i}. For instance, the networks A and B are completely defined by the sets (3, 2, 2) and (4, 4, 2), respectively.
Results
Scalefree networks
Any network generated by this method has discrete degree spectrum. In order to characterize the scalefree dependence, we consider the cumulative degree distribution, . Taking into account that in each shell all nodes have the same degree, the cumulative distribution can be written as, . Applying Eq. (1) and the relation n_{j}_{+ 1} = bn_{j}, it can be shown that the cumulative distribution decays in the form, P(k_{ig}) ~ 1/k_{ig}. In Fig. 2, we show a logarithmic plot of the cumulative degree distribution for networks A and B. In both cases, we have the same scalefree dependence.
At this point, an explanation about the exponent of the degree distribution [p(k)] is useful^{24,25,26}. Since our network has a discrete degree distribution, in order to calculate the standard definition of p(k), it becomes necessary to consider binned intervals between consecutive degrees. Thus, the degree distribution is calculated as, p(k_{ig}) ≡ n_{i}/NΔk_{ig}, where Δk_{ig} = k_{ig} − k_{(i + 1)g} is the width of the interval. In this way, as Δk_{ig} ~ k_{ig}, it follows that .
Ultrasmallworld networks
Another important property of the mandala networks relates to the mean shortest path length , where ℓ_{ij} is the shortest distance between any two nodes i and j in the network and the summation goes over all possible node pairs in the system. In our case, this expression can be written in a more convenient form as,
where is the sum of the shortest path lengths connecting a node in the jth shell with all other nodes in the network, n_{j} is the number of nodes in the jth shell and the summation goes over the number of shells. Using the symmetry of the network A, for example, it is possible to show that ϕ_{j} = α_{j}N − ξ_{j} (see the section Methods), where ξ_{j} has different values for different shells and α_{i} is given by 5/3, 29/12, 5/2, 31/12, 63/24, for i = 1, 2, 3, 4 and 5, respectively, so that α → 8/3, for i → . Taking into account the linear dependence of ϕ_{j} with N and considering the relations for n_{j}, Eq. (2) reduces to
which leads to 〈ℓ〉 → 8/3 in the thermodynamic limit, N → . We show in Fig. 3 a semilog plot of the mean shortest path length as a function of the number of nodes. The asymptotic convergence confirms our analytical result and therefore indicates that our network has an ultrasmallworld behavior, namely 〈ℓ〉 becomes independent of N. One should note, however, that this result is still different from the case of a complete graph, for which 〈ℓ〉 = 1, corresponding to the meanfield limit. Applying a similar sequence of calculations to the network B, it can be readily shown that the mean shortest path length for this topology also converges to a constant in the limit of large system sizes, but now equal to 11/4.
Highly sparse graphs
Next, we define the density d of connections as the ratio between the number of existing connections and the maximal number of possible connections for an undirected network with N nodes, . Considering the expression for k_{ig} given by Eq. (1), we can rewrite the definition of d in the following way:
Expressing both summations in Eq. (4) in terms of the number of nodes in the network, and considering the limit of a very large number of generations, we obtain,
The inset of Fig. 3 shows the dependence of the density of connections on the number of nodes for networks of type A, confirming the asymptotic behavior predicted by Eq. (5). In the case of network B, where the number of new nodes generated is twice that of network A, the density of connections decays faster. Indeed, applying the same approach and considering b = 4, it is possible to show for network B that d = (log N)/N. As a consequence, we conclude that our networks, despite of their ultrasmallworld property, are extremely sparse when compared to the behavior of a complete graph, d = 1 and has only logarithmic correction to d ~ 1/N that is valid for the ErdösRényi network at the percolation threshold. It is worth noticing that mandala networks are reminiscent of the expander graphs^{27}, since both models share similar properties as high sparsity and high connectedness. However, the mandala networks do not have selfloops or multiple edges with the same endpoints. Moreover, in the case of expander graphs, the maximal degree is limited, while in the mandala networks are scalefree.
Robustness
The framework of percolation is usually considered for the analysis of the robustness of complex networks^{7,22,28,29,30,31,32,33,34}. In this context, robustness is typically quantified by the critical fraction q_{c} of removed nodes that leads to a total collapse of the network^{6,9,10,12}. Nevertheless, as previously reported^{12,13,14,16}, this approach does not account for situations in which the system can suffer a big damage without breaking down completely. The size of the giant component, the largest connected cluster in the system, during the removal process of nodes has been recently introduced^{12} as a refined measure to robustness,
where s is the fraction of nodes belonging to the giant component after removing Q = qN nodes, q is the fraction of nodes removed and R is in the range [0, 1/2]. The limit R = 0 corresponds to a system of isolated nodes, while R = 1/2 to the most robust network, which is the case of a completely connected graph. Here we check the robustness of our complex network model when subjected to mechanisms of random failures and two strategies of malicious attacks, namely, targeted by degree and targeted by betweenness^{6,7,8,9,10}.
