
Improving Prediction of Prostate Cancer
Recurrence using Chemical Imaging
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Precise Outcome prediction is crucial to providing optimal cancer care across the spectrum of solid cancers.
Clinically-useful tools to predict risk of adverse events (metastases, recurrence), however, remain deficient.
Here, we report an approach to predict the risk of prostate cancer recurrence, at the time of initial diagnosis,
using a combination of emerging chemical imaging, a diagnostic protocol that focuses simultaneously on
the tumor and its microenvironment, and data analysis of frequent patterns in molecular expression.
Fourier transform infrared (FT-IR) spectroscopic imaging was employed to record the structure and
molecular content from tumors prostatectomy. We analyzed data from a patient cohort that is mid-grade
dominant – which is the largest cohort of patients in the modern era and in whom prognostic methods are
largely ineffective. Our approach outperforms the two widely used tools, Kattan nomogram and CAPRA-S
score in a head-to-head comparison for predicting risk of recurrence. Importantly, the approach provides a
histologic basis to the prediction that identifies chemical and morphologic features in the tumor
microenvironment that is independent of conventional clinical information, opening the door to similar
advances in other solid tumors.

P
rostate cancer is the second leading cause of deaths following lung cancer in US men and constitutes one-
third of non-skin cancer diagnoses every year1. One of the most acute needs in PCa management today is
higher precision in prediction of clinical outcomes for more effective decision-making2. Various prediction

tools have been developed for this purpose and they largely rely on patients’ clinical, pathologic and demographic
data3. These data include age, PSA level, Gleason grade, and pathologic stage. The available tools include risk
grouping4, look-up tables5, machine learning6, nomograms7,8, and risk scoring9,10. The performance of these
predictive tools is more consistent and superior to manual decisions; hence, they are implemented in modern
patient care. Currently, the widely-validated Kattan nomogram7,8 and CAPRA-S score10 are considered as the best
performing tools for prostate outcome prediction after radical prostatectomy (RP). The accuracy of prediction is
often measured using a receiver operating curve (ROC) and the area under the curve (AUC) to segment patients
with poor and good outcomes. The modest overall accuracy of available tools is further devalued by the realization
that the tools largely fail for the most common cohort in the modern era (mid-grade, confined disease with
moderate PSA level) and there is a tendency to overestimate likelihood of disease recurrence for lower risk
patients10,11. Incorporating additional clinical variables has not significantly improved predictions12. Likewise,
integrating gene expression13,14, immunohistochemistry15,16, magnetic resonance imaging17–19 or tissue morpho-
logy20,21 data has met with limited success2 and none has achieved widespread clinical acceptance.

While most of the diagnostic and prognostic efforts have focused on epithelial cells, an important role for the
tumor microenvironment or stroma in cancer progression has also been reported15,20–22. No methods are avail-
able, however, to make anecdotal and laboratory observations about the microenvironment into a practical
clinical test. The challenges of measuring multiple cell types, via multiple, cumbersome steps, and associating
the data manually from multiple sections and with clinical management has limited the potential of this prom-
ising avenue. Here, our first aim was to establish an imaging approach that promises to change this deficiency. We
use chemical imaging, which is strongly emerging as a platform for combining spatial and molecular analysis.
Fourier transform infrared (FT-IR) spectroscopic imaging23, in particular, combines the spatial specificity of
optical microscopy with the molecular selectivity of vibrational spectroscopy. The IR absorption spectrum at each
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position (or pixel) is a quantitative record of chemical composition24

and FT-IR imaging has been applied to study various cell types and
different types of cancers25–30, including that in the prostate31–33. In
particular, chemical changes in both epithelial cells34 and cancer-
associated stroma35,36 were recently reported using FT-IR spectro-
scopic imaging37. While promise in imaging different cell types has
been shown, the use of IR imaging for prognosis has not been prev-
iously proposed. In particular, the question of prostate cancer recur-
rence has not been addressed, which is the second aim of this study.
We hypothesized that the chemical properties of the tissue, and
especially of the stroma, may add additional information that can
improve prediction. To test this hypothesis in the most pressing area
of contemporary PCa need, we employed a recurrence-enriched and
mid-grade dominant cohort38 where recurrent cases and non-recur-
rent controls were matched for age at prostatectomy, race, Gleason
score, and pathologic (pTNM) stage. This cohort not only provides
the most challenging and demanding subset for modern prostate
pathology but also facilitates discovering novel predictors of cancer
recurrence which are independent of the conventional clinical para-
meters (age, race, Gleason score, and pathologic stage). This is an
exceptionally challenging cohort that requires us to also change ana-
lytical methods, which was the third aim of our study. Biological
variation has been shown to be a primary source of variation in a
tissue39, which is exacerbated with heterogeneity in cancer16. Hence,
conventional approaches in analyzing chemical imaging data27,28,40

