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Lung cancer has been the most common death causing cancer in the world for several decades. This study is
focused on the metabolite profiling of plasma from lung cancer (LC) patients with three control groups
including healthy non-smoker (NS), smokers (S) and chronic obstructive pulmonary disease patients
(COPD) samples using gas chromatography-mass spectrometry (GC-MS) in order to identify the
comparative and distinguishing metabolite pattern for lung cancer. Metabolites obtained were identified
through National Institute of Standards and Technology (NIST) mass spectral (Wiley registry) and Fiehn
Retention Time Lock (RTL) libraries. Mass Profiler Professional (MPP) Software was used for the alignment
and for all the statistical analysis. 32 out of 1,877 aligned metabolites were significantly distinguished among
three controls and lung cancer using p-value # 0.001. Partial Least Square Discriminant Analysis (PLSDA)
model was generated using statistically significant metabolites which on external validation provide high
sensitivity (100%) and specificity (78.6%). Elevated level of fatty acids, glucose and acids were observed in
lung cancer in comparison with control groups apparently due to enhanced glycolysis, gluconeogenesis,
lipogenesis and acidosis, indicating the metabolic signature for lung cancer.

L
ung cancer has been the most common death causing cancer in the world for several decades. Regardless of
tremendous efforts, long-term survival has not improved significantly over the last 25 years. 5-Year survival
rates of lung cancer patient remain only 15%1, which may increase up to 80%, if the lung cancer is detected in

early stages2. According to the International Agency for Research on Cancer (IARC) for 2012 report, one of the
most frequent cancers in the world is lung cancer which has the highest incidence rate worldwide (1.8 million,
13% of the total). As far as the mortality rate is concern, lung cancer is again at the top (1.6 million, 19.4% of the
total)3. Several studies have been conducted on molecular biomarkers for the early detection of lung cancer at
genomics, epigenomics, proteomics, and metabolomics levels4–7 to reduce their mortality rate. Metabolomics in
the post-genomic era is a powerful tool for profiling differences in metabolites among normal, precancerous, and
cancerous cells or tissues. Moreover, metabolomics has gained considerable importance due to recent advances in
experimental methodologies and technologies, and ability to process large amounts of data. Based on this,
metabolomics approaches can permit early diagnosis or real-time monitoring of the effects of a disease8.

The metabolic studies of lung cancer in human tissues and biofluids have been reported in the last few years.
Kenjiro Kami et al., have reported metabolomic profiling of lung and prostate tumor tissues by Capillary
Electrophoresis Mass Spectrometry (CE-MS)9. Rocha et al., have studied the metabolic differentiation between
tumor and non-involved adjacent lung tissues by High Resolution Magical Angle Spinning Nuclear Magnetic
Resonance (HRMAS-NMR) spectroscopy10. They investigated increased levels of lactate, phosphocholine (PC),
and glycerophosphocholine (GPC) in tumors, while glucose, myo-inositol, inosine/adenosine and acetate level
were decreased. Carrola et al, investigated the Nuclear Magnetic Resonance (NMR) based metabonomics in blood
plasma and urine11 for metabolic signatures in lung cancer. Using a more global profiling approach, Jordan and
colleagues reported the NMR analysis of paired tissues and serum samples from 14 subjects with two different
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lung cancer histological types (adenocarcinoma and squamous cell
carcinoma), as well as of serum from 7 healthy individuals12. In
another pubilcation, a panel of 8 metabolites were identified for
the diagnosis of breast, lung, colon or prostate cancers with a high
sensitivity and specificity13.

A few targeted metabolic profiling of blood plasma/serum have
been reported for lung cancer biomarkers discovery. Maeda and co-
workers reported the differences in the amino acid profiling of
plasma between healthy controls and non-small-cell lung cancer
(NSCLC) patients, as assessed by Liquid Chromatography Mass
Spectrometry (LC/MS)14. Targeted analysis of lysophosphatidylcho-
lines (lysoPC) showed that irregular levels of lysoPC isomers with
different fatty acyl positions were found in the plasma of lung cancer
patients as compared to controls15. In another targeted analysis,
serum lipid metabolite profiling of 58 lung cancer using Fourier
transform ion cyclotron resonance MS has been reported16.

