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Activated sludge models (ASMs) have been widely used for process design, operation and optimization in
wastewater treatment plants. However, it is still a challenge to achieve an efficient calibration for reliable
application by using the conventional approaches. Hereby, we propose a novel calibration protocol, i.e.
Numerical Optimal Approaching Procedure (NOAP), for the systematic calibration of ASMs. The NOAP
consists of three key steps in an iterative scheme flow: i) global factors sensitivity analysis for factors fixing;
ii) pseudo-global parameter correlation analysis for non-identifiable factors detection; and iii) formation of
a parameter subset through an estimation by using genetic algorithm. The validity and applicability are
confirmed using experimental data obtained from two independent wastewater treatment systems,
including a sequencing batch reactor and a continuous stirred-tank reactor. The results indicate that the
NOAP can effectively determine the optimal parameter subset and successfully perform model calibration
and validation for these two different systems. The proposed NOAP is expected to use for automatic
calibration of ASMs and be applied potentially to other ordinary differential equations models.

A
ctivated sludge is the most widely used biological technology for treating domestic and industrial waste-
water. After its development with 100 years of history, many novel and modified processes have been
developed to meet the more and more stringent discharge and emission limits. However, most of oper-

ating systems are suffering some drawbacks, such as substantial energy consumption, excessive greenhouse gas
emission, and labour-intensive industry. As a powerful tool, Activated Sludge Models (ASMs) have proven to be
very useful in process design, operation and optimization1,2. To date, ASMs for the simulation of biological
nutrients removal processes have been updated from the first version of ASM1 to more complicated extensions,
including ASM2, ASM2d, and ASM33, and further to the extended ASM3s4–10 in order to satisfy various
requirements.

However, ASMs are large and overparameterized models in terms of having many stoichiometric and kinetic
parameters. Some of the model parameters as well as the model structure have to be adjusted, since microbial
community structure and dominant species can vary in different wastewater treatment systems with different
influent characteristics or operation schemes6,7,11–14. In addition, the collected data from full-scale plants as well as
pilot- or lab- scale reactors can hardly provide reliable estimations of all the parameters simultaneously due to the
well-known problem of poorly identifiable parameters15–20. Thus, the approach to properly select the subsets of
parameters for model calibration plays a crucial role on simulation results and model applications21–25.

Until now, substantial studies have been conducted to develop effective model calibration approaches, which
can be distinguished into two major categories: the conventional experience-based approaches and the systems
analysis approaches22. The experience-based approaches that were proposed by WERF, BIOMATH, STOWA,
CALAGUA, HSG etc., import programmatic flow based on experts’ knowledge and experience22,26,27. However,
these calibration protocols require specific experimental designs and data processing methods to decouple the
ASMs to be small and simple sub ones. The data for model calibration and validation may be from different
feeding and operation conditions, and some of the parameters are fixed in order to obtain accurate estimation of
the concerning ones. This approach might also ignore shifts in microbial community, eventually resulting in error
estimations. Recently, the Good Modeling Practice (GMP) task group from IWA have emphasized that a
standardized modeling procedure is needed to distinguish parameter subset that is identifiable with the available
data for experience-based approaches28.

Systematical analysis approaches have attracted much more attention15,18,29–32, which mainly consist of para-
meter identification, sensitivity analysis, and error propagation32. Conventional parameter subset identifiability
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analyzing methods are mainly based on the local sensitivity ana-
lysis21,22. Recently, global sensitivity analysis (GSA) becomes a prom-
ising method for parameter identifiability analysis33–35, such as the
Morris screening method36, Fourier Amplitude Sensitivity Testing
(FAST), Extended-FAST, the Sobol’s method37–41, and standardized
regression coefficient (SRC) method33. Structural identification
through Taylor series expansion16, generating series42, similarity
transformation approach43 and differential algebra approach17,44,
have been proposed in order to screen out the identifiable combina-
tions. Based on the symbolic algebra system, structural identification
has been applied to ASM-type simple sub-models successfully16,17.
However, structural identification based on symbolic algebra system
could be time consuming and unreliable due to the large number of
parameters in ASMs. Therefore, it is highly desired to develop a
numerical integrated approach by including both proper global para-
meter sensitivity analysis method and correlation analysis method
for the identifiability of the parameters of the ASMs.

