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Self-propelling motion is ubiquitous for soft active objects such as crawling cells, active filaments, and liquid
droplets moving on surfaces. Deformation and energy dissipation are required for self-propulsion of both
living and non-living matter. From the perspective of physics, searching for universal laws of self-propelled
motions in a dissipative environment is worthwhile, regardless of the objects’ details. In this article, we
propose a simple experimental system that demonstrates spontaneous migration of a droplet under uniform
mechanical agitation. As we vary control parameters, spontaneous symmetry breaking occurs sequentially,
and cascades of bifurcations of the motion arise. Equations describing deformable particles and
hydrodynamic simulations successfully describe all of the observed motions. This system should enable us to
improve our understanding of spontaneous motions of self-propelled objects.

F
rom single cells to individual animals, living organisms spontaneously migrate by self-propelling motions
such as swimming, crawling or walking. Since self-motile objects move without external force, symmetry-
breaking is indispensable for self-propelled motion1–5. During revival of biological cells after drag treatment,

bifurcation from a resting to a migrating state is accompanied by a change in shape2. To generate polarity and
motility of crawling cells, actin must localize at pseudopods and tails2,6,7. Migration and deformation of cells are
strongly connected through the actin network. By considering self-motile objects as nonlinear dynamical systems,
searching for a general relationship between deformation and migration becomes worthwhile. However, in
existing experimental systems, limited access to control parameters has hampered our understanding of the rich
dynamics of self-propulsion.

Regardless whether a system is living or non-living, the problems concerning how deformable materials swim
in a viscous fluid have attracted considerable attention for a long time8–15. A necessary condition for micro-
swimmers in viscous fluids is non-reciprocal dynamics, which implies asymmetry between the forward and
backward processes of deformation8. When the size of a swimmer exceeds O(mm), Stokes’ approximation is
weakly violated. To explore universal laws of self-propelled objects on this scale, we propose a non-living system
comprising a swimming droplet in a viscous fluid. We demonstrate that a water droplet can swim on an oil bath
using a surface wave through vertical vibration. As we vary the vibration frequency and viscosity of the oil,
spontaneous symmetry breaking occurs sequentially, and the droplet motion exhibits cascades of bifurcations.
Equations for deformable particles derived from a symmetry argument can be used to describe all of the observed
motions. The droplet motion can be easily reproduced by controlling the frequency, acceleration, and viscosity.
Thus, swimming droplets driven by surface waves provide a prototypical system for representing soft active
particles.

Results
Motion of droplet on viscous fluid. A water droplet is deposited and floats on a layer of highly viscous silicone oil
(1 cm deep) in an acrylic container (9 cm inner diameter). Figure 1 shows a schematic illustration of the
experimental setup. Because of the small difference in density between water and silicone oil (approximately
0.06 g/cm3) and the large surface tension, a water droplet forms a distorted hemisphere that almost sinks into the
silicone oil (Fig. 2(d)). A vertical sinusoidal vibration with frequency f is applied to form a spatially uniform and
time-symmetric agitation (the vertical position of container is z(t)5Asin (2p f t)). When the acceleration of
vibration C5A(2p f)2 exceeds a critical value, a resonance occurs at the droplet-air interface, and a standing wave
(Faraday wave) appears on the stationary circular droplet16,17. The Faraday wave always forms a parallel standing
wave (antinode is indicated by the red arrow in Fig. 2(d)), and the droplet is forced to elongate16,17. Since silicone
oil has much higher viscosity than the droplet, the Faraday wave only appears at the air-droplet interface for all of
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the parameters we examined. The elongated droplet undergoes
various motions depending on the parameters used:

Straight motion. The droplet undergoes translational motion. The
trajectory of the centroid is a straight line (Fig. 2(a)).

Rotational motion. The droplet undergoes translational motion.
The trajectory of the centroid is a circle (Fig. 2(b)). Both the long
axis and the direction of the velocity constantly rotate at the same
speed, and the droplet always migrates along the short axis17.

Spinning motion. The centroid of the droplet does not move, but the
long axis of the droplet rotates at a constant speed (Fig. 2(c)).