are inappropriate for this application. Therefore, we propose to use a
new approach called ‘‘frequent pattern mining’’41 to discovers sub-
sets, subsequences, or substructures in a dataset42 that are not appar-
ent using simple dimensionality reduction. To make the final
diagnosis or predict risk score, we adopt a Ranking-Support
Vector Machine43 such that a recurrent case is ranked at higher risk
than a non-recurrent control. Finally, the fourth part of our study
compares the new approach to the current gold standards - Kattan
nomogram and CAPRA-S score – to determine if the approach could
yield improved PCa outcome predictions. It is notable that the design
of the study addresses a pressing need, utilizes new ideas to examine
cancer by focusing on both the tumor and microenvironment and
our approach is entirely compatible with other tests – whether MRI-
based non-invasive assays or digital pathology44,45 on the same tissue
specimens.

Results
Stromal IR features distinguish recurrence cases from non-
recurrence controls. Five tissue microarrays (TMAs), including 186
patients, were imaged to provide patient and clinical diversity for the
most difficult contemporary cohort of patients (predominantly mid-
grade and organ confined disease). The characteristics of the patient
set are detailed in Table 1 and data acquisition and analysis protocols
are detailed in the methods section. We first classified the tissue into
different cell types following previous protocols32 and compared the
average IR absorption spectra (.500 pixels) of epithelium and two
types of stroma (distal and adjacent to tumor) to discern differences
between recurrent cases and non-recurrent controls. There was no
significant difference between recurrent cases and non-recurrent
controls for different cell types (Figure 1). Transitioning from
average values to examining each patient, two separate sets of
analyses were conducted – on epithelial cells and on stromal cells.
Based on both population difference and individual variation, IR
spectra were converted into 98 spectral metrics that are individually
indicative of molecular content in tissue (Supplementary Table S1).
The spectral features from each cell type were separately handled in
our data analysis pipeline (Figure 2) since cell types greatly differ in
morphology, chemistry, and function. From data for each cell type, we
built a machine learning classifier that utilizes not only an individual
IR metric but also the combination of IR metrics, designated as
‘‘patterns’’ (Supplementary Figure S1). The present approach to
machine learning is to simply treat patterns from all pixels of a
sample as equal – as assumption that does not hold if there are sub-
classes of pixels, outliers, or contaminated pixels. We recognize that a
pattern could also identify a subset of pixels that may share
(un)known biochemical functions or represent sub-cellular
components within a sample. The subset of pixels, we hypothesize,
has predictive power that may be lost in examining average values
from all cells, even of the same type. The use of patterns can make the
analysis more sensitive by not focusing on small differences in
absorption that may arise from natural variation or sampling and
make the analysis more robust by focusing on biochemical
characteristics or metric expression. The frequency of a pattern, i.e.,
the occurrence of a subset of pixels, is used as a feature in our
classification algorithm. Numerous patterns can be generated, but
we do not know a priori which patterns may represent the

Table 1 | Clinical characteristics of patient cohort in TMAs. The patient characteristics are shown for the calibration dataset of 60 pairs and
82 patients without neoadjuvant or adjuvant therapy and the validation dataset of 66 patients. n and SD denote a number and standard
deviation, respectively

Calibration (n 5 120) Calibration (n 5 82) Validation (n 5 66)

Cases (n 5 60) Controls (n 5 60) Cases (n 5 35) Controls (n 5 47) Cases (n 5 38) Controls (n 5 28)

Age at prostatectomy, mean (SD) 61.6 (7.1) 62.9 (6.5) 62.2 (7.1) 63.1 (6.7) 63.1 (7.1) 63.8 (5.3)
Race, n (%) White 51 (85) 51 (85) 30 (85.7) 40 (85.1) 33 (86.8) 25 (89.3)

African American 9 (15) 9 (15) 5 (14.3) 7 (14.9) 4 (10.5) 3 (10.7)
Other 1 (2.6)

Gleason sum, n (%) #6 12 (20) 12 (20) 7 (20) 10 (21.3) 17 (44.7) 6 (21.4)
7(3 1 4) 35 (58.3) 35 (58.3) 21 (60) 28 (59.6) 16 (42.1) 15 (53.6)
7(4 1 3) 7 (11.7) 7 (11.7) 6 (17.1) 6 (12.8) 4 (10.5) 3 (10.7)
$8 6 (10) 6 (10) 1 (2.9) 3 (6.4) 1 (2.6) 4 (14.3)

Pathological stage, n (%) T2a 7 (11.7) 7 (11.7) 4 (11.4) 7 (14.9) 2 (5.3) 2 (7.1)
T2b 33 (55) 33 (55) 18 (51.4) 30 (63.8) 26 (68.4) 15 (53.6)
T3a 19 (31.7) 19 (31.7) 13 (37.1) 10 (21.3) 10 (26.3) 11 (39.3)
T3b 1 (1.7) 1 (1.7)

Serum PSA ng/mL,
mean (SD)

10.6 (8.7) 8.6 (6.0) 10.4 (10.2) 8.7 (6.1) 9.5 (7.2) 8.5 (4.8)

Month to recurrence,
mean (SD)

38.6 (29.0) 44.5 (33.1) 36.6 (28.7)
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important biochemical functions or sub-cellular components. We
adopted a pattern selection step46 that automatically identifies the
useful patterns from training data, before using such patterns in
constructing the final classifier. The classification algorithm used in
this study is a Ranking-Support Vector Machine (SVM)43. Details of
the classification scheme are provided in the Methods section.