The main objective of this study is to develop a novel systematical
approach, namely Numerical Optimal Approaching Procedure
(NOAP), for efficient calibration and validation of ASMs, taking
an extended ASM3 as example. The NOAP integrates a new screen-
ing global parameter sensitivity analysis method (Derivative based
Global Sensitivity Measures, DGSM) and a numerical correlation
analysis method (based on the pseudo-global covariance matrix),
with Genetic Algorithm (GA) as the global optimization (GO)
method for parameter estimation. The validity and applicability of
the approach for efficient model calibration are tested by independ-
ent experimental data from a Sequential Batch Reactor (SBR) acti-
vated sludge system45 and a Continuous Stirred-Tank Reactor
(CSTR) activated sludge system46.

Results
Development of the NOAP approach. The iterative algorithm of
NOAP approach, as shown in the main scheme flow in Fig. 1, mainly
consists of four steps in succession.

Step I: Model selection and data preparation. The user should
firstly choose an appropriate model and extend it to satisfy the spe-
cific requirement from the current available models in previous stud-
ies1,47. Data collected from lab-, pilot-, and full-scale reactors are
often used, but the amount and quality need reconciliation for the
basic request of model calibration. The data collection and reconcili-
ation can refer to the procedures suggested by Rieger et al.28.

Step II: GSA for factors fixing. Global parameter sensitivity ana-
lysis would be performed only if (i) the initial values of the state
variables are set in a reasonable range based on data analysis and
ii) parameter boundaries (lowest and highest) for global sensitivity
analysis are proper. A fitting goodness criterion (such as A 5 85%)
between data and simulation results is used to judge parameter subset
remained after factor fixing from DGSM analysis result. If the result
is satisfied (R2 $ A), the parameters with lower sensitivity will be
removed with trial, then repeating estimation trial until a proper
small enough parameter subset is selected out. Otherwise, more
non-sensitive ones should be added into the target subset one by
one with the iterative parameter estimation trial. If parameters are
all estimated simultaneously without a satisfied result, boundaries of
the parameters or model structure might be improper and need
further modifications.

Step III: For the scale reduced parameter subset, a pseudo-global
correlation matrix is calculated. If the correlation coefficient of any
parameter pair is high enough (.0.95 as example), then such para-
meter combinations are located to be highly correlated parameters
due to the statistical average effect of the numerical algorithm.
Afterwards, less interested members and correlation crossing ones
(high correlated with not only just one parameter) can be fixed.

Step IV: The final parameter estimation is performed to check the
efficiency of the procedure. Another fitting goodness criterion (such

as B 5 95%) is set to roughly test the quality of the observables’
collected data.

Preliminary model calibration based on conventional approach.
According to Kaelin et al.6, the parameter subset [mAOB, mNOB, gH,NO3

,
gH,NO2

, gH,end:NO3
, gH,end:NO2

] is firstly adopted and used to perform
preliminary model calibration. Through this step, it is expected to:
(1) determine whether the experimental data from the target system
could be simulated by the proposed model; (2) suggest proper initial
values of the state variables; and (3) verify directly whether the
reported parameter subset from literature is efficient or not.

Scenario 1: SBR system. As shown in Fig. 2(a), the simulated results
(Sim-Re series) have a good fitness with the experimental data in terms
of the profiles of COD, nitrite and nitrate concentrations. However, an
unacceptable accumulation of ammonium during anoxic period is
observed in the model simulations, which might be due to improper
parameter values. Moreover, the validation (Sim-Re series) illustrated
in Fig. 2(b) further verifies that the simulated ammonium results are
much higher than the experimental data (R2(SNH Sim-Re) 5 0.5011).

