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This paper proposes a new algorithm to estimate the maximum likelihood parameters of an Epidemic Type
Aftershock Sequences (ETAS) model. It is based on Simulated Annealing, a versatile method that solves
problems of global optimization and ensures convergence to a global optimum. The procedure is tested on
both simulated and real catalogs. The main conclusion is that the method performs poorly as the size of the
catalog decreases because the effect of the correlation of the ETAS parameters is more significant. These
results give new insights into the ETAS model and the efficiency of the maximum-likelihood method within
this context.

T
he Epidemic Type Aftershock Sequences (ETAS) model17,18 is the most popular stochastic model used
to describe earthquake occurrence, to forecast earthquakes and to detect fluid/magma signals or
induced seismicity4,9,13,15. In spite of its large diffusion, few papers propose procedures to estimate

the ETAS parameters or test and discuss the existing methods. Similarly, few codes have been made
available to the seismological community on this topic. Moreover, most papers based on ETAS models
lack complete information on how to estimate the parameters. Finally, the published algorithms have never
been rigorously tested, leading to the conclusion that the ETAS model estimation is anything but
straightforward.

A large body of literature exists on the use of ETAS parameters as proxies of processes leading to seismi-
city4,9,13,15. This demands a full investigation of both the significance of the ETAS parameters and the reliability of
the maximum likelihood (ML) criterion18, which is the most used estimation method.

The first estimation procedure was elaborated by Ogata17 for the temporal version of the model. He found the
parameters that maximize the log-likelihood by the Davidon-Fletcher-Powell algorithm. The relative Fortran
code is included in the software called SASeis2006 and is downloadable from the address http://www.ism.ac.jp/
,ogata/Ssg/ssg_softwaresE.html.

This procedure was then extended to the spatio-temporal version of the model by Ogata18 and Zhuang et al.27,28.
Two codes were developed from these studies: 1) a Fortran code, written by Zhuang and available at the address
http://bemlar.ism.ac.jp/zhuang/software.html, and 2) an R code, written by Jalilian and downloadable from
http://cran.r-project.org/web/packages/ETAS/index.html.

After these studies, Veen and Schoenberg25 developed an EM (expectation-maximization) algorithm for an
accurate estimation of the ETAS model. Their method finds the maximum of the expected complete data log-
likelihood, which is based on the probabilistic incorporation of the branching structure. Finally, Lippiello et al.12

propose a ML algorithm based on a grid search method. To the best of the author’s knowledge the above list is
exhaustive.

The original purpose of the present paper is to discuss the efficiency of the ML criterion for estimating the
parameters of the ETAS model. As I will show below, this study required repeated runs of an estimation code on a
certain amount of simulated catalogs. Algorithms based on numerical methods, such as the one used by Ogata
and coworkers, are not suitable for this type of analysis; their performance strongly depends on the fine tuning of
some algorithm parameters, which is hard to do automatically. Therefore, I decided to formulate a novel method
and to develop a new code. This method is based on Simulated Annealing (SA), which has been found to be useful
in a variety of optimization problems, especially those with many independent variables8,21,23. The choice of SA is
due to its particular capacity for escaping from local minima/maxima, with respect to other global searching
methods. Moreover, it does not need to calculate the partial derivatives, contrary to the gradient and the Newton
methods. The main limitation of this technique is that the proper choice of its tuning parameters is mandatory to
ensure its effectiveness.
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I describe the algorithm in the first two sections of the paper. In the
third section, the method is tested on simulated and real catalogs. In
the last two sections, I analyze how the SA algorithm performs and
discuss some general implications for the ETAS model.

The Very Fast Simulated Annealing algorithm
SA is a stochastic method to solve problems of multidimensional
global optimization, i.e. problems with the following form

f xopt
�!� �

~ max
~x[~X

f ~xð Þ or f xopt
�!� �

~ min
~x[~X

f ~xð Þ, ð1Þ

where~X is a D-dimensional subset of RD 8,21,23. The term ‘‘annealing’’
refers to a process in which a solid, brought into a liquid phase by
increasing its temperature, is brought back to a solid phase by a
progressive reduction of the temperature. This process has been done
in such a way that all the particles arrange themselves in a perfect
crystallized state, representing the global minimum of a certain
energy function.