To ensure robustness, we tested the classifier in a variety of ways:
by cross-validation on a calibration data set as well as by training on
the calibration data set and testing on a separate validation dataset.
The former uses a nested case-control study design, where a recur-
rence case is matched with a non-recurrence control, and the latter
adopts a non-nested design. For both validations, the testing dataset
and outcome were blinded to the classification model. We also note
that multiple TMA slides are used, which includes variance from
sample preparation and handling, with a blinded selection of patients
into a calibration and a validation set. We detail these multiple modes
of evaluation next. We first tested the classifier by K-fold cross-valid-
ation (K 5 10) on the calibration dataset (120 patients, see Methods),
using a nested design. In this test, the classifier was always presented
with a case-control pair of patients that were matched by clinical
descriptors (age at prostatectomy, race, Gleason score, and patholo-
gic stage), and was asked to discriminate the case from the control. As
is standard in cross-validation, the dataset was divided into K equal-
sized partitions and one partition was left out as the ‘‘test partition’’.
The classifier was trained on the union of the remaining K-1 parti-
tions and made to predict outcomes in the test partition. After
repeating this K times with systematically different choices of the
left-out partition, correct and incorrect predictions were summar-
ized. The classifier based on epithelial data was not capable of dis-
tinguishing recurrent cases from non-recurrent controls (,50%

accuracy). On the other hand, the classifier based on stromal data
discriminated cases from controls with ,70% accuracy (P , 0.001,
Binomial test). Note that existing methods that rely on clinical vari-
ables to predict outcome are expected to perform close to a random
classifier (50% accuracy) in this nested design sample set, since each
case-control pair presented to the classifier was identical/matched in
terms of many clinical variables.

We next performed evaluations on the same data set as above but
using a non-nested design, where the goal is to predict outcome of
unknown individual patients (query). This was done with a modi-
fication of the classifier discussed above. For any test query, the
algorithm finds the most similar recurrent and non-recurrent
patients from the training dataset using clinical variables alone,
and compares them to the query as detailed in Methods. The evalua-
tions are done with K-fold cross validation as above, and in each
‘‘fold’’ the K-1 partitions other than the left out partition serve as
training data. The predicted probability of recurrence (PPR) of the
test patient based on these comparisons is computed using a logistic
regression model. We call this PPR value the ‘‘IR Score’’ of the
patient, as described in Methods. The sensitivity and specificity of
the classifier are summarized using a receiver operating character-
istic (ROC) curves and by the area under the ROC curve (AUC). We
also calculate a 95% confidence interval (CI) by Bootstrap re-sam-
pling for comparison. The classifier using data only from epithelial
pixels could not appreciably distinguish the query as recurrent or
non-recurrent (0.60 AUC, 95% CI: 0.50–0.69), but the classifier
based on stromal data was effective with an AUC of 0.71 (95% CI:
0.61–0.81) in the calibration dataset (120 patients) in K-fold cross-
validation (K 5 10). After evaluating predictive performance on the
calibration data set of 120 patients, we subjected the classifier to a

Figure 1 | IR Spectra. (a) IR spectra (4,000–720 cm21) of epithelium (green), distal stroma (grey; Stroma) and adjacent stroma (blue; C-Stroma) to

tumor. (b) A close-up view of four different spectral areas (1,140–1,000 cm21, 1,300–1,180 cm21, 1, 480–1,360 cm21, and 3,400–3,200 cm21) and error

bars at the spectral peaks. Solid and dotted line represent recurrence case and non-recurrence control, respectively.

www.nature.com/scientificreports
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separate, completely independent validation dataset of 66 patients.
The IR Score of each patient in the validation dataset was recorded
and an AUC of 0.57 (95% CI: 0.43–0.72) was obtained when using
epithelium pixels. Using stromal pixels, an AUC of 0.71 (95% CI:
0.57–0.83) was observed, indicating that the test is robust.