In the main plot of Fig. 4, we show the fraction s(q) of nodes belonging to the giant component during a random removal process as a function of the fraction of removed nodes q, for different values of the size N of networks A and B and averaged over 200 samples. Our results indicate that both networks A and B are robust, regardless of the system size N considered. This is corroborated in the inset of Fig. 4, where we plot the robustness measure R as a function of N for networks A and B. Both versions of the mandala network present a rather robust behavior, as compared to other models and real networks^{12,13}, with R ≈ 0.45 and R ≈ 0.43, for types A and B, respectively.
Unfortunately, as originally defined, our model network does not present a resilient behavior when subjected to malicious strategies of attack. We first consider attacks whose targets are the surviving nodes with the highest degree. In our network, since nodes at the same shell have the same degree, we start by choosing a node randomly with equal probability from the set of nodes with the highest degree (first shell). Due to the hierarchical structure of the network, a node from the second shell will only be removed after all nodes from the first shell disappear. This removal sequence remains valid till the targeted attack reaches the secondlast shell. At this point, the random removal of a node in this shell can cause the simultaneous disconnection of other nodes from the giant cluster in the same, as well as in the outermost shell. As shown in Fig. 5, this strategy of attack leads to a drastic collapse of the structure when we remove less than 40% of the nodes.
In order to improve the robustness of the mandala model to malicious attacks, we propose the following two types of modification on the original network structure. First, we can randomly rewire each edge of the last shell, maintaining invariant the density of connections. The results in Fig. 5 show that robustness increases to R = 0.36, as compared to the value R ≈ 0.30 of the original network. Second, as depicted in Fig. 5, we can systematically increase the number of connections between successive shells. As shown in Fig. 5, this change can promote a substantial increase in the resilience, depending on the number of additional connections per node, κ. In any case, it is important to notice that for all new versions considered, the obtained networks maintain their highsparsity and ultrasmallworld properties, since we just add a number of new links.
Another important type of targeted attack is to remove nodes sequentially according to their betweenness centrality, in a descending order. The original version of the mandala network also displays a fragile behavior when subjected to this type of process (see Fig. 6), collapsing before 10% of removal with R ≈ 0.027. Again, as Fig. 6 also shows, a rewiring process applied to the last shell can significantly improve the resilience of the mandala network, R = 0.32. This value is even larger than the one obtained for a BarabásiAlbert network (γ = 3) having approximately the same density of connections (see Fig. 6).
The Ising model
In smallworld networks, the fact that the diameter of the graph does not grow faster than log N implies an infinite dimensionality. Meanfield theories therefore can successfully describe their critical behavior^{1,35,36,37,38,39}. In order to investigate how collective ordering emerges in mandala networks, for which the shortestpath length is independent on N, we consider Ising spins σ_{i} associated to their nodes and ferromagnetic interactions J between them on the edges. Adopting the reduced Hamiltonian, , we perform Monte Carlo (MC) simulations on networks of type A for different system sizes N and temperature T values. In particular, we analyse the finitesize scaling properties of the model at the T_{c} = 0. The results in Fig. 7 show that the divergence of the maximum of the susceptibility with N, measured from the peak of the susceptibility, has the form, , with a critical exponent, .
Discussion
In summary, we have presented a recursive method to generate an ensemble of complex networks defined by a set of three parameters, namely (n_{1}, b, λ).
We have shown analytically and confirmed through numerical simulation that the networks originated from our model have scalefree topologies and are ultrasmall, i.e., the average shortestpath lengths of sufficiently large networks become independent of their number of nodes. Our results also show that, as compared to a complete graph, which is ultrasmall, these networks are highly sparse, with the density of edges going to zero with system size. Although mandala networks are robust against random failures, they are fragile against malicious attacks targeted by degree and betweenness centralities. However, simple corrections can be applied to the original model, improving significantly its robustness against both types of malicious attacks. Finally, we have verified that the critical temperature of the Ising model on the mandala network topology diverges with system size according to a powerlaw dependence, described by an exponent . We expect to generalize this last result to other universality classes, for example, considering directed percolation and selforganized models on our deterministic networks.
Methods
The mean shortest path length
Consider the definition of the shortest path length:
and let us define as the summation of the shortest paths from the node i to all nodes in the network. Therefore, Equation (7) can be written as,
From the symmetry of the network, nodes in the same shell have the same value of ϕ. Thus, we can interchange the summation in terms of the number of nodes to a summation in terms of the number of shells,
where n_{j} represents the number of nodes in the jth shell and ϕ_{j} is now interpreted as the summation over the shortest paths from a node in the jth shell to all nodes in the network.