Squirming motion. When the silicone-oil bath is less viscous, the
droplet migrates along the long axis depending on f and C (Figs. 2(e)
and (f)). In this case, a traveling wave is generated at the water-oil-air
triple line. The traveling wave periodically propagates from the
‘‘head’’ to the ‘‘tail’’ of the droplet at nearly the same frequency as
the Faraday wave (the traveling wave is indicated by the red arrow in
Fig. 2(g); see also the Supplemental Information (SI)). The droplet
migrates in the direction opposite the traveling wave.

The Reynolds number (Re) of straight, rotational, and spinning
motion is approximately 0.1. The Re of squirming motion is approxi-
mately 10.

Swimming mechanism of droplets due to surface wave. We first
measured the time-averaged velocity field of the silicone-oil bath
around the droplet by particle tracking with tracers. For spinning,
rotational, and straight motion, four vortices always appear near the
silicone-oil-air interface (Figs. 3(a) and 3(b)). The silicone oil flows in
along the short axis and flows out along the long axis of the droplet.
Corresponding to the motion of the droplet, the symmetry of the
vortices is broken. The vortices around the stationary elongated
droplet have a symmetric shape. In contrast, for spinning mo-
tion, the two diagonal vortices rotate faster than the others. Thus,
rotational symmetry is broken (Fig. 3(a)). For straight motion, the
symmetry with respect to the long axis of the droplet is broken
(Fig. 3(b)). The flow field indicates that the droplet is a ‘‘puller’’18.
In both cases, the droplet moves toward the faster vortices. A spatio-
temporal plot of the oscillation of the droplet shape is shown in
Fig. 3(c). Red and blue colors indicate the largest amplitude of the
oscillation. Figure 3(c) shows that the amplitude of the oscillation is
largest along the long axis, and a standing surface wave is generated
at the triple line of the droplet by a Faraday wave. A similar result
is obtained for spinning and rotational motion. This oscillation in
shape gives rise to a corresponding oscillatory flow around the droplet.
It was reported that oscillatory flow around a solid body or a bubble
generates steady vortices19–21. If the vortices are asymmetrically shaped,
they cause directional motion of a solid body22. Since the low-Reynolds-
number approximation is weakly violated (Re is approximately 0.1),
we numerically simulated the two-dimensional (2D) Navier-Stokes’
equation by accounting for the oscillating boundary conditions ob-
served in the experiment. We then reproduced the steady vortices
around the droplet (see SI). Thus, for a standing surface wave, the
oscillatory flow generates steady vortices. By considering conservation
of momentum, the counteraction of the asymmetric vortices must be
the driving force of the droplet23.

Phase diagram and bifurcation of migratory motion. Here, we
show how the dynamics depends on f and C. First, we focus on the
number Na of antinodes of Faraday waves and show a phase diagram

Figure 1 | Schematic illustration of experimental setup (see Methods).

Figure 2 | Top view of typical motion induced by standing wave. (a–c, e, f) Arrows indicate the direction of motion. Time-lapse images of (a) straight

motion, (b) rotational motion, and (e, f) squirming motion. Time series of (c) spinning motion. (d) Lateral view of a droplet with spinning motion.

The horizontal axis is parallel to the long axis of the droplet. Arrows indicate the antinodes, and the number of antinodes Na 5 5. (g) Top-view image

of squirming motion captured by a high-speed camera. The red arrow indicates the peak of the traveling wave at the triple line. The droplet migrates

upward. (a) n 5 170 mm2/s, f 5 88 Hz, Vd 5 0.6 ml, C 5 75 m/s2. (b) n 5 400 mm2/s, f 5 100 Hz, Vd 5 0.3 ml, C 5 112 m/s2. (c) n 5 400 mm2/s,

f 5 80 Hz, Vd 5 0.6 ml, C 5 63 m/s2. (d) n 5 400 mm2/s, f 5 108 Hz, Vd 5 0.6 ml, C 5 84 m/s2. (e, f) n 5 37 mm2/s, f 5 120 Hz, Vd 5 0.3 ml,