IR Score outperforms popular existing tools in predicting out-
comes. We compared the performance of the IR Score to the two

of the most commonly used clinical tools (Kattan nomogram
and CAPRA-S score) for predicting outcomes after radical
prostatectomy. Here, 82 patients, who have no record of
neoadjuvant or adjuvant therapy, from the calibration dataset were
employed since Kattan and CAPRA-S score are only applicable to
such patients. As shown in Figure 3a, the IR Score (AUC 5 0.74, 95%
CI: 0.61–0.85) outperforms both Kattan (AUC 5 0.60, 95% CI: 0.49–
0.72) and CAPRA-S (AUC 5 0.63, 95% CI: 0.50–0.75) scores when

Figure 2 | Overview of Outcome Prediction. Given an IR image, (a) cell-types (Epithelium and Stroma) are identified by IR imaging and, by pathologic

review, cancer epithelial cells (red; C-Epithelium) and adjacent stromal cells (blue; C-Stroma) are manually selected and discretized. Upon discretization,

pixels in tissue contain a set of discrete values representative of the bins. (b) Applying frequent pattern mining and statistical tests, IR features are

extracted. Using the features, prediction models for (c) patient pairs and (d) an individual patient are formed and predictions are made. C-Epithelium

and C-Stroma denote the selected cancerous epithelium and stroma next to it, respectively. nPreference is a normalized preference score for the unknown

patient against the most similar patient. Black and white bars denote 100mm and 500mm, respectively.

www.nature.com/scientificreports
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evaluated on the calibration dataset (82 patients). In a similar
evaluation on the independent validation dataset (66 patients),
Kattan (AUC 5 0.45, 95% CI: 0.32–0.57) and CAPRA-S (AUC 5
0.47, 95% CI: 0.34–0.60) scores performed far worse than the IR
Score (AUC 5 0.73, 95% CI: 0.57–0.87) as seen in Figure 3b. We
note that these comparisons were from the individual query method
only, since the nested case-control design is not amenable to better-
than-random classification by Kattan or CAPRA-S scores, by
definition.

We next compared the distribution of the patients according to the
IR Score used by our algorithm for predicting recurrence. We com-
pared the IR Score distributions of cases and controls to analogous
distributions from both the Kattan nomogram and CAPRA-S score
(Figure 4). PPR values represented by the IR Score had distinct dis-
tributions for recurrence cases versus non-recurrence controls (P <
0.02, Kolmogorov-Smirnov test). In contrast, the distributions of
either the Kattan or the CAPRA-S scores were indistinguishable
between the two classes (P . 0.1, Kolmogorov-Smirnov test). A
majority of the patients, regardless of recurrence status, had very
low PPR values using the Kattan nomogram. Most samples were
assigned to either low-risk (score 0–2) or intermediate-risk (score
3–5) category by CAPRA-S score. This shows that the discriminative
capability of the two widely-used tools in this challenging data set is
very limited, and demonstrates the potential of the new approach
proposed here to add to clinical decision-making.

Stromal IR features are independent predictors of cancer
recurrence. The relationship between IR Score and recurrence was
investigated in the context of conventional clinical variables (age at
prostatectomy, Gleason grade, pathologic stage, and PSA level). In
particular, we asked if the IR Score and clinical variables together
can better predict recurrence than clinical variables alone can. If this
is the case, then there must be additional information in the IR Score
that is not present in clinical variables. By fitting a logistic regression
model of recurrence using IR Score and the clinical variables as
covariates, we estimated the strength of the association between IR
Score and cancer recurrence, regardless of the clinical variables, on
the calibration dataset (see Supplementary Information for details).
IR Score was used as either a continuous or a categorical variable. As
a continuous variable, the strength of the association with cancer
recurrence was examined for a one-unit increase in IR Score as

fixing the clinical variables. As a categorical variable, patients were
assigned to quartiles (1–4) by IR Score and, fixing the clinical
variables, the relationship with cancer recurrence was compared
between the patients in the lowest quartile and the patients in other
quartiles (Table 2). For both types, a significant association was
observed (P , 0.001 as a continuous variable and ,21-fold
differences between the lowest quartile and the highest quartile as a
categorical variable). These indicate that higher IR Scores are
significantly correlated with higher likelihood of recurrence, in ways
that are not captured by clinical variables, i.e., independent from these
variables. The association between Kattan and CAPRA-S scores with
cancer recurrence was not significant (P . 0.06 as a continuous
variable and ,2- to 6-fold differences between the extreme quartiles
as a categorical variable; Wald chi-square test) when tested.

IR Score adds independent predictive power to popular existing
tools. As shown above, the relationship between IR Score and cancer
recurrence is independent of clinical variables that the existing tools
rely upon. To further test this hypothesis, we combined IR Score with
Kattan and CAPRA-S scores as follows:

Cscore~IRscorezxEscore:

Cscore and IRscore denote combined score and IR Score respectively,
while Escore is either Kattan score or CAPRA-S score and x is a weight
for the scores (0 , x # 1). As changing a weight x from 0 to 1, the
performance of the combined score Cscore was measured by computing
AUC. Increasing x, the performance of the combined score only
marginally improved upon the performance of IR Score alone (even
degraded capability in the combination of IR Score and Kattan score
on the validation dataset) and the improvement was not statistically
significant (Supplementary Figure S2). Combined with Kattan and
CAPRA-S scores, the AUC of IR Score reached 0.75 (95% CI: 0.64–
0.85) and 0.75 (95% CI: 0.63–0.85) respectively on the calibration
dataset, whereas IR Score alone achieved AUC of 0.74 (95% CI:
0.61–0.85). Moreover, on the validation dataset the combined score
led to degradation in classification performance. An AUC of 0.65
(95% CI: 0.50–0.79) and 0.74 (95% CI: 0.58–0.87) was attained by
combining IR with Kattan and CAPRA-S scores respectively, while
an AUC of 0.73 (95% CI: 0.57–0.87) was achieved by IR Score alone.
Hence, the IR Score is truly independent of the existing tools.