SA algorithms are random iterative procedures that generate a
candidate point xopt

�! and move to this point or stay at the current
one based on a stochastic mechanism. The latter is controlled by the
temperature T; when decreased, the search becomes more directive.

In the following, I will refer to the case of the global maximization
of a function f.

More formally, a general SA algorithm can be described as follows.
Initialization Generate an initial random solution xopt

�!. Select a
value for the initial temperature T0 . 0. Set the count j 5 0.

Inner loop Set xj
!~xopt

�! and repeat the following Nin times:

a) generate the next candidate solution~y~G xj
!� �

;
b) sample a uniformly distributed random number p g [0,1] and

set

xj
!~~y if pƒA xopt

�!,~y,Tj
� �

where A is a suitable ‘‘acceptance’’ function;
c) set

xopt
�!~~y if f ~yð Þwf xopt

�!� �
:

Outer loop Check a stopping criterion and,
if satisfied, then STOP;
otherwise

a) set Tj11 5 U(Tj) # Tj and j 5 j 1 1;
b) go back to the Inner loop.

In brief, an SA algorithm is an iterative procedure composed of
two nested loops. In the outer loop, called the cooling process, the
temperature T is decreased from its initial value until a convergence
criterion is achieved. The inner loop is a random search of a possible
better solution xopt

�! in a region around the local maximum xj
!.

An SA algorithm applied to a specific problem requires 1) the
distribution G generating the next candidate point~y; 2) the accept-
ance function A and the number of trials Nin for the inner loop; 3) the
initial temperature T0 and cooling function U; and 4) the stopping
condition. SA algorithms are conceptually simple, but the setting of
these tuning parameters/functions is an extremely tricky and prob-
lem-dependent question, crucial for the efficiency of the algorithm
(Ref. 19 and references therein). A bad solution to this problem
invalidates the effectiveness and robustness of SA procedures, even
if they have formal proofs of convergence to the global optima.

The inner loop: next candidate distribution G and acceptance
criterion A. The function G defines the way the model xopt

�! is
updated. In brief, it consists of adding a random ‘‘perturbation’’ to
the current model xj

! to obtain the new candidate~y. In this study, I

adopt the Very Fast Simulate Annealing (VFSA) procedure proposed
by Szu and Hartley22 and improved by Ingber5,6. This defines the
function G as a D-dimensional Cauchy distribution such that, for
each dimension k, the searching region is controlled by the
temperature. Specifically

yk~xk
j zrk Uk{Lk

� �
k~1, . . . ,D

rk~sgn u{0:5ð ÞTj 1z1
�

Tj
� � 2u{1j j

{1
h i

,
ð2Þ

where Lk and Uk are the lower and upper bounds in the kth dimension
and u g [0, 1] is a uniformly distributed random number5,6,21.

The acceptance criterion A determines if the new computed solu-
tion ~y is accepted or discarded. Here, I use the well-known
Metropolis criterion16,21, given by

A xopt
�!,y,Tj
� �

~min 1,exp
f ~yð Þ{f xopt

�!� �
Tj

� �� 	
: ð3Þ

In this way, the ascent steps are all accepted, whereas the descent
steps are accepted with a probability controlled by Tj, to not get
trapped in local maxima.

The outer loop: initial temperature T0, cooling function U and the
stopping criterion. The initial temperature T0 and the cooling
schedule are of critical importance to the success of SA,
especially for a VFSA algorithm, in which the temperature
defines both the next candidate ~y and the acceptance criterion A
(see eq. 2 and 3). A low T0 might cause an overly restricted search
around the starting point x0

!. A high T0 or a slow cooling schedule
might cause an overly high computational time and a possible
unsuccessful search, especially if the number of iterations Nin is
limited. Finally, a fast cooling schedule can trap the algorithm in a
local maximum.