Recent advances in NMR, GC-MS and LC/MS techniques have
enabled the use of more global metabolomic approaches for the
identification of novel biomarkers for specific diseases7,17,18 as well
as new targets for drug discovery and development. Among the
recent techniques, GC-MS proved to be a significantly useful method
due to its high sensitivity and resolution, reproducibility and cost
effectiveness. Moreover, in comparison to LC/MS, the availability of
a large GC-MS electron impact (EI) spectral library further aids the
identification of biomarkers in various pathological condition19.
There are few reports published based on GC-MS analysis of lung
cancer metabolites. Metabolites in serum and urine of 19 lung cancer
patients and 15 patients with other lung diseases were analyzed using
GC-MS20. Serum metabolomic analysis of lung cancer patients was
performed using GC-MS from 29 healthy volunteers and 33 lung
cancer patients7. Few studies on GC-MS based volatile organic
compounds (VOC) as lung cancer biomarkers have also been
reported21–25.

In all above cited investigations, either limited numbers of samples
were used or one healthy control group was used to discriminate lung
cancer metabolites. In the present study, we have used 384 samples
with three control groups including healthy non-smokers, smokers
and persons with COPD in order to identify diseases related meta-
bolites through comprehensive comparison. Previously, we have
developed a comprehensive, straightforward, reproducible and effi-
cient sample preparation method which can cover a wide range of
metabolites for metabolite profiling with 2D-C18 fractionation
approach26. In this investigation, all the samples were analyzed
through 2D-C18 method for the first time to investigate differentia-
tive metabolite patterns between the lung cancer and controls, fol-
lowed by chemometric analyses.

Methods
Solvents and reagents. All solvents used for GC-MS analysis were of analytical grade.
Methanol, hexane and ammonium hydroxide were purchased from Tedia (Tedia
way, Fairfield, USA), while isopropanol and hydrochloric acid (37%) were purchased
from Fisher Scientific (Loughborough, Leicestershire, U.K.), formic acid and
myristic-d27 acid were purchased from Sigma-Aldrich (St. Louis, MO, USA,
respectively). MSTFA (N-Methyl-N- (trimethylsilyl) trifluoroacetamide) and
methoxylamine hydrochloric were purchased from Acros Organic (New Jersey,
USA). Deionized water (Milli-Q) was used throughout the study (Millipore, Billerica,
MA, USA).

Sample collection statistics of patients and controls. This study was approved by the
ethical committee of the Jinnah Postgraduate Medical Center (JPMC), and written
informed consent was obtained from all the participants. A total of 384 plasma
samples of healthy Non-Smokers (NS), Smokers (S), and Chronic Obstructive
Pulmonary Disease (COPD) and Lung Cancer (LC) patients were included in this
study. 96 samples from each group in the age range of 30–65 years among S and NS,
while 35–70 years in the case of COPD and LC patients were selected. Cancer subjects
included in this study were of pathologically proven LC of common subtypes,
including 10 Squamous Cell Lung Cancer (SqLC), 12 Adenocarcinoma Lung Cancer
(AdLC), 16 Small Cell Lung Cancer (SmLC), 10 Non Small Cell Lung Cancer
(NSCLC) and 52 were uncategorized Lung Cancer (type of lung cancer were not
diagnosed). The smokers included in this study had been smoking for at least 10 years
or more.

Blood samples of male and female were collected from the JPMC Karachi, Pakistan,
after consent. About 8 mL of the blood was drawn in the morning from the overnight
fasting volunteers in BD Vacutainer tubes (BD Franklin Lakes, NJ, USA, REF
367856), containing K2-ethylenediaminetetraacetic acid as an anticoagulant. Plasma
was separated immediately by centrifugation at 4,500 rpm for 10 min at 4uC. Finally,
the plasma was aliquoted and frozen at 280uC. A code was given to each sample.
Sample collection description and codes are mentioned in Table 1&2.