Figure 3 | Performance of Outcome Prediction. Outcome prediction of three models – CAPRA-S (black), Kattan nomogram (blue), and IR (red) – on

(a) the calibration dataset and (b) the validation dataset. AUCs and 95% confidence intervals in parentheses are shown on the plots. Lines represent

the smoothed ROC curves and rectangular dots denote the empirical sensitivity and 1-specificity points.

www.nature.com/scientificreports
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IR features correspond to specific functions in stroma. We
examined the data to understand the underlying spectral and
spatial basis of our successful classification. Examining the metrics,
two prominent spectral regions were recognized. The peaks in 3000–
3600 cm21 range (Figure 1b) were present in all of the features; these
are related to N-H stretching vibrational modes (in proteins) or O-H
stretching vibration47,48. About half of the features were related to the
peaks in 990–1132 cm21, which include C-O stretching vibrational
mode at 1042 cm21 due to oligosaccharides49. The complete list of IR
metrics useful in outcome prediction is available in Supplementary
Table S1, indicated by a ‘‘Yes’’ in whether the feature was found to be
useful. While the chemical content is elucidated, the spatial origin of
our differences is also enlightening. Spectra can be used to find
regions of the image most closely associated with prediction. Pixels
containing the discriminating stromal features are identified and
compared to their corresponding H&E images (Figure 5). The
features appear in the regions where reactive stroma is present.
More specifically, loose or myxoid stroma and fibroblasts are often
observed around the pixels that were most useful in outcome
prediction. Stromal reaction (or desmoplasia), which occurs in
most solid human cancers50, contains increased number of
fibroblast and myofibroblasts and modifies extracellular matrix
composition. We also found that the discriminating features are
frequently present next to periacinar retraction (clefting), a
separation of the gland from the adjacent stroma that has been
associated with cancer recurrence51.

Discussion
We have presented a novel approach for precise predictions in pro-
state cancer using a combination of emerging IR imaging and a novel
computational approach. Stromal features, not epithelial features,
were found to be more significant in distinguishing biochemical
recurrence cases from non-recurrence controls for both nested and
non-nested case-control designs. While these results indicate that the
stroma contains molecular signatures related to cancer progression,
as has been shown in the past; here, however, we have not used any
dyes, molecular stains or human interpretation. Automated methods
that can comprehensively analyze the entire tumor microenviron-
ment lead to a robust and accurate predictive model. This presents a
new opportunity for combined molecular and imaging-based out-
come predictions, as opposed to simply using clinical data or molecu-
lar biomarker techniques52. In a head-to-head comparison, IR-based
prediction outperforms both Kattan nomogram and CAPRA-S score
on multiple datasets. IR prediction is especially exciting as the patient
cohort here is of clinically difficult cases, where nomograms are of
limited utility. There were slight differences in the performance of
Kattan and CAPRA-S scores for the calibration dataset and the
validation dataset. This may be attributable to the differences in
clinical characteristics of the patients (Table 1). For instance, in the
validation dataset, differences in age and PSA level between recur-
rence cases and non-recurrence controls are smaller compared to
those in the calibration dataset. More recurrence cases than non-
recurrence controls (17 recurrence cases and 6 non-recurrence con-

Figure 4 | Score distribution. Distribution of the recurrence cases (red) and non-recurrence controls (black) by (a)(d) Kattan (b)(e) CAPRA-S (c)(f) IR

Scores. Distributions on (a)(b)(c) the calibration dataset and (d)(e)(f) the validation dataset are plotted. PPR represents the predicted probability of

recurrence.