Regarding the SBR system for nitrogen removal, the parameter
subset selected from literature can partially calibrate the model to
describe most of the experimental data. However, the extra efforts are
needed to select other parameter subsets due to the failure of model
validation.

Scenario 2: CSTR system. As shown in Fig. 3(a), the simulated (Sim-
Re series) COD and ammonium concentrations in effluent fit well

Figure 1 | Scheme flow of the proposed NOAP (PE, parameter
estimation; GO, global optimization).
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with the experimental data. However, the simulated nitrite concen-
trations are slightly higher than the experimental data (R2(Eff. SNO2

Sim-Re) 5 20.3617), and the simulated nitrate concentrations are
distinctly lower than the experimental data after the 30th day (R2(Eff.
SNO3 Sim-Re) 5 21.0290). The validation results (Sim-Re series) in
Fig. 3(b) suggest that all the measured nitrogen species concentra-
tions (including ammonium, nitrite and nitrate) deviate distinctly
from the experiment data (R2(Eff. SNH Sim-Re) 5 23.2151; R2(Eff.
SNO2 Sim-Re) 5 216.4224; R2(Eff. SNO3 Sim-Re) 5 23.3828). This
might be attributed to the improper parameter values of the dissolved
oxygen (DO)-related kinetic coefficients, such as KH, O2, inh, KAOB, O2,

and KNOB, O2. Hence, the model calibration is failed when applying
the literature reported parameter subset6 into the CSTR system.

The preliminary calibration results from SBR and CSTR systems
indicate that the parameter sensitivity vary across different activated
sludge systems in the application of same model. Moreover, the
parameter subset reported in literature could lead to poor model
calibration results if fixing the remained parameters (e.g., the DO
related parameters in Scenario 2). Thus, reliable parameter sensitiv-
ity analysis should be imported for model application in different
activated sludge systems. It should be noted that the parameter subset
reported in literature could be still useful for qualitatively model

Figure 2 | Calibration and validation results with the parameter subset suggested by the reference 6 and the proposed procedure NOAP for target SBR
system. (A, Calibration results with the parameter subset recommended by the reference (Sim-Re)6 and the NOAP procedure (Sim-Pr); B, Validation for

the calibration results as Fig. 2(a) presented, legends are the same as Fig. 2(a); C, Validation adjusted for the calibration with the parameter subset

recommended by the reference6 and the proposed procedure NOAP with the suggestions of the global parameter sensitivity and correlation analysis

results (Here gH,NO2
is added to the calibration subset), legends are the same as Fig. 2(a).)
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predictions, although it may not serve as a precise and quantitative
predictor to match all experiment data.

Parameter sensitivity and correlation analysis. According to the
preliminary calibration and validation, it can be concluded that
the extended ASM3 model could predict the data only if a proper
parameter subset is selected. However, the parameter subset reported
in literature6 cannot achieve satisfied calibration or validation results
for both SBR and CSTR systems. Thus, numeric global parameter
sensitivity and correlation analysis are performed to determine a
more proper parameter subset.

In order to assess the identification of all the related parameters
listed in Table S3 (SI), parameter sensitivity and correlation analysis

are conducted for both SBR and CSTR systems. The proposed iter-
ative trials (Fig. 1) are implemented in order to capture the best-fit
parameter values. The results are shown in Fig. 4 and Fig. 5, respect-
ively. It can be found that both sensitivity analysis and correlation
analysis results are quite different between the SBR system and CSTR
system. Furthermore, parameters indexed from 1 to 6 in Table S4 (SI)
exhibit a similar low sensitivity for both SBR and CSTR systems,
suggesting the composition coefficients could be fixed as default
values due to their low sensitivity. However, most of the composition
coefficients strongly depend on the influent wastewater characteris-
tics. Therefore, it is recommended that the N content of biomass can
be fixed as default values from references, while others (e.g. COD
transformation fractions) need to be obtained experimentally.