Sample preparation. Method was carried out in accordance with our previous
protocol26 with some modification. Samples were processed in a 96-well plate, in each
plate aliquots of 100 mL of plasma of each samples were mixed with 800 mL of solvent
methanol, 20 mL of internal standard myristic-d27 acid (1 mg/mL stock solution) was
added and left on ice for 30 minutes. The precipitated proteins were then removed by
centrifugation at 12,000 rpm for 10 min (Eppendorf Centrifuge 5804 C/R). Aliquots
(600 mL) of the resulting clear supernatants were loaded onto the C18 96-well plate
(Strata C18-E, 55 mm pore size, 70uA particle, 100 mg sorbent/well Phenomenex,
USA) and drawn through the solid phase under vacuum. Prior to extraction, the
phase was activated with 2 3 300 mL of methanol and then further conditioned with 2
3 300 mL of water. After loading of sample on plate, the phase was washed with 2 3

200 mL of water and eluted with 600 mL of methanol. The eluates were collected in 96-
well collection plates. The eluate was then evaporated under N2 at room temperature.
The dry samples were stored at 4uC until analysis. The SPE extractions were
performed on solid phase extraction vacuum manifold AH0-7502 Phenomenex
(USA).

Derivatization and GC-MS analysis. The dried extract of all the samples were
derivatized subsequently by adding 50 mL methoxylamine hydrochloride in pyridine
(15 mg/mL), vortexed and left for 2 hr at 35uC. Then BSTFA was added with 1%
trimethylchlorosilane (TCMS) and placed at 70uCfor 60 min to form trimethylsilyl
(TMS) derivatives. GC-MS parameters were same as those reported in our previous
paper26. GC-MS analysis was performed using 7890A gas chromatography (Agilent
technologies, USA), equipped with an Agilent Technology GC sampler 120 (PAL
LHX-AG12) autosampler and coupled to a Agilent 7000 Triple Quad system (Agilent
technologies, USA) and HP-5MS 30 m–250 mm (i.d.) fused-silica capillary column
(Agilent J&W Scientific, Folsom, CA, USA), chemically bonded with a 5% diphenyl
95% dimethylpolysiloxane cross-linked stationary phase (0.25 mm film thickness)
according to our previous report26.

GC-MS data preprocessing and statistical analysis. Metabolite profiling of blood
samples were analyzed using the optimized GC-MS assay. Data processing was
performed using the Agilent Mass Hunter Qualitative Analysis (version B.04.00).
Peak integration and deconvolution (parameter were same as previously reported
except SNR threshold 3.026 were performed on Mass Hunter. Putative identification

Table 1 | Experimental subject description - healthy non-smokers and smokers

Age range (years)

Number of Samples (codes)

Healthy males Healthy females Smokers

20–30 20 (HMPG1 1–20) 20 (HFPG1 1–20) 33 (SMPG1-1–33)
30–40 10 (HMPG2 1–10) 10 (HFPG2 1–10) 19 (SMPG2-1–19)
40–50 10 (HMPG3 1–10) 10 (HFPG3 1–10) 24 (SMPG3-1–24)
Above 50 10 (HMPG4 1–10) 10 (HFPG4 1–10) 24 (SMPG4-1–24)

Table 2 | Experimental subject description- lung cancer patients

Type of cancer Number of Samples (codes)

Squamous cell carcinoma 10 (SqLC1–SqLC11)
Adenocarcinoma 12 (AdLC1–AdLC12)
Small cell carcinoma 16 (SmLC1–SmLC13)
Non Small cell carcinoma (not categorized) 10 (NSCLC1–NSC LC8)
Not categorized 52 (LC1–LC50)
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of low molecular weight metabolites were established by comparing the mass spectra
of the peaks with those available in the NIST mass spectral (Wiley registry NIST 11)
and Fiehn RTL libraries. The identification of peaks was based on 70% similarity
index. All the GC-MS spectra were exported as CEF format, and uploaded on MPP for
peak alignment, normalization, significance testing, fold change and multivariate
analysis for both identified and unidentified compounds.