Table 2 | Odds ratios for cancer recurrence by quartiles of IR score

Quartile 1 (low) 2 3 4 (high) P trend

IR OR (95% CI) 1 6.5 (1.3–46.8) 10.8 (2.0–86.8) 21.3 (4.2–168.4) 0.020
CAPRA-S OR (95% CI) 1 3.2 (0.8–15.0) 1.3 (0.3–5.3) 6.1 (1.1–40.3) 0.270
KATTAN OR (95% CI) 1 0.8 (0.2–3.1) 1.5 (0.4–6.5) 1.9 (0.4–10.2) 0.111

OR and CI denote odds ratio and confidence interval, respectively.

www.nature.com/scientificreports
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trols) with lower Gleason sum (#6) exist in the validation dataset. All
of the 17 recurrence cases were designated as either lower-risk (70%)
or intermediate-risk (30%) category by CAPRA-S score. The recur-
rence cases had relatively lower PPR values (88% had ,10% PPR) by
Kattan nomogram. However, the performance of IR Score was con-
sistent and the separation was evident by IR Score; at the level of PPR
#30%, ,3-fold more non-recurrence controls were observed than
recurrence cases; 2- to 4-fold more recurrence cases were found at
$70% PPR. Overall, the patients, grouped into an intermediate (or
lower) risk group by the conventional tools, can be further stratified
by IR Score whereas both Kattan and CAPRA-S scores were not
contributory. Since Kattan and CAPRA-S scores did not perform
well, it is not surprising that the combined score with IR Score was
not able to significantly improve upon IR Score alone. The synergy
between IR Score and the two scores does not lie in a simple com-
bination. We believe that the way to utilize IR Score is to add it to the
existing tools as an additional factor and to improve the utility of the
tools. This is especially true for the clinically difficult intermediate
risk where Kattan and CAPRA-S methods fail, as demonstrated by
the cohort here. The method presented is likely to prove an exciting
addition to the power of Kattan and CAPRA-S methods and could
substantially increase their predictive power.

In addition to Kattan and CAPRA-S scores, several imaging- and
molecular-based techniques have been developed; however, the rela-
tionship between IR Score and these techniques is yet unclear. This is
largely due to the non-availability yet of the data and/or images on
the same set. The approach presented here is entirely compatible
with these approaches, including pre-operative MRI-based
approaches53, downstream genomic tests54, emerging mass spectro-
metric55,56 or even other intra-operative57 or emerging vibrational
spectroscopic58 approaches. None of these techniques offers the
unique microenvironment profiling and imaging capability of IR
microcopy, using protein, nucleic acid and carbohydrate signals
inherent in the spectroscopic capability used here. The presented
data are both unique and complementary; hence, it will be desirable
to examine if there is a synergy between IR Score and predictive
features from other techniques. Finally, both the chemical and bio-

logical underpinnings of the discriminative stromal spectroscopic
features uncovered by the approach here provide further avenues
for examination. The features may be related to the molecules per-
taining to (myo)fibroblasts, extracellular matrix composition or
retraction clefting; for instance, chondroitin sulfate, known to be
associated with prostate cancer progression59. However, the specific
molecules or chemical/biological causes relevant to the IR features
cannot be identified without further biochemical assays such as
immunohistochemistry, proteomics, or glycomics. In an emerging
trend, obtaining higher spatial resolution IR imaging60 could
improve the recognition of the features yielding a finer classification
model and, in turn, achieve better predictions of recurrence. In sum-
mary, the presented approach not only shows tremendous promise
to directly address a major contemporary need in PCa management
but can also help narrow the focus for further research studies. The
same approach may be used to examine other questions of import-
ance in contemporary cancer care, for example, the determination of
the cohort in which adjuvant therapy may prove useful, for exam-
ining the metastatic potential of organ-confined disease and for the
analysis of solid tumors in other organs.

Methods
Samples and data preparation. This study and protocols were conducted as
approved by the University of Illinois Institutional Review Board (IRB) via protocol
#06684. Informed consent was obtained from all subjects included in this study. We
used a set of five tissue microarray slides (TMAs) constructed by the NIH-sponsored
Cooperative Prostate Cancer Tissue Resource (CPCTR)38. The TMA contain up to
four cores each from 404 patients. Half the patients experienced biochemical
recurrence after radical prostatectomy (cases) and the other half did not for at least 5
years after radical prostatectomy (controls). Cases and controls were matched for age
at prostatectomy, race, Gleason score, and pathologic (pTNM) stage. ,90% of the
patients are in the intermediate risk group using D’Amico risk grouping4, and 268 of
the 404 patients have Gleason sum 7 – the most problematic and prevalent score.
These TMAs, hence, are recurrence-enriched as well as mid-grade dominant, which
are unique and challenging compared to other studies7–10 – but represent the most
crucial subset where prediction capabilities are sorely desired. Further description of
this outcomes-based TMA is available in Ref. 61.

For accurate diagnosis, tissues with insufficient malignant epithelial cells (,10% of
core) were omitted by combined pathologic review and IR-based cell-type clas-
sification32. Stromal cells in the vicinity of epithelial cells (within ,50 mm) were also
selected as we have previously noted using engineered tissue models35 that stromal

Figure 5 | Comparison of IR and H&E images. IR stromal features (red rectangles) and their corresponding areas (red circles) are marked on IR and H&E

images, respectively. (a)(c)(e) Recurrence images and (b)(d)(f) non-recurrence images. C-Stroma represents stroma cells adjacent to cancer cells.