Figure 3 | Calibration and validation with the parameter subset recommended by the reference6 and the proposed procedure NOAP for target CSTR

system (A, Calibration results with the parameter subset suggested by the reference6 and the NOAP procedure (Sim-Pr); B, Validation for the calibration

results as Fig. 3(a) presented.)
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For the SBR system, parameters includingYH,NO2 , YSTO,O2 , YSTO,NO3 ,
YSTO,NO2 , YAOB, kSTO, mAOB, mNOB, gH,NO2

and KAOB,O2 show high sens-
itivity, with their normalized relative influences reach 0.01 or even
higher (Fig. 4(a)). Meanwhile, according to Fig. 5(a), the highly cor-
related parameter pairs are YH,NO2 vs. YSTO,NO2 (R2 5 0.98), YAOB vs.
mNOB (R2 5 0.99), YAOB vs. KAOB,O2 (R2 5 0.99), and mAOB vs. KAOB,O2

(R2 5 0.99). In addition, the sensitivity of YSTO,NO2 is much higher than
YH,NO2 and YAOB, and KAOB,O2 is highly correlated with other para-
meters, thus, YH,NO2 , YAOB and KAOB,O2 should be eliminated from the
parameter subset. Finally, a parameter subset [YSTO,O2 , YSTO,NO3 ,
YSTO,NO2 , kSTO, mAOB, mNOB, gH,NO2

] has been selected for the SBR
system. Similarly, the parameter subset selected for CSTR system has
been determined as [YSTO,NO3 , YSTO,NO2 , gH,NO3

, gH,NO2
, KH,O2:inh,

KH,NO3, KAOB,O2 , KNOB,O2 ]. The corresponding calibration and valid-
ation achieve satisfied results as shown in Fig. 2(b) and Fig. 3(b).

Optimal parameter subsets of SBR and CSTR systems for the
calibration of the extended ASM3 are highly different. In the SBR
system, three processes dominate the biological activities, which are
storage of SS by heterotrophic organisms, growth of autotrophic
organisms and denitrification via nitrite as the electron acceptor.
These results are consistent with the experimental observations in
the target SBR system, in which simultaneous nitrification and denit-
rification (SND) was observed and the nitrogen loss due to SND
under aerobic condition was about 10 , 20 mg/L45. In contrast,
for the CSTR system, the dominated biological activities include
storage of SS by heterotrophic organisms, denitrification and inhibi-
tion of DO on heterotrophic denitrification and autotrophic growth.
Hence, different optimal parameter subsets of SBR and CSTR systems
may be mainly attributed to the different operation conditions, which
lead to different dominant biological activities. From the modeling

Figure 4 | Global parameter sensitivity analysis results. (A, Parameter sensitivity analysis for the SBR system (parameter 8, 9 and 10 reached 0.20, 0.13

and 0.46, respectively; B, Parameter sensitivity analysis results for the CSTR system; The indexes and their corresponding parameters are listed as the

follows: 1- iN,SS, 2- iN,XI, 3- iN,BM, 4- fXI, 5-YH,O2 , 6-YH,NO3 , 7-YH,NO2 , 8-YSTO,O2 , 9-YSTO,NO3 , 10-YSTO,NO2 , 11-YAOB, 12-YNOB, 13- kH, 14- kSTO, 15-mH, 16-

mAOB, 17-mNOB, 18-bH,O2 , 19-bSTO,O2 , 20-bAOB, 21-bNOB, 22-gH,NO3
, 23-gH,NO2

, 24-gH,end:NO3
, 25-gH,end:NO2

, 26-gN,end, 27- KX, 28-KH,O2 , 29-KH,O2 :inh, 30-

KH,SS, 31-KH,NH4 , 32-KH,NO3 , 33-KH,NO2 , 34-KH,ALK, 35-KH,STO, 36-KAOB,O2 , 37-KNOB,O2 , 38-KAOB,NH4 , 39-KNOB,NO2 , 40-KN,ALK. The meanings of each