All the available data (full scan mode from m/z 50 to 650 and retention time
window 6.5 to 35 min) and minimum absolute abundance of 5,000 counts were used
to filter the data. Alignment parameter was set as retention time tolerance 0.05, match
factor 0.3 and delta MZ 0.2. Data was normalized to unit scale. After the normal-
ization of data, baseline differences in metabolism between the four groups were
eliminated. For baseline correction, all the compounds treated equally regardless of
their intensity. It subtracts the mean abundance of each entity from the corres-
ponding values in each sample. A total of 1,877 entities were found in the entire
samples after alignment. Entities were filtered by frequency (those which appeared in
more than 50% of samples in at least one group of samples were chosen), p # 0.001,
fold change. 3 and coefficient of variance (CV) , 25%. Statistical significance
analysis using the one way ANOVA and a level of probability of 0.001 was used as the
criterion for significance. 32 Entities were found to be significantly different in lung
cancer and controls. Turkey’s honest Significance Difference (HSD) post Hoc test was
then applied to identify which entities were responsible for significant differences in
the four groups. Hierarchical clustering was performed by applying Pearson’s
uncentered-absolute distance metric, complete linkage. Class prediction was built
using a PLSDA model. PLSDA was constructed using 32 entities of filtered data using
four components including auto scaling, N fold validation type, three numbers of fold
and with ten numbers of repeats. Sensitivity and specificity were also measured from
the construct model. 40 Samples were randomly selected and validated through the
constructed model.

Results and discussion
Metabolite profiling of a total 384 plasma samples from healthy non-
smokers, smokers, COPD and lung cancer patients (96 samples of
each group) were analyzed by using GC-MS. 2D-C18 sample pre-
paration method was used for the enrichment of metabolites based

on our previous findings26. Data files were subjected to extensive
statistical analysis using MPP software in order to identify the com-
parative and statistically distinguished metabolites for the search of
lung cancer biomarkers.

Significance testing and fold change. The purpose of significant
testing and fold change is to identify statistically differentiative
metabolites by applying appropriate test and conditions. Thirty
two metabolites, out of 1,877 were found to be significantly
different among the three controls (NS, S and COPD) and lung
cancer using one way ANOVA and a level of probability of 0.001
and fold change . 3 (Table 3). Eleven metabolites i.e. lactic acid
(CAS # 79-33-4), phosphoric acid (CAS # 7664-38-2), benzoic acid
(CAS # 2078-12-8), naphthalene (CAS # 29422-13-7), d-glucose
(CAS # 128705-73-7), altrose (CAS # 1990-29-0), palmitic acid
(CAS # 64519-82-0), octadecanoic acid (CAS # 1188-75-6), stearic
acid (CAS # 57-11-4), 1-propene (CAS # 1000154-23-3) and
cholesterol (CAS # 1856-05-9), out of 32 low molecular weight
metabolites were putatively identified (level 2 of Metabolomics
Standard Initiative for the identification) by comparing the mass
spectra of the peaks with those available in the NIST mass spectral
(Wiley registry NIST 11) and Fiehn RTL libraries at 70% similarity
index (Table 3), while the remaining were not identified at this
similarity index (Table 3). The EI/MS spectra of unidentified
compounds are shown in supplementary information (Fig. S1).

After the completion of ANOVA, Turkey’s honest significant dif-
ference (HSD) post Hoc test was applied in order to find out which
entities or metabolites were significantly expressed among controls
and lung cancer. It was found that a large number of metabolites were

Table 3 | List of metabolites (32 entities) that are distinguished between three controls, healthy non-smokers (NS), smokers (S), chronic
obstructive pulmonary disease (COPD) and lung cancer (LC) at p , 0.001 and fold change .3 and CV , 25%

(a) Compounds or
(b) Base peak (m/z)

R.T
(mins) p-value

Log FC
(S VS NS)

Log FC
(COPD VS NS)

Log FC
(LC VS NS)

CV
(NS)

CV
(S)

CV
(COPD)

CV
(LC)