Various choices of the initial temperature T0 have been suggested
in the literature (Ref. 1 and references therein). A general rule is that
T0 must be defined in such a way that any solution ~y [ ~X can be
selected and almost any model perturbation must be accepted
(A x0
!,~y,T0
� �

*1, V~y [ ~X) at the beginning. The first condition is
satisfied by assuming T0 $ 1, making the distribution of rk almost
uniform (see eq. 2). The second condition depends on the specific
problem and can be achieved in different ways (Refs. 1, 7 and refer-
ences therein). Here, I adopt the simple criterion, suggested by Lin
et al.11, that expresses T0 as the ratio between the size of the image of f
and the number of data.

The cooling schedule regulates how rapidly the temperature T
varies from high to low values as a function of the iteration count.
Here, I apply an Adaptive Cooling method, which adjusts the
decrease rate of T from information obtained during the algorithm’s
execution23. Specifically, I set

Tjz1~
Tj

1ze
{DFj

T0

: ð4Þ

where DFj~f xopt
�!� �

{f ~xj
� �

.
The idea here is to keep the temperature unchanged when the local

maximum f ~xj
� �

is far from the global optimum f xopt
�!� �

DFjwwT0
� �

and to half the temperature when the global maximum is updated
(DFj 5 0).

The algorithm ends when a stopping criterion is satisfied. Two
possible rules can be followed: an SA procedure is stopped when T
decreases up to a pre-selected threshold24 or when it does not make
significant progress over several iterations2. Here, I adopt the second
criterion: the algorithm is stopped if its progress over the last M
iterations is small, i.e., when the following conditions are satisfied
for a positive small :
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f ~xj

� �
{f ~xj{l

� �

 

ƒ for l~1, . . . ,M

f ~xopt

� �
{f ~xj

� �
ƒ :

ð5Þ

A VFSA algorithm for estimating the parameters of
the ETAS model
In this study, I present a VFSA algorithm to estimate the ML para-
meters of a magnitude-spatio-temporal ETAS model having intens-
ity

l~h t,x,y,m Htjð Þ~ m x,yð Þz
X
tivt

g t{ti,x{xi,y{yi mijð Þ½ �
( )

f mð Þð6Þ

and log-likelihood

LogL ~h
� �

~
XN

i~1

ln l~h ti,xi,y,mi Htijð Þ
 �

{

ð
dt

T

ð ð
dxdy

R

ð
dm

M
l~h t,x,y,m Htjð Þ, ð7Þ

where T ,R andM are the temporal interval, the spatial region and
the magnitude range covered by the N events of the catalog, respect-
ively, andHt~ ti,xi,yi,mið Þ; tivtf g is the history of earthquakes that
occurred before t.

The algorithm may be adapted to any version of the ETAS model,
but I adopt here a specific parameterization for the intensity
l~h t,x,y,m Htjð Þ.

First, I consider the magnitude distribution f mð Þ~b � 10{b m{m0ð Þ

(Gutenberg-Richter law), where m0 is the completeness magnitude of
the catalog. Second, I adopt the triggering function

g t{ti,x{xi,y{yi mijð Þ~ kea mi{m0ð Þ

t{tizcð Þp
cd,q,c

r2
i z dec mi{m0ð Þð Þ2

h iq , ð8Þ

where cd,q,c is the normalization constant of the spatial function and ri is
the distance between the locations (x, y) and (xi, yi). Because the mag-
nitude distribution is independent of the other variables, the b-value can
be estimated from magnitudes alone. Therefore, b is not included in~h.

I model the background rate m(x, y) by using an equally spaced grid
of Nc cells Ci, with central node (Xi, Yi), covering R. Specifically, I
suppose that the background rate is homogeneous inside Ci but

variable among the cells such that

m x,yð Þ~m:u x,yð Þ

with

u x,yð Þ~ ui

Ai
x,yð Þ[Cif g i~1, . . . ,Nc and

XNc

i~1

ui~1, ð9Þ

where ui is the probability of having a background event inside Ci and
Ai is the area of Ci. The probabilities ui are unknown; thus, they
belong to the set of parameters~h. In this first version of the VFSA
algorithm, I estimate the probabilities ui by using the iterative kernel
method proposed by Zhuang et al.27. In brief, the background distri-
bution is given by

m x,yð Þ~ 1
Ttot

XN

j~1

1{rj

� � 1
2pdj

exp {
x{xj
� �2

z y{yj
� �2

2d2
j

 !
, ð10Þ

where

. Ttot is the length of the interval time T ;

. rj is the probability that the jth event is triggered, given by

rj~

Pj{1
i~1 g tj{ti,xj{xi,yj{yi mij

� � �
l tj,xj,yj Htj



� � ; ð11Þ

. dj is a variable bandwidth, given by the radius of the smallest disk,
centered at (xj, yj), including at least np observed events.