parameter can be found in Table S4, SI).
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Figure 5 | Global parameter correlation analysis results (color of the off-diagonal elements represents related parameters’ correlation, between -1 and
1) (A, Parameter correlation analysis result matrix for the SBR system; B, Parameter correlation analysis result matrix for the CSTR system. The

indexes and their corresponding parameters are the same with Fig. 4.)
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perspective, different initial values of the state variables, inputs like
DO, influent COD and ammonium and the parameter boundaries
would lead to different optimal parameter subsets.

Parameter estimation and model validation based on the NOAP
approach. In order to compare with the results obtained through the
experience approach (i.e., preliminary calibration), the parameter
subsets for SBR and CSTR systems determined by NOAP are
further utilized for calibration and validation in this section. All
the parameter estimation results can be found in Table 1.

Scenario 1: SBR system. As illustrated in Fig. 2(a), the subset of
parameters determined by the NOAP can efficiently calibrate the
extended ASM3 through the GO algorithm (see Sim-Pr series).
The results indicate that a satisfied calibration could be obtained
by different parameter subsets under the condition of limited data
availability. Compared to the results of the traditional experience-
based approach’s calibration results (Fig. 2(a) Sim-Re series), the
accumulation of ammonium during anoxic period in the NOAP
calibration (Fig. 2(a) Sim-Pr series) is less, demonstrating a better
fitting ability of the proposed NOAP approach. Furthermore, the
nitrate reduction rate becomes slower when the biodegradable
COD concentration is insufficient for denitrification. The simulated
nitrate profile deviate slightly from the trend of the experimental
nitrate concentrations, which indicates the parameter subset deter-
mined by the NOAP is more sensitive than that suggested by the
traditional experience-based approach.

Although the calibration is successfully achieved, the initial valid-
ation (Fig. 2(b) Sim-Pr series) is still failed (R2(SNH Sim-Pr) 5

0.0997), similar with the validation by the experience-based para-
meter subset (Fig. 2(b) Sim-Re series). However, the proposed NOAP
provides possible solutions to improve the simulation performance.
After the iterative parameter subset selection procedure by NOAP,
the parameter KH,O2:inh is further added into the parameter subset for
re-calibration of the model. As shown in Fig. 2 (c), the performance
of re-calibration for both parameter subsets (suggested by the tra-
ditional experience-based approach and the NOAP, respectively) are
improved after adding the parameter KH,O2:inh in the parameter sub-
set. In addition, the parameter subset [YSTO,O2 , YSTO,NO3 , YSTO,NO2 ,
kSTO, mAOB, mNOB, KH,O2:inh, gH,NO2

] determined by the NOAP can
reach a better fitting goodness, as the simulated ammonium concen-
trations match better with the original data during the anoxic period
(Fig. 2 (c)). Thus, the proposed NOAP demonstrates its ability to
provide additional information for improving model calibration.

Scenario 2: CSTR system. As present as Fig. 3, the calibration results
(see Sim-Pr series) with parameter subset determined by the NOAP
procedure achieve a much better fitting goodness with the experimental
data (as shown in Fig. 3(a)). The validation of the calibrated parameters

(Fig. 3(b)) also shows a good fitting except the period from day 99
to day 101, in which a lower ammonium and higher nitrite con-
centrations are predicted. The reason for such phenomena might
result from the use of DO as an input for simulation and the DO
concentrations during the period are higher than the real concentra-
tions. It can be concluded that parameter subset [YSTO,NO3 , YSTO,NO2 ,
gH,NO3

, gH,NO2
, KH,O2:inh, KH,NO3, KAOB,O2 , KNOB,O2 ] selected by the

proposed NOAP could achieve a better fitting, with the same GO
algorithm.