Lactic acida 6.547 0.001 20.75066 20.75066 15.01397 6.059 0 0 0.940
Phosphoric acida 9.298 4.46 3 10234 21.43 3 10206 22.15 3 10206 11.38233 0 0 0 1.392
Benzoic acid a 8.925 0.001 20.38841 20.38841 14.88933 7.348 0 0 1.040
Naphthalenea 14.913 4.98 3 10223 27.88417 27.61842 5.263484 1.524 0 8.659 1.042
d-Glucosea 17.000 0.001 20.80834 20.80834 16.77236 6.226 0 0 0.914
Altrosea 17.180 0.001 20.77384 20.77384 15.65283 5.159 0 0 0.988
Palmitic acida 18.082 0.001 20.86307 20.56074 18.47669 5.338 0 8.660 0.881
Octadecanoicacida 19.248 0.001 24.80116 22.96099 13.00723 0 0.423 0.598 1.504
Stearic acida 19.876 0.001 20.8934 20.61384 18.4489 5.203 0 8.659 0.878
1-Propenea 22.708 5.55 3 10221 24.91746 216.7018 22.27579 0.706 1.739 0 0.960
Cholesterola 27.099 0 20.80642 20.2636 17.42233 5.173 0 6.446 1.119
79.0b 6.466 7.83 3 10216 20.6038909 0.6598923 217.717346 1.053 1.286 1.190 0
221.0b 6.627 1.03 3 10228 20.36994314 20.36994243 10.512385 7.348 0 0 1.135
138.0b 7.211 6.1 3 10225 0.31311202 0.79443276 10.497155 0 8.123 6.579 1.464
192.0 b 9.245 0.001 21.5639739 21.0004983 18.191345 3.979 0 706.215 0.659
57.0b 9.430 6.32 3 10216 20.49987864 22.316762 7.907245 2.990 3.839 0 1.723
179.0b 10.948 1.72 3 10233 20.7623167 20.76231694 10.744249 5.363 0 0 1.216
77.0b 15.036 2.93 3 10221 13.092134 0.574327 9.222518 0 1.111 7.658 1.769
77.0b 15.138 6.60 3 10239 21.306344 15.365888 21.3063436 4.165 0 0.838 0
312.0b 15.956 0.001 20.42208862 20.13931417 19.562046 7.348 0 8.659 0.899
129b 20.794 0.001 23.3007922 23.3007927 15.475743 2.493 0 0 0.619
91.0b 21.747 8.32 3 10243 28.707808 211.9619255 11.135013 1.164 2.823 0 0.527
91.0b 21.799 0.001 21.44686 24.984108 1.0096989 0 0.471 0.444 5.049
61.0b 23.255 8.98 3 10236 13.969654 0.55730176 0 0 0.975 6.101 0
104.0b 23.364 2.28 3 10235 22.6220374 22.6220374 10.5647 2.660 0 0 0.898
91.0b 23.396 0.001 26.757048 26.7570477 15.541145 1.693 0 0 0.529
91.0b 23.452 0.001 20.630585 19.240364 9.54 3 10207 0 0.531 0.653 0
91.0b 23.560 0.001 24.3524594 24.352461 16.166733 2.181 0 0 0.554
179.0b 24.409 0.001 20.7441251 20.74412465 13.964065 5.201 0 0 0.842
179.0b 25.822 0.001 21.5109181 21.5109181 16.547422 3.942 0 0 0.805
91.0b 26.856 0.001 21.19 3 10206 21.67 3 10206 15.379847 0 0 0 0.891
aIdentified metabolites.
bUnidentified metabolites.
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significantly different in lung cancer and the three control groups. 31
in COPD, 30 in smoker and 27 metabolites in healthy were signifi-
cantly expressed, as compared to lung cancer. Only five metabolites
were statistically different in smoker and COPD, showing the close
resemblance between these two groups. 11 and 12 metabolites in
healthy groups were statistically significant, as compared to COPD
and smoker, respectively. Turkey’s honest significant difference
(HSD) post Hoc test summary is shown in supplementary informa-
tion (Table S1) while identities of statistically significant metabolites
which were differing in the four groups are also provided in supple-
mentary information (Table S2). Venn diagram shows the overlap-
ping of statistically differentiative metabolites between controls and
lung cancer. In comparison of lung cancer with smoker and COPD,
no peaks were overlapped in all the samples. 27 out of 32 were
overlapped in smokers and COPD showing their close resemblance.
However, 29 peaks were unique in lung cancer group which created
differences between lung cancer and controls, while only 1 and 2
peaks were overlapped between lung cancer with COPD and smo-
kers, respectively (Fig. 1A). In contrast, comparison of lung cancer
with smokers and healthy non-smokers showed only 1 overlap peak
in all samples, while 20 peaks were overlapped in healthy non-smo-
kers and smokers. In this comparison, 24 peaks were unique to lung
cancer which created a difference between lung cancer and controls,
while only 2 and 5 peaks were overlapped between the lung cancer
with smokers and healthy non-smokers, respectively (Fig. 1B).