To determine ϕ_{j} we choose a node, called root node, in the jth shell and calculate its shortest path to other nodes, considering shell by shell. Here we will consider a detailed calculation for three first shells. For the first shell, considering the node 1 as root we obtain,
The first bracket is equal to (n_{1} − 1), since all nodes in the first shell are at a distance equal to one for the root node. In the second shell, we have nodes at a distance equal to one and nodes at a distance two of the root node. In this way, for the jth outermost shells, we have nodes at a distance equal to one and nodes at a distance two of the root node. Using these results in Equation (10), it follows that,
Therefore, the value of ϕ for any node in the first shell is given by,
where we consider . A similar approach can be applied to others shell. Choosing now the root node in the second shell, we obtain,
and ordering the identical terms results in,
The value of ϕ for nodes in the second shell is then given by,
Finally, using a similar sequence of calculation, for the ith shell, we obtain that, ϕ_{i} = α_{i}N − ξ_{i}, with α_{i} equal to 5/3, 29/12, 5/2, 31/12, 63/24, 127/48 and 255/96 for the seven first shells, respectively. Therefore, we have for i → .
The Ising model
The Monte Carlo simulations of the Ising model on the mandala networks were performed using the Metropolis algorithm, starting from different initial spin configurations. In order to study the critical behavior of the system, we considered the magnetization M_{L} and the susceptibility χ_{L}, which are defined by
where , T is the temperature and N is the total number of nodes in the network. The symbols and , respectively, denote time averages taken in the stationary state and configurational averages taken over 100 independent samples. Time is measured in Monte Carlo steps (MCS) and 1 MCS corresponds to N attempts of changing the states of the spins. In our simulations, the initial 10^{5} MCS were discarded to guarantee that the system reached the steady state, after which the time averages were estimated using the next 6 × 10^{5} MCS. The value of temperature where χ_{N} has a maximum is identified as T_{c}(N) for N = 172, 684, 2732, 10924, 43692 and 174764.
References
Albert, R. & Barabási, A.L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 031109 (2002).
Newman, M. The structure and function of complex networks. SIAM Review 45, 167 (2003).
López, E., Buldyrev, S. V., Havlin, S. & Stanley, H. E. Anomalous transport in scalefree networks. Phys. Rev. Lett. 94, 248701 (2005).
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D.U. Complex networks: Structure and dynamics. Phys. Rep. 424, 175 (2006).
Barabási, A.L. Scalefree networks: A decade and beyond . Science 325, 412 (2009).
Albert, R., Jeong, H. & Barabási, A.L. Error and attack tolerance of complex networks., Nature 406, 378 (2000).
Callaway, D. S., Newman, M. E. J., Strogatz, S. H. & Watts, D. J. Network Robustness and Fragility: Percolation on Random Graphs., Phys. Rev. Lett. 85, 5468 (2000).
Cohen, R., Erez, K., ben Avraham, D. & Havlin, S. Resilience of the Internet to Random Breakdowns., Phys. Rev. Lett. 85, 4626 (2000).
Cohen, R., Erez, K., ben Avraham, D. & Havlin, S. Breakdown of the Internet under Intentional Attack., Phys. Rev. Lett. 86, 3682 (2001).
Holme, P., Holme, B. J., Yoon, C. N. & Han, S. K. Attack vulnerability of complex networks., Phys. Rev. E 65, 056109 (2002).
Tanizawa, T., Paul, G., Cohen, R., Havlin, S. & Stanley, H. E. Optimization of network robustness to waves of targeted and random attacks., Phys. Rev. E 71, 047101 (2005).
Schneider, C. M., Moreira, A. A., Andrade, J. S., Havlin, S. & Herrmann, H. J. Mitigation of malicious attacks on networks., Proc. Natl. Acad. Sci. 108, 3838 (2011).
Herrmann, H. J., Schneider, C. H., Moreira, A. A., Andrade, J. S. & Havlin, S. Onionlike network topology enhances robustness against malicious attacks., J. Stat. Mech.: Theory Exp. 01, 01027 (2011).
Wu, Z.X. & Holme, P. Onion structure and network robustness., Phys. Rev. E 84, 026106 (2011).
Valdez, L. D., Buono, C., Braunstein, L. A. & Macri, P. A. Effect of degree correlations above the first shell on the percolation transition., Europhys. Lett. 96, 38001 (2011).
Schneider, C. H., Mihaljev, T. & Herrmann, H. J. Inverse targeting An effective immunization strategy., Europhys. Lett. 98, 46002 (2012).