Discussion
In this work, a novel NOAP approach for the efficient calibration of
activated sludge models with limited available data has been pro-
posed. The proposed NOAP integrates a new numerical global para-
meter sensitivity analysis method (DGSM) for factor fixing and a
numerical pseudo-global parameter correlation analysis method for
non-identifiable parameter detection to determine the optimal para-
meter subset for model calibration. The validity and applicability of
the approach for efficient model calibration is confirmed by two
different activated sludge systems (SBR and CSTR systems). The
model calibration results suggested that the optimal sensitive para-
meter subsets of the SBR and CSTR system are different despite with
the same extended ASM3 model to calibrate. Even with the same
biomass collected from a municipal WWTP, two SBR reactors finally
result in different optimal parameter subsets due to different opera-
tional conditions. The results indicate that the parameter subsets
determined by NOAP can tail with the state variation of the system.
This outstands from the experience-based procedures in calibrating
dynamic systems as activated sludge systems whose parameters and
structure can vary gradually, which would facilitate modeling auto-
mation a lot to support more optimization applications of WWTP.

The optimal parameter subset is different and specific for various
systems, because of differences in environmental conditions, influent
characteristics, operation modes and biomass population. As a black-
box method, conventional experience-based model calibration proce-
dures construct a mapping relation between data and model parameter
subset, in which mapping routines are based on experts’ empirical
knowledge. However, uncertainty would be inevitable due to the
arbitrary subset selection. For example, these risks may be distinctly
enlarged when modeling the dynamic SBR scenario. An efficient
calibration procedure is not only simple to fit the trend of historical
data by manually selecting a parameter subset, but should be com-
petent for optimal parameter subset determination, with the aids of
efficient parameter estimation algorithms. The proposed NOAP in
this study could be a promising alternative to fulfill the described
demands. Since the global sensitivity analysis possesses the ability
to evaluate uncertainty impact of the concerning factors on the model
outputs scientifically. In fact, through factors fixing, parameter

Table 1 | Parameter estimation results of each model calibrations after global optimization using Genetic Algorithm

Subset suggested by reference Subset selected by NOAP

Parameter

Value First calibration of SBR scenario Re-calibration of SBR for improvement CSTR scenario

SBR scenario CSTR scenario Parameter Value Parameter Value Parameter CSTR scenario

mAOB 0.78 d21 0.38 d21 YSTO,O2 0.53 g COD/g COD YSTO,O2 0.53 g COD/g COD YSTO,NO3 0.50 g COD/g COD
mNOB 0.73 d21 0.34 d21 YSTO,NO3 0.44 g COD/g COD YSTO,NO3 0.44 g COD/g COD YSTO,NO2 0.36 g COD/g COD
gH,NO3

0.11 0.08 YSTO,NO2 0.24 g COD/g COD YSTO,NO2 0.24 g COD/g COD gH,NO3
0.42

gH,NO2
0.99 0.94 kSTO 4.37 d21 kSTO 4.37 d21 gH,NO2

0.52
gH,end:NO3

0.86 0.05 mAOB 1.02 d21 mAOB 1.02 d21 KH,O2 :inh 0.73 g O2 m23

gH,end:NO2
0.95 0.98 mNOB 0.76 d21 mNOB 0.76 d21

KH,NO3 5.69 g N m23

(KH,O2 :inh) (18.44 g O2 m23) 2 gH,NO2
0.78 KH,O2 :inh 2.85 g O2 m23 KAOB,O2 3.11 g O2 m23

- - - - - gH,NO2
0.78 KNOB,O2 2.47 g O2 m23
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estimation is performed for top uncertainty introducers, which would
reduce outputs’ uncertainty in maximization. Consequently, through
parameter estimation of subset determined by the global sensitivity
analysis, the possibility of successful model calibration and prediction
can be maximized. Furthermore, parameter subset optimized by
numerical global parameter correlation analysis would enhance the
success of calibration and validation. Simultaneously, the proposed
NOAP method can quickly capture the shifts of system states through
continuous updating of the known Factors’ values and unknown
Factors’ boundary variations. Thus, the proposed NOAP is a prom-
ising and useful tool for the efficient calibration of ASMs and could
potentially apply to other ordinary differential equations models.