Clustering. Cluster analysis is a powerful method to organize either
entities (compounds) or groups of samples into clusters, based on the
similarity of their profiles. Hierarchical clustering was performed to
produce a dendrogram for clustering of samples groups using
normalized intensities of thirty two significance metabolites
(Fig. 2). The length of the vertical lines in the dendrogram is a
measure of dissimilarity, while shorter lines demonstrate close
relationship of the groups. This approach clustered the four groups
(three controls and lung cancer group) into classes I, II and III
(Fig. 2). The two groups, i.e. lung cancer (LC) and COPD clustered
together in class I with dissimilarity level of only 0.206 (Fig. 2). In
class II, three groups, i.e. LC, COPD and smokers (S) were at
dissimilarity level of 0.461 (Fig. 2). Clustering of all the four groups
in class III showing dissimilarity level of 0.924 (Fig. 2) indicated that
healthy non-smokers (NS) are most dissimilar from among the three
groups, i.e. S, COPD and LC. Almost all the LC and COPD patients
possess smoking background which results in close relationship of
the three groups. An image of heat map using non-average samples

Figure 1 | Venn diagrams highlighting the overlapping of statistically differentiative metabolites observed (A) among smoker, COPD and lung cancer

patients, (B) among healthy non-smokers, smokers and lung cancer patients samples by applying Turkey’s honest significance difference HSD post Hoc

test.

Figure 2 | Comparison of four groups of samples i.e. healthy non-
smokers (NS), smokers (S), Chronic Obstructive Pulmonary Disease
(COPD) and Lung Cancer (LC) patients using normalized intensities of
thirty two significance metabolites. The dendrogram was produced by

applying a hierarchical clustering algorithm (Pearson’s uncentered-

absolute distance metric, Complete Linkage).
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(visualizing all samples) with normalized intensities of thirty two
significant metabolites is shown in Fig. 3. From this figure, it is
clear that lung cancer profile is totally different from three controls
by considering all the samples of each group. There is also good
reproducibility in each group and mostly the significantly diffe-
rentiative metabolites are highly expressed in lung cancer as com-
pare to control ones. Each histological subgroup of lung cancer was
also compared with control groups (Fig. S3of supplementary mate-
rial). Squamous cell carcinoma and small cell carcinoma of lung
cancer are strongly related with smoking habit and this is also
supporting in our clustering analysis of significance metabolites in
Fig. S3(A and B) while adenocarcinoma of lung cancer were not
clustered with smokers, as adenocarcinoma is the most common
form of lung cancer among people who have often or never
smoked in their lifetimes Fig. S3C. Non-small cell lung cancer were
also not clustered with smokers, this may be due to most of the
samples in this class have adenocarcinoma (a type of non-small
cell) Fig. S3D.

Class prediction model and test. A model was built using thirty two
statistically significant metabolites. Partial Least Square Discri-

mination (PLSD) algorithm was used to classify samples into
discrete classes. The classes in the input data are randomly divided
into three equal parts; two parts were used for training, and the
remaining part was used for testing. The process was repeated ten
times with a different part that is used for testing in each iteration.
Thus each row is used at least once in training and testing, and a
Confusion Matrix is generated. The results of Confusion Matrix (a
matrix which gives the accuracy of prediction of each class) are
presented in supplementary information Table S3. Figure 4 shows
the plots obtained by PLS-DA scores. A clear separation trend was
observed between the three controls involving healthy non-smokers,
smokers and COPD with lung cancer samples in the PLS-DA scores
plot (Fig. 4). The smokers and COPD lies close to each other as there
are 27 entities were common between them (Fig. 1A). The lung
cancer group was totally different from the controls groups as
there were at least 24 entities significantly different from the
controls in the lung cancer group (Figure 1) and this is also seen in
the heat map (Fig. 3). Sensitivity and specificity are also measured
from the constructed model. Sensitivity was calculated from the ratio
of true positives (cancer samples which correctly predicted) to the
total number of subjected cancer samples, whereas specificity was