(e) C 5 115 m/s2, (f) C 5 123 m/s2. (g) n 5 37 mm2/s, f 5 100 Hz, Vd 50.66 ml, C 579 m/s2.
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based on Na (Fig. 4 (a)). Above the black dashed line, a Faraday wave
appears on the circular droplet. Once the Faraday wave appears, it
remains even if acceleration is reduced below the dashed line.
Depending on the initial perturbation of the droplet, multiple Na

can coexist in the same parameter region. For example, at f 5 90 Hz
and C 5 80 m/s2 in Fig. 4(a), Na 5 2, Na 5 4, and Na 5 5 are stable for
small perturbation. Figure 4(b) shows a phase diagram of the motion
for Na 54. At high frequency and low acceleration, spinning motion is
observed. As the frequency is reduced, drift bifurcation occurs and the
spinning motion bifurcates to rotational motion. Zigzag and straight
motions are observed at low frequency and high acceleration. As Na

increases, the phase diagram shifts to a higher frequency and higher
acceleration. As the viscosity n decreases, irregular polygonal turning
and squirming motion become predominant.

Next, we analyze the bifurcation from spinning motion to rota-
tional motion with a particular focus on the slow dynamics. We
calculate the time-average of the velocity of the centroid V and the
magnitude of the elliptical deformation r2 as a function of frequency
(see Methods). The wave length l of the Faraday wave is a decreasing
function of frequency17,24. For an elongated droplet, r2 is approxi-
mated by Nal/(4R) 21 on the basis of a geometric requirement.
Therefore, as the frequency is reduced, l and r2 increase, and the
droplet is strongly deformed (Fig. 4(c), inset). As shown in Fig. 4(c), a
critical frequency exists below which drift instability appears. When
drift bifurcation occurs, the symmetry of the Faraday wave is simul-
taneously broken. For the stationary and spinning droplet, the peak
positions of the antinode are aligned in a straight line (Fig. 5(a), red
crosses and Fig. 5(c), red arrow). Once drift bifurcation occurs, the
antinodes near the centroid of the droplet move forward (Fig. 5(d),
red arrow) and a curve that connects the peak positions of the anti-
node gets a forward curvature (Fig. 5(b), red crosses).

We now summarize the process of drift bifurcation. Above the
critical frequency, the wave length and elongation of the droplet
merely increases as the vibration frequency deceases. Below the crit-

ical frequency, the peak positions of the antinode starts to move
forward and the droplet begins to migrate (Fig. 5(d), red arrow). A
similar bifurcation process occurs when we increase the acceleration
with fixed vibration frequency. For as long as we observed, drift
bifurcation and the curved antinode position simultaneously occur
as the elongation of the droplet increases. Even if we restrict droplet
migration by fixing it to the bottom of the container, aligned anti-
nodes become unstable and antinode positions start to have a for-
ward curvature as the elongation becomes large. Thus, regardless of
whether the droplet migrates, symmetry breaking of the Faraday
wave occurs. The radiation pressure of the Faraday wave causes
the deformation of the droplet16,17. As mentioned before, oscillatory
flow and consequent steady streaming are due to the Faraday wave.
Therefore, spontaneous symmetry breaking of the Faraday wave
should induce an asymmetric shape of the droplet and steady vor-
tices, followed by migration. This suggests that symmetry breaking of
the shape causes migration, and not the other way around.

Analytical model of droplet. We propose a phenomenological model
of a droplet based on a model of a self-propelled particle with coupling
of the velocity and shape tensor25. Because the migration of the droplet is
restricted to 2D, we use equations based on a 2D model. The time-scale
of the motion of the droplet is approximately10s, which is thousands of
times longer than a cycle of a Faraday wave (approximately 0.01s). For a
deformable migrating particle, the dynamics equations for slow variables
V and rn (n 5 2, 3, 4,…) can be derived by considering the spatial
symmetry25–27. A generic form of the equations is shown in the SI. Here,
we only consider small deformation and neglect higher modes rn (n .

2). To describe drift bifurcation, the minimum set of evolution equations
of V and elliptic deformation r2 is

_V~{kV Vza1Vr2 cos 2y{mV V3, ð1Þ

_r2~k2r2zb1V2 cos 2y{m2r3
2, ð2Þ

Figure 3 | (a, b) Steady flow around droplet. The arrows indicate the flow direction and the color indicates the speed. Crosses indicate peak positions

of the antinode. The coordinate axes are fixed on the droplet. (a) Spinning motion. The droplet spins clockwise. (b) Straight motion. The droplet migrates

upward. (c) Color map image of the surface wave at the triple line. The color indicates the magnitude of the oscillation of the shape, dr 5 r(h, t) 2 Ær(h, t)æt

(see Methods). For a straight motion, a standing surface wave is observed. (a–c) n 5 400 mm2/s, Vd 5 0.6 ml, f 5 80 Hz. (a) C 5 67 m/s2.