Black scale bar denotes 100mm. IR features are related to (a)(b)(e)(f) loose or myxoid stroma, (b)(c)(d)(e)(f) fibroblasts, and (a)(d)(e)(f) retraction

clefting.
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reaction can be observed within a safe margin of 100 mm from the tumor. Finally, the
study only included subjects who had at least two cores with both sufficient epithelial
cancer cells and adjacent stromal cells. Hence, calibration dataset consists of 60
patient pairs, with a total of 380,685 and 333,167 epithelial pixels for the cases and
controls, respectively (the ‘‘IR epithelium dataset’’). Similarly, 101,576 and 95,925
stromal recurrence and non-recurrence pixels, respectively (the ‘‘IR stroma dataset’’),
were collected. For comparison with Kattan nomograms and CAPRA-S score, 82
patients (35 recurrence cases and 47 non-recurrence controls) who have no record of
neoadjuvant or adjuvant therapy, were selected from the calibration dataset.
Similarly, a completely independent ‘‘validation dataset’’ of 66 patients (38 recurrence
cases and 28 non-recurrence controls) with 193,620 epithelial recurrence, 133,126
epithelial non-recurrence, 50,745 stromal recurrence, and 41,130 stromal non-
recurrence pixels, respectively, was obtained. Clinical characteristics of the patient
cohort are available in Table 1.

IR imaging data were acquired at a spatial pixel size of 6.25mm 3 6.25mm, a spectral
resolution of 4 cm21 at an undersampling ratio of 2 using a Perkin-Elmer Spotlight
imaging system. Each pixel’s interferogram was processed using NB-medium apo-
dization and spectra truncated to 4,000–720 cm21. Tissue samples were microtomed
to a thickness of ,5 mm. One section was placed on IR transparent BaF2 slides, while
consecutive sections were placed on a standard glass slide and stained with hema-
toxylin and eosin (H&E) for pathologic review. H&E stained images were acquired on
an optical microscope at 403 magnification. Since IR spectra are high-dimensional,
we convert data into 98 spectral metrics (Supplementary Table S2). Metrics are
defined by spectroscopic review and can be absorbance at a peak position, ratio
between two peaks, and area and center of gravity of a spectral region32. Conversion to
metrics not only reduces the dimensionality of the original data to a manageable size
but also preserves the intrinsic and essential characteristics of the data while allowing
interpretation of the results.

Chemical feature extraction. Due to biological variation and heterogeneity in tissue
and caner, signatures of cancer recurrence may not be apparent. Here, we hypothesize
that the signatures of recurrence reside in a part of cells or tissues which share certain
biochemical properties and can be identified by IR spectra. Using the combinations of
discretized IR data, we attempt to find such signatures efficiently and effectively.
Ranking approach is adopted to achieve an accurate and robust prediction of
recurrence.

Discretization. Each IR metric is independently discretized by dividing the entire
range of that metric into a number of equal-sized partitions or ‘‘bins’’ (Figure 2a), and
a representative value is designated for each bin. The value of the IR metric for a pixel
is then transformed to the appropriate discrete value representative of the bin
containing the original value. Thus, each pixel di in a dataset D 5 {d1,d2,...,dn} (n
pixels), originally a vector of IR metric values (k IR metrics), is now represented as a
vector~dl~ di1,di2, . . . ,dikð Þ where each dimension dij is the discretized value of a
distinct IR metric j corresponding to pixel di. We used 20 bins to discretize each IR
metric. Transformation of a continuous IR metric into a discrete format further
bounds the joint probability distributions of IR metrics and helps mitigate the effect of
variance by discarding the unnecessary precision.

Frequent pattern mining. A ‘‘pattern’’ is a specification of values for a certain subset
of dimensions, e.g., a pattern w 5 ((2, w2), (5, w5), (6, w6)) specifies that the second
dimension has value w2, the fifth dimension has value w5, etc, and a vector~dl is said to
match this pattern if di2 5 w2, di5 5 w5, and di6 5 w6. A frequent pattern is a pattern
that is matched by many pixels (Figure 2b), i.e., the number of pixels matching the
pattern is no less than hjDj, where h is a user-specified minimum threshold and jDj is
the total number of pixels in the data set D (We set h 5 0.02). Frequent patterns are
discovered for each group of recurrence and non-recurrence subjects separately by
applying FP-growth41. Using frequent patterns, we are now able to deal with any
subset of pixels in an efficient and effective way.

Discriminative patterns. Many of these frequent patterns may not be useful for
classification62. We obtain discriminative patterns by comparing the frequency of a
pattern between two classes (recurring and non-recurring) in two stages: (Figure 2b;
see Supplementary Information for details). In the first stage, we quantify the
frequency of a pattern for all samples in each class and test if the frequency of a pattern
is associated with cancer recurrence. In the second stage, we test if the pattern
frequency of the individual subjects in one class (e.g., recurrence) is larger than that in
the other class (e.g., non-recurrence). After the two stages, the frequency of the top m
discriminative patterns (m 5 100 is set here) in a tissue sample forms an IR feature for
the classification algorithm.