Tanizawa, T., Havlin, S. & Stanley, H. E. Robustness of Onionlike Correlated Networks against Targeted Attacks., Phys. Rev. E 85, 046109 (2012).
Zeng, A. & Liu, W. Enhancing network robustness against malicious attacks., Phys. Rev. E 85, 066130 (2012).
Helbing, D. Globally networked risks and how to respond., Nature 497, 51 (2013).
Dong, G. et al. Robustness of network of networks under targeted attack., Phys. Rev. E 87, 052804 (2013).
Skarpalezos, L., Kittas, A., Argyrakis, P., Cohen, R. & Havlin, S. Anomalous biased diffusion in networks., Phys. Rev. E 88, 012817 (2013).
Wang, B., Gao, L., Gao, Y. & Deng, Y. Maintain the structural controllability under malicious attacks on directed networks., Europhys. Lett. 101, 58003 (2013).
Louzada, V. H. P., Daolio, F., Herrmann, H. J. & Tomassini, M. Smart rewiring for network robustness., J. Complex Netw. 1, 150 (2013).
Andrade, J. S., Herrmann, H. J., Andrade, R. F. S. & da Silva, L. R. Apollonian Networks: Simultaneously ScaleFree, Small World, Euclidean, Space Filling and with Matching Graphs., Phys. Rev. Lett. 102, 079901 (2009).
Guo, J.L. & Wang, L.N. Physics Procedia 3, 1791 (2010).
Mungan, M. Comment on Apollonian Networks: Simultaneously ScaleFree, Small World, Euclidean, Space Filling and with Matching., Phys. Rev. Lett. 106, 029802 (2011).
Hoory, S., Linial, N. & Wigderson, A. Expander graphs and their applications. Bull. Amer. Math. Soc. 43, 439 (2006).
Newman, M. E. J. & Ziff, R. M. Fast Monte Carlo algorithm for site or bond percolation., Phys. Rev. E 64, 016706 (2001).
Cohen, R., Havlin, S. & ben Avraham, D. Efficient Immunization Strategies for Computer Networks and Populations., Phys. Rev. Lett. 91, 247901 (2003).
Moreira, A. A., Andrade, J. S., Herrmann, H. J. & Indekeu, J. O. How to Make a Fragile Network Robust and Vice Versa., Phys. Rev. Lett. 102, 018701 (2009).
Hooyberghs, H. et al. Biased percolation on scalefree networks., Phys. Rev. E 81, 011102 (2010).
Newman, M. E. J. Communities, modules and largescale structure in networks., Nature Phys. 8, 25 (2011).
Peixoto, T. P. & Bornholdt, S. Evolution of Robust Network Topologies: Emergence of Central Backbones., Phys. Rev. Lett. 109, 118703 (2012).
Taylor, D. & Restrepo, J. G. A networkspecific approach to percolation in complex networks with bidirectional links., Europhys. Lett. 98, 16007 (2012).
Newman, M. E. J. & Watts, D. J. Scaling and percolation in the smallworld network model., Phys. Rev. E 60, 7332 (1999).
Giuraniuc, C. V. et al. Trading Interactions for Topology in ScaleFree Networks., Phys. Rev. Lett. 95, 098701 (2005).
Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. Critical phenomena in complex networks., Rev. Mod. Phys. 80, 1275 (2008).
Castellano, C. & PastorSatorras, R. Routes to Thermodynamic Limit on ScaleFree Networks., Phys. Rev. Lett. 100, 148701 (2008).
Ferreira, S. C., Ferreira, R. S., Castellano, C. & PastorSatorras, R. Quasistationary simulations of the contact process on quenched networks., Phys. Rev. E 84, 066102 (2011).
Acknowledgements
We thank the Brazilian agencies CNPq, CAPES, FUNCAP and FAPESB, the National Institute of Science and Technology for Complex Systems (INCTSC Brazil), to the ETH Risk Center (Switzerland) and the European Research Council through Grant FlowCSS No. FP7319968 for financial support.
Author information
Authors and Affiliations
Contributions
The authors C.S.F., A.M., R.A., H.J.H. and J.S.J. contributed equally.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
This work is licensed under a Creative Commons AttributionNonCommercialShareAlike 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/byncsa/4.0/
About this article
Cite this article
Sampaio Filho, C., Moreira, A., Andrade, R. et al. Mandala Networks: ultrasmallworld and highly sparse graphs. Sci Rep 5, 9082 (2015). https://doi.org/10.1038/srep09082
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/srep09082
This article is cited by

Explicit size distributions of failure cascades redefine systemic risk on finite networks
Scientific Reports (2018)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.