(b, c) C 5 72 m/s2.
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where kv, k2, a1, b1, mv, and m2 are constant coefficients, and y 5 w2 2

wv (see Methods). Since we consider steady elongated deformation, k2 .

0. In addition, we assume that mv and m2 are also positive because no
hysteresis occurs around the drift bifurcation. For small elongation r2, V
5 0 is a stable solution. As the elongation r2 increases, the solution V 5

0 becomes unstable and a supercritical pitchfork bifurcation occurs. V
has the stable solution

V2~{
kV

mV
z

a1

mV
r2 cos 2y ð3Þ

The experimental data can be fit by Eq. (3) with fitting parameters c 5

a1/mv and r2c 5 2kv/a1, where c is the slope and r2c is the intercept
(Fig. 4(d)). Since we vary the frequency f along each curve, this
expression must be independent of f. By fitting the curves in Fig. 4(d),
we obtain c , 0 and r2c . 0. Consequently, a1 ,0 and kv . 0 have
to be satisfied in the model. kv . 0 indicates that the droplet does
not undergo self-propulsion. Instead, because of the coupling term,
migration is caused by strong elongation, as expected from the above
discussion28.

Complex motion of droplet both in the experiment and simulation.
In addition to simple motions such as spinning, rotating and straight
motions, more complex dynamics are also observed, such as zigzag
motion, reciprocal motion, or irregular polygonal turning.

Zigzag motion. The droplet undergoes translational motion, but both
the direction of the long axis and the velocity oscillate simultaneously
(Fig. 6(a)). Depending on the frequency and acceleration, the ampli-
tude of the oscillation varies continuously (typically, 7u to 70u).
Consequently, the trajectory of the centroid follows a zigzag curve
(Fig. 6(d)). Zigzag motion can be found with a high acceleration, a
low frequency, and a highly viscous silicone-oil bath (Fig. 4(b)).

Figure 5 | (a, b) Top view of droplets around drift bifurcation. Red

crosses indicate the position of the antinode. (c, d) Lateral view of a

droplet around drift bifurcation. The horizontal axis is parallel to the short

axis of the droplet. Red arrow indicates the peak position of the antinode.

White dashed line indicates the center of the droplet. (a) Droplet

before drift bifurcation. Positions of the antinodes align (red crosses).

The droplet spins very slowly and is almost stationary. f 5 111 Hz.

(b) Droplet after drift bifurcation. The antinodes near the centroid of the

droplet move forward (red crosses). The droplet migrates upward.

f 5 91 Hz. (c) Droplet before drift bifurcation. f 5 107 Hz. (d) Droplet

after drift bifurcation. The antinode moves forward (red arrow). The

droplet migrates leftward. f 5 91 Hz. (a–d) n 5 400 mm2/s, Vd 5 0.6 ml,

Na 5 5, C 5 85 m/s2.

Figure 4 | (a) Phase diagram of Faraday wave on droplet. Solid and dashed curves represent lower and higher limits for Faraday waves with a given

Na, respectively (color indicates Na). Above (below) the dashed (solid) curve, a Faraday wave becomes unstable. Between the solid and dashed lines, a

Faraday wave is stable. Green: Na 5 2. Red: Na 5 4. Blue: Na 5 5. Magenta: Na 5 6. Above the black dashed line, the circular shape (no Faraday resonance)

is unstable. In the perturbed region, a steady Faraday wave is perturbed. (b) Phase diagram of motion of droplet for Na 5 4. Red curves are identical to the

boundaries of Na 5 4 (Fig. 3(a)). Blue: spinning motion. Green: rotational motion. Magenta: straight motion. Purple: zigzag motion (see Fig. 4(a)).

(c) Velocity of the droplet as a function of frequency. (Inset) r2 as a function of frequency. (d) Velocity squared as a function of r2cos 2y. As measured, the

fitting parameter r2c is always positive. We eliminated the data points for zigzag motion. (a–d) n 5 400 mm2/s, Vd 5 0.6 ml. (c, d) Blue: Na 5 4,

C 5 70 m/s2. Red: Na 5 5, C 5 85 m/s2. Green: Na 5 5, C 5 95 m/s2.
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SCIENTIFIC REPORTS | 5 : 8546 | DOI: 10.1038/srep08546 4



Reciprocal motion. The droplet moves periodically back and forth.
Asymmetric deformation with respect to the long axis also oscillates
(Fig. 6(b)).