Figure 3 | Heat map of all analyzed samples with normalized intensities of thirty two statistically significance metabolites. Identified compounds are

labeled by their name while unidentified compounds are labeled by their retention time (RT).
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determined from the ratio of true negatives (control samples which
correctly predicted) to the total number of subjected control samples.
Sensitivity and specificity was found to be 96.2% and 92.0%,
respectively, and overall accuracy of the model was found to be
93.1%. External validation measures the predictive capability
(sensitivity and specificity) of a calculated model. The model was
used to externally validate an independent or blind-test set of 38
plasma samples (8 healthy non-smokers, 10 smokers, 10 COPD
and 10 lung cancer patients). PLSDA classifier correctly predicted
the presence of LC in 10 out of 10 patients, healthy non-smokers in 8
out of 8, COPD 9 out of 10 and smokers 5 out of 10 resulting with
100% sensitivity and 78.6% specificity. 50% of the smokers were
incorrectly predicted by the model as COPD, may be due to the
common smoking history of both. All the sample prediction
reports are shown in Figure S2 of supporting information.

Pathway analysis. Pathway analysis was done through MPP software
using thirty two significantly differentiative metabolites which
reveals disturbance in several pathways including pyruvate meta-
bolism and citric acid (TCA) cycle, fatty acid triacylglycerol and
ketone body metabolism, bile acid and bile salt metabolism, ATP
Binding Cassette (ABC) family protein mediated transport and G-
Protein Coupled Receptor (GPCR) downstream signaling pathways.

Pyruvate metabolism and citric acid (tca) cycle. All cells in our
bodies require oxygen and nutrients. Energy is constantly needed
to perform cellular functions. For the proliferation of cells, nutri-
ents are needed in abundance for rapid growth. Therefore, cancer
cells require a plentiful supply of nutrients. Most cancer cells are
highly dependent on glucose for energy. Our experimental data
showed that the level of glucose was different between lung cancer
and control plasma samples. High levels of glucose were found in the
plasma samples of lung cancer, as compared to controls. Warburg
reported the conversion of glucose to lactic acid in the presence of
oxygen as a specific metabolic abnormality of cancer cells27(Mishra
and Verma, 2010). High level of lactic acid was also found in the

plasma samples of lung cancer. High level of glucose in lung cancer
does not show the decrease in glycolysis as lactic acid is also up-
regulated in lung cancer. Glycolysis results in the breakdown of
glucose, but several reactions in the glycolysis pathway are
reversible and participate in the re-synthesis of glucose, so
gluconeogenesis may be responsible for the increased levels of
glucose in lung cancer. Pathway analysis through MPP shows the
alteration or disturbance in lactic acid, carbon dioxide and
phosphoric acid involved in pyruvate metabolism and citric acid
(TCA) cycle between controls and lung cancer. This is shown in
Fig. S4 of supplementary material.

Fatty acid triacylglycerol and ketone body metabolism. Alterations
of several lipids metabolism are often observed in lung cancer
samples, including over-expression of fatty acid synthase (FAS).
Comparatively high levels of fatty acids, including palmitic acid,
octadecanoic acid, stearic acid and cholesterol were found in the
plasma samples of lung cancer as compared to controls. FAS serves
to store the energy derived from carbohydrate metabolism. Fatty
acids are esterified to phospholipids, such as phophatidylcholine28.
They are activated to acyl-CoA in a 2-step reaction, forming
diacylglycerides with glycerol 3-phosphate. These diacylglycerides
then react with CDP choline to form phosphatidylcholine. Path-
way analysis through MPP shows the alteration in phosphoric
acid, palmitate, carbon dioxide, glycerol and archidonic acid
involved in fatty acid triacylglycerol and ketone body metabolism
between controls and lung cancer as shown in Fig. S5 of supple-
mentary material. Over expression of FAS has been observed in
many lung cancers studies10,11,29. Experimental studies have indi-
cated that various oncogenic signaling pathways lead to increased
FAS expression30,31. Recently SREBP (Sterol Regulatory Element-
Binding Protein, a transcription factor and is a direct target of
PI3K/Akt and MAPK pathways) that regulates the lipid synthesis
and uptake through up-regulation of key enzymes of lipogene-
sis32,33. High content of glucose may be due to the high require-
ment of energy of lung cancer cells which results in carbohydrate

Figure 4 | PLS-DA Scores scatter plots discriminating among controls and lung cancer patients based on the thirty two significantly differentiate
metabolite profiling data. The red, blue, brown and gray squares indicate healthy volunteers (n 5 54), smokers (n 5 66), COPD (n 5 75) and lung cancer

patients (n 5 52), respectively.
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metabolism and lipogenesis to provide the energy in the form of
glucose.