Currently, the proposed NOAP procedure is a decision-helping
tool, rather than an automatic protocol. In fact, it is expected to
develop a fully automatic calibration procedure in future. Firstly,
the automatic calibration procedure should recognize the optimal
parameter subset for any models, and organize efficient parameter
estimation automatically and robustly, through efficient numerical
or symbolic algebra calculation approaches. Secondly, automatic
methods are available for optimal experiments design and data col-
lection, when uncertainty analysis of the parameter estimated is
necessary in case of improving confidence intervals. Moreover, this
calibration procedure can provide implementation procedure for
automatic modification, selection and extension of model structure,
when both model calibration and validation failed after data optim-
ization. Most importantly, the calibrated model cannot only monitor
and predict the overall process dynamics, but also facilitate the
operators to achieve optimal control of a target system.

Methods
Parameter estimation, parameter sensitivity and correlation analysis. The
parameter estimation is a critical step of the model calibration process. Stochastic
global optimization algorithms can find the global minimum of the objective function
given by equation (1)48,49, where y0 5 [ COD(0) SNH4(0) SNO2(0) SNO3(0) ]T as the
example. Fitting goodness criterion function for each observable is given by equation
(2). Characterizations and explanations of the symbols presented in this section can
be found in the Table S1 (Supporting Information, SI).

E(h)~
XNt

k~1

ys(tk){yo(tk)½ �T v{1(tk) ys(tk){yo(tk)½ �,

where

dy
dt

~f y,x,u,hð Þ,

y(0)~y0:

ð1Þ

Ai(Bi)~1{

PNt

k~1
w{1 ys

i (tk){yo
i (tk)

� �2

PNt

k~1
w{1 �yo

i (tk){yo
i (tk)ð Þ2

ð2Þ

GA possesses the advantages of easy implementation and mature codes to reuse
compared to other resembled technologies50–52. In this study, the MATLAB R2010a
(Global Optimization Toolbox) is referred as the numerical function implementation
of GA (The Mathworks Inc. USA).

To realize factor fixing, a Derivative based Global Sensitivity Measures (DGSM)
method is introduced to perform the global sensitivity analysis53,54. By comparisons
among DGSM, Morris and Sobol’s method, it indicates that: a) DGSM shows much
higher convergence rate and more accurate than Morris method for non-monotonic
functions; b) there is a link between DGSM and Sobol’ global sensitivity indices, but
the computational time required for numerical evaluation of DGSM measures is many
orders of magnitude lower55,56. Essentially, the DGSM method is based on the local
sensitivity measure, but perform an average of the local sensitivity measure throughout
the parameter space by introducing Quasi Monte Carlo sampling methods. The
relative time varying sensitivity matrix is described as the following equation (3).

Sij~
hj

y i

Ly i

Lhj

� �
y~y(t,ĥ),h~ĥ

ð3Þ

Average Sij over the parameter space using Quasi Monte Carlo sampling methods, a
measure can be defined as the equation (4).

M ij~

ð
HNh

Sijdh ð4Þ

The numerical computation format can be expressed as the equation (5).

M
�
ij~

1
Nh

XNh

n~1

Sij

�� ��dh ð5Þ

To overcome the time varying character, the global sensitivity analysis indices of each
parameter are defined as equation (6).

M
�
j ~

1
Ny

1
Nt

XNy

i~1

XNt

k~1

M
�
ij(tk) ð6Þ

About the global Correlation Analysis, a pseudo-global correlation matrix is intro-
duced54. The local Fisher Information Matrix (FIM) is described as equation (7).