Irregular polygonal turning. The short and long axes periodically
change their directions by certain angles (60u or 90u; see Fig. 6 (c)).
The droplet temporarily has a circular shape when the axes change
directions. The droplet migrates in the direction of the short axis.
Thus, the trajectory of the centroid is a polygonal line (Fig. 6(d)).
Irregular polygonal turning is observed mainly in low-viscosity
silicone oils.

We find that all motions observed in the experiments can be
reproduced by equations based on the phenomenological model of
a deformable particle by considering a fourth-order tensor27. The
equations are derived only from the symmetry argument and have
the general form up to the third order nonlinear term25–28. The model
equations and phase diagram obtained from the numerical calcula-
tion are shown in the Supplementary Information. Spatio-temporal
plots of zigzag motion and irregular polygonal turning are shown in
Figs. 7(a)–(f). The color in Figs. 7(a)–(f) indicates the shape r(h, t) of
the droplet, and red and blue colors represent the long and short axes,
respectively. For zigzag motion (Fig. 6(a)), the numerical simulation
successfully reproduces oscillations in the direction of the long axis
(Figs. 7(a) and (d)) and the zigzag trajectory of the centroid (see SI).
The numerical simulation also produces irregular polygonal turning,
where the short and long axes periodically change directions by
certain angles (Figs. 7(b), (c), (e), and (f)). The trajectory of the
centroid follows a polygonal line (see SI). In the experiment, irregular
polygonal turning appears at low viscosity. In the simulation, irregu-

Figure 6 | Top view of complex motions. Time-lapse images of (a) zigzag

motion. Time series of (b) reciprocating motion, and (c) irregular

polygonal turning. (d) Trajectory of centroid for zigzag motion and

irregular polygonal turning. For irregular polygonal turning, two

trajectories (turning angles of 60u and 90u) are shown. (a) n 5 400 mm2/s, f

5 93 Hz, Vd 5 0.3 ml, C 5 111 m/s2. (b) n 5 37 mm2/s, f 5 90 Hz, Vd 5

0.3 ml, C 574 m/s2. (c) n 5 37 mm2/s, f 5 120 Hz, Vd 5 0.3 ml, C 5

95 m/s2.

Figure 7 | Spatio-temporal plots of r(h, t) normalized by the radius. In this figure, we show the slow dynamics of the shape. Red and blue colors represent

the long and short axes, respectively. (a–c) Experimental results. (d–f) Simulation results. (a, d) Zigzag motion. (b, e) Irregular polygonal turning.

Turning angle is 60u. (c, f) Irregular polygonal turning with a turning angle of 90u. (a) n 5 400 mm/s2, f 5 93 Hz, Vd 5 0.3 ml, C 5 111 m/s2.

(b) n 5 37 mm/s2, f 5 120 Hz, Vd 5 0.3 ml, C 5 95 m/s2. (c) n 5 37 mm/s2, f 5 90 Hz, Vd 5 0.6 ml, C 5 82 m/s2, and the temperature is 17.2uC.

(d–f) The parameter values are defined in the SI. (d) The parameter values are kv 5 0.3, a1 5 22.0, a3 5 8.0, mv 5 1.0, k2 5 1.5, b1 5 1.0, b3 5 28.0,

b4 5 28.0, m2 5 1.0, k4 5 2.0, l1 5 1.75, l2 5 20.0625, the other values are zero. (e) kv 5 0.14, a1 5 21.0, a2 5 0.188, mv 5 4.0, k2 5 0.12,

b1 5 0.04, b2 5 26.0, m2 5 1.0, k3 5 0.05, n1 5 0.3, m3 5 4.0, the other values are zero. (f) kv 5 0.11, a1 5 22.0, a3 5 4.0, mv 5 1.0, k2 5 0.4,

b1 5 1.0, b3 5 24.0, b4 5 24.0, m2 5 1.0, k4 5 0.3, l1 5 0.25, l2 5 20.125, the other values are zero.
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lar polygonal turning appears at a small kv value of approximately
0.05. Since the term with kv reflects the viscous drag force, this
simulation result is consistent with the experimental observation.
For a larger kv value of approximately 0.5, the dynamics changes
from spinning motion to rotational motion to zigzag motion as k2

increases. In the experiment, as the elongation of the droplet
increases, the same sequence of bifurcations occurs at high viscosity.
Since the magnitude of the elongation is an increasing function of k2,
the proposed model’s equations qualitatively reproduce the cascade
of mode bifurcations.