Feature selection. We examine the IR features with respect to the training dataset and
select a subset of them to classify the test dataset by adopting a two-stage feature
selection scheme. In the first stage, we select a subset of the features that yield a higher
relevance with class labels and a lower redundancy among them. In the second stage,
the subset is refined by adding new feature(s) and/or removing the already selected
feature(s). The detailed description of the feature selection procedure is available in
Ref. 45.

Prediction models. We apply Ranking-Support Vector Machine (SVM)43 (Figure 2c)
for classification, which assigns relative ranks to any given set of samples. Formally

speaking, given two samples, xi and xj, the Ranking-SVM computes a function f on
each sample and assigns ranks yi and yj 5R to the two instances by the rule:

yiwyjuf xið Þwf xj
� �

ð1Þ

Here, a higher rank indicates greater confidence in the sample being recurrent.
Ideally, given a pair of recurrence patient p1 and non-recurrence patient p2, the
trained SVM should assign a higher rank to any sample of patient p1 compared to that
from patient p2. The Ranking-SVM algorithm is optimized on the training dataset to
minimize the fraction of samples that are mis-ranked.

While the description above formulates a protocol and tests it for a case-control set,
translation to a clinical unknown can be incorporated into the same framework by
adopting a lookup methodology. We matched the nomogram input data to find the
most similar recurrence case and non-recurrence control from the training dataset to
an individual patient (query). The similarity between two patients is measured as the
inverse of Euclidean distance between their clinical variables – age at prostatectomy,
Gleason sum, and pathologic stages (see Supplementary Information for details).
Hence, each query returns from the database a recurrent and a non-recurrent match.
We rank the query against the two matches via Ranking-SVM. If the query is from a
patient who will recur, it will be higher ranked than the non-recurrent sample from
the database. If the query is from a non-recurrent patient, it will be ranked lower than
the recurrent sample from the database. Quantifying the tendency in the ranks, a
preference score for a patient p1 against a patient p2 is defined as follows:

Preference(p1; p2)~
X

s[S1 ranking(s; S1|S2)d ð2Þ

where Si represents the set of cores samples from a patient pi, ranking .; Sð Þ denotes a
rank of . among the set of samples in S, and d $ 1. Since the preference score is
dependent on the number of samples of the two patients, a normalized preference
score is computed:

nPreference p1; p2ð Þ~ Preference p1; p2ð Þ{Preferencemin p1; p2ð Þ
Preferencemax p1; p2ð Þ{Preferencemin p1; p2ð Þ ð3Þ

where Preferencemin(p1;p2) and Preferencemax(p1;p2) denote the minimum and max-
imum possible preference scores for the given two patients, respectively. Based on the
two preference scores, we predict the probability of recurrence (‘‘IR Score’’) of the
query patient using a logistic regression model (Figure 2d).

Kattan nomogram and CAPRA-S score. Kattan nomogram7,8 is a graphical tool to
predict up to 10-year probability of biochemical recurrence after radical
prostatectomy. It is constructed based on the Cox proportional hazards regression
model. It includes several clinical variables, for instance, PSA level, Gleason grade,
lymph node invasion, seminal vesicle invasion, extracapsular extension, surgical
margin status, and year of radical prostatectomy. Each variable is represented as a
scale, and each scale position corresponds to a prognostic point that shows its
prognostic significance in the model. Adding up the prognostic points of all the
clinical variables, the total sum is mapped to the probability of biochemical
recurrence.

CAPRA-S score10 also predicts 5-year biochemical recurrence after radical pros-
tatectomy and uses the Cox proportional hazards regression model. It utilizes PSA
level, Gleason score, surgical margin status, extracapsular extension, seminal vesicle
invasion, lymph node invasion. Depending on a value of a clinical variable, it assigns a
risk point up to 3 for PSA level and Gleason Score, 2 for surgical margin status and
seminal vesicle invasion, and 1 for extracapsular extension and lymph node invasion.
The minimum and maximum possible score is 0 and 12, respectively. The scores 0–2,
3–5, and $6 are considered to be a low-risk, intermediate-risk, and high-risk group,
respectively.

Statistical Analysis. Statistical significance in discriminating pairs of recurrent cases
and non-recurrent controls is determined by binomial test with a success probability
of 0.5. ROC curves were smoothed prior to computing AUCs to compensate for the
underestimation in the empirical AUCs and to estimate the true AUCs63. Bootstrap
re-sampling with 2000 repetitions is adopted to assess 95% confidence intervals (CI)
of AUCs and statistically substantial differences between AUCs of the two ROC
curves63. Kolmogorov-Smirnov test is employed to examine the differences in score
distributions between recurrent cases and non-recurrent controls. Wald chi-square
statistic is used to measure the significance of individual predictors in a logistic
regression model. The tests were performed using R software version 2.15.2.
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