GPCR downstream signaling. In cancer cells (lung, gastric, colorec-
tal, pancreatic and prostatic cancers) abnormal expression of GPCRs
and/or their ligands has been observed34,35. Pathway analysis shows
increase in phosphoric acid, glycerol and arachidonic acid levels in
lung cancer, involved in GPCR downstream signaling pathway de-
rived from endocannabinoids anandamide (AEA) and 2-arachidonoyl
glycerol (2-AG). The resulting altered pattern of receptor expression
is shown in Fig. S6 of supplementary material. This consequently
leads to changes in fatty acid synthesis and glucose utilization36.

ABC family protein mediated transport. ABC transporters are
membrane proteins which generate energy from ATP hydrolysis to
actively transport a variety of compounds across the membrane,
including ions, sugars, amino acids, lipids, toxins and anticancer
drugs. ABC transporters are involved in tumor resistance. ABCB1
or MDR1 P-glycoprotein are involved in lipid transport which is
their main function37. Pathway analysis shows the alteration of
phosphoric acid and cholesterol involved in ABC family protein
mediated transport, as shown in Fig. S7 of the supplementary
material.

Bile acid and bile salt metabolism. Bile acids are steroidal amphi-
pathic molecules, derived from the catabolism of cholesterol. The
catabolism of cholesterol to bile acids is an important route for the
elimination of cholesterol from the body, accounting for approxi-
mately 50% of cholesterol eliminated daily. Bile acids are involved in
signal transduction pathways that regulate apoptosis38. Pathway
analysis shows the alternation of phosphoric acid and cholesterol,
involved in bile acid and bile salt metabolism, as shown in Fig. S8 of
the supplementary material.

Up-regulation of acidic environment (decrease pH) in cancer cells
is common due to production of lactic acid. Our experimental data
shows high level of lactic acid, phosphoric acid and benzoic acid in
lung cancer patients, as compared to controls. Acidic environment of
cancer typically results in necrosis or apoptosis through p53 and
caspase-3-dependent mechanisms39. Consequently, up-regulation
of glycolysis requires resistance to apoptosis or up-regulation of
membrane transporters to maintain pH. These changes may result
in a malignant phenotype and facilitate local invasion and metastasis
formation39.

Concluding remarks. Our study has shown that GC-MS-based
metabolite profiling of blood plasma using 2D-C18 fractionation
approach followed by chemometric analyes is able to identify
biomarker metabolites which can significantly differentiate lung
cancer from three control groups (healthy non-smokers, smokers
and COPD) with high sensitivity (96.2%) and specificity (92.05%).
The two groups, i.e. lung cancer (LC) and COPD are much close to
each other (dissimilarity level of only 0.206 by cluster analysis).
Elevated levels of almost all the fatty acids, glucose and acids were
found in lung cancer patients, in comparison to the controls.
Generally, glycolysis increased in cancer but in this study high
level of glucose was found in lung cancer samples as compare to
controls. However, high level of glucose in lung cancer does not
show the decrease in glycolysis as lactic acid is also up-regulated in
lung cancer. From the pathway analysis, it was concluding that
glycolysis results in the breakdown of glucose, but several reactions
may be responsible for the increased levels of glucose in lung cancer
like gluconeogenesis, carbohydrate metabolism and lipogenesis to
provide the energy in the form of glucose. Up regulation of acidic
environment (decrease pH) and alterations of several lipid
metabolism favors the lung cancer growth. A promising finding is
the newly built model based on thirty two significantly metabolites
which accurately classifies lung cancer and controls on external

validation. Unfortunately, only 37% of the metabolites were charac-
terized and their pathways are correlated. Identification of unknown
metabolites with high resolution can increase human metabolome
and ultimately help in biomarker identification of lung cancer.
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