Discussion
In this work, we observe a swimming droplet driven by Faraday
waves and find a cascade in the bifurcations of the motion. The
experimental observations indicate that symmetry breaking of the
Faraday wave is crucial for the droplet migration. Thus, an important
problem that remains is to elucidate the mechanism of the spontan-
eous symmetry breaking of the Faraday wave with an elongated
flexible boundary. In our phenomenological model, we assume that
only the elongation mode is ‘‘active’’ and other modes, including the
drift mode, are ‘‘passive’’. Thus, no distinguishing motion arises at
small elongation. It is non-trivial that strong elongation leads to a
cascade in the bifurcations of the motion, as experimentally observed.
However, because the model is derived only from the spatial sym-
metry, relationships between coefficients in the model and physical
parameters are uncertain. To reveal the physical meaning of the
coefficients, a calculation based on hydrodynamics is essential29.
Resolution of these questions should lead to deeper understanding
of the important process of migration of soft active particles.

The system of a droplet with a Faraday wave is very simple, but the
droplet shows rich dynamics that resembles those of living organ-
isms30 and those predicted by theoretical works28. This should enable
us to understand the spontaneous motion of living organisms. The
collective behavior of living organisms31 and active colloids32–34 has
recently been extensively investigated in physics. The dynamics of
these active objects is considered a fundamental subject of statistical
physics far from equilibrium. The motion of swimming droplets is
easy to control and hence our system can be used; however, extend-
ing our system to collective behavior would be challenging. Water
droplets with surface waves are promising candidates for a prototyp-
ical system that can be used to investigate the full landscape of the
dynamics of soft active particles.

Methods
Experimental setup. A layer of silicone oil (1-cm deep) in an acrylic container (9-cm-
inner diameter) was subjected to vertical sinusoidal vibration [vertical position
z(t)5Asin (2p f t)] using an electromagnetic vibration system. A flat LED panel was
placed between the acrylic container and the vibrator, and the droplet was illuminated
from below. The control parameters of the system were vibration frequency f,
vibration acceleration C 5 A (2p f)2, viscosity n of the silicone-oil bath, and volume Vd

of the droplet. The surface tension between the dyed water and air was 69.6 mN/m,
and the surface tension between the dyed water and silicone oil was approximately
50 mN/m. The surface tension between silicone oil and air was 21 mN/m. The
frequency was varied from 60 to 140 Hz, and the peak acceleration was varied up to
150 m/s2. The densities and kinematic viscosities of silicone oil are 1.065 g/cm3 (n 5

37 mm/s2), 1.06 g/cm3 (n 5 170 mm/s2), and 1.07 g/cm3 (n 5 400 mm/s2). Unless
otherwise stated, the temperature was between 26.0uC – 27.0uC.

Analytical method. Because the motion of the droplets is restricted to 2D, we
analyzed the top view of the droplets. From a binarized top-view image, the centroid
x(t) of the droplet was measured. The distance from the centroid to the edge of the
droplet was then measured as r(h, t), where the angle h is measured with respect to the
x axis. The quantity r(h, t) can be represented as a Fourier series:

r h,tð Þ~R 1z
X?
n~1

rn tð Þ cos n h{wn tð Þð Þ
 !

: ð4Þ

The normalized amplitude rn determines the shape of the droplet. Elliptical
deformation is represented by the mode n52, and w2 is the angle between the long
axis of the ellipsoid and the x axis. We also measured the speed of the centroid V and
the direction of motion wv measured from the x axis.

Here, we define the magnitude of the oscillation of the droplet shape,

dr~r h,tð Þ{ r h,tð Þh it ð5Þ

Using dr, we calculate the Re as

Re~ dr2
� �

t,h$f =n, ð6Þ

where vf is the angular frequency of the oscillation.
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