FIM~
XNt

k~1

Lys(tk)

Lh

� �T

v{1
i (tk)

Lys(tk)

Lh

� �
ð7Þ

The derivative covariance matrix is an approximation of the inverse of the FIM as
equation (8).

C~FIM{1~
XNt

k~1

Lys(tk)

Lh

� �T

v{1
i (tk)

Lys(tk)

Lh

� �" #{1

ð8Þ

To introduce the pseudo-global covariance matrix, the local covariance matrix needs
to be averaged throughout the parameter space like DGSM done with each objective
function’s value as the weight as equation (9).

C ij~
1PNh

n~1 E(hn)

XNh

n~1

C ij(hn)E(hn) ð9Þ

According to the pseudo-global covariance matrix, the correlation matrix is defined as
equation (10).

Rij~
C ijffiffiffiffiffiffiffiffi
C iiC jj

p ,i=j;

Rij~1,i~j:

8<
: ð10Þ

Based on the equations (6) and (10), parameter sensitivity ranking order and cor-
relation relationships would be produced systematically.

Activated sludge model and experimental data for NOAP testing. An extended
ASM3 for two-step nitrification and denitrification6 is used for verifying the proposed
procedure. The model inherits the basic mechanism settings of ASM3, in the frame of
‘‘Hydrolysis – Storage – Growth - Respiration’’, nitrification and denitrification are
extended to meet current need of description for main intermediate product – nitrite.
The kinetic equations and stoichiometric matrix are presented in Table S2 and Table
S3 (SI), respectively. Model structure and parameter settings are kept as the original
for possibility of results comparison.

In addition, basic stoichiometric and kinetic parameters related information is
presented in the Table S4 (SI), as well as parameter boundaries for GSA and para-
meter estimation. The validity and applicability of the approach is confirmed using
experimental data obtained with two independent wastewater treatment systems,
including SBR45 and CSTR46, respectively.

Experimental data of the SBR related scenario were collected from two reactors
with a working volume of 14 L. Both reactors were seeded with the same inoculum
from a full-scale municipal WWTP, but operated in different modes45. One was
operated with the complete nitrification mode, while the other one was operated with
the partial nitrification mode. The complete nitrification mode was operated in the
aerobic-anoxic scheme with extensive aeration. Each cycle of the aerobic-anoxic
scheme consisted of 3 min feeding, aeration, anoxic phase, 1 h settling, 6 min
decanting, and 1 min idling. Aeration was still provided for another 0.5 h after the
ammonium has been completely oxidized to nitrite, which would offer ideal envir-
onment for the nitrite-oxidizing bacteria to oxidize the nitrite successively to nitrate
completely. The data from the complete nitrification reactor are used for the pre-
liminary model calibration because the kinetic properties of the microorganisms in
the system can be properly captured by these data series. In addition, the reactor with
partial nitrification mode was also operated in the aerobic-anoxic scheme, but aera-
tion duration was controlled through a real-time control system. The data from the
partial nitrification reactor with obvious nitrite accumulation are applied to validate
the preliminary model calibration results45.

The lab-scale CSTR was set up to achieve partial nitritation. The reactor had an
effective reaction volume of 4 L, followed by an clarifier with a working volume of
3.5 L. Sludge retention time (SRT) was kept at 12 days by wasting sludge from the
secondary clarifier. Experimental data of the CSTR related scenario illustrated an
obvious effect of DO on the nitrite accumulation in the CSTR system, which could be
used to identify and estimate DO related switching function parameters. DO play an
important role in biological nitrogen removal processes. Controlling DO at a proper
level can not only reduce energy consumption, but also favor the partial nitrification

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 8493 | DOI: 10.1038/srep08493 8



for nitrogen removal via nitrite57. During the simulation in this case, experimental
data from 113-day operation of the CSTR are divided into two groups. One group (0th

to 75th day) is used for the preliminary calibration, while the other group (75th to 113th

day) is used for the validation.
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