Each time the VFSA algorithm updates the best parameters, the
probabilities ui are estimated as

ui~
m Xi,Yið Þ:AiPNc

j~1 m Xj,Yj
� �

:Aj

i~1, . . . ,Nc, ð12Þ

where m(Xi, Yi) is the background rate, computed at the central node
(Xi, Yi) of the cell Ci by eq. 10. Here, I consider np 5 10 because the
choice of np does not significantly affect the results27. The log-like-
lihood calculation requires only the background probabilities of the
N ’cv~Nc cells with earthquake occurrence (see eq. 2). Thus, the
size of~h~ m,k,c,p,a,d,q,c; ui,i~1, . . . ,N ’cf g depends on the specific
dataset.

Below, I list the VFSA code in detail:

1) Set the count j 5 0 and the temperature T 5 T0

. select an initial model~h0 [ h at random and compute L ~h0

� �
. set~h opt~~h0 and~h j~~h0

2) Given~h j

. compute the probability rj for all events using eq. 11

. update the background probabilities ui for all cells using eq. 12;

3) Repeat the following Nin times

. generate the next candidate set of parameters

xk~hk
j zrk Uk{Lk

� �
for k~1, . . . ,D see eq: 2ð Þ

. Compute L ~xð Þ and

. if L ~xð ÞwL ~h j

� �
, then

~h j~~x

if L ~xð ÞwL ~h opt

� �
, then~h opt~~x

. else

Figure 1 | Background spatial probabilities ui (see eq. 9) adopted for
ETAS simulations. The map was created using the software Generic

Mapping Tools (http://gmt.soest.hawaii.edu/).
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. generate a uniformly distributed random number p g
[0 1]

. if pvexp {
L ~h j

� �
{L ~xð Þ

Tj

0
@

1
A, then~h j~~x

. end if

4) if L ~h j

� �
{L ~h j{l

� �


 


ƒ for 1 5 1,…, M and L ~h opt

� �
{

L ~h j

� �
ƒ , then

4) STOP; best parameters~h opt

4) else

. j 5 j 1 1

. Tj~
Tj{1

1zexp {
L ~h jð Þ{L ~h optð Þj j

T0

� �
. goto 2

4)end if

Application to ETAS simulated datasets and the
Italian real earthquake catalog
First, I check the VFSA estimation algorithm on two classes of 100
simulated ETAS datasets, with Ttot 5 1 and 5 years, covering the
Italian territory. The simulations are obtained by the thinning
method18, with a b-value equal to 1 and the discrete background
probability distribution {ui i 5 1, …, Nc} shown in Figure 114,20.
The remaining 8 parameters are randomly selected in the follow-
ing ranges: m g [0.01 1.0]; k g [0.001 0.1]; p g [1.0 2.0]; c g
[0.0001 0.1]; a g [0.5 2.0]; d g [0.1 1.0]; q g [1.0 2.0]; c g [0.0
1.0]. I discard the combination of parameters for which the
branching ratio is larger than 1.0 (causing the explosion of the

process), and I repeat simulations that give fewer than 100 events.
The complementary (or auxiliary) events (i.e., the events occur-
ring outside the spatio-temporal target region T|R that have a
possible triggering effect on the events inside) play a crucial role
for correctly estimating the ETAS parameters26. Therefore, I take
into account the triggering contribution of all the events simulated
outside the target region. Moreover, I simulate 1 year of seismicity
before the target period T (for both 1 and 5 year catalogs) and I
include the triggering contributions of these events in log-like-
lihood computations. The number of events N in the 200 simu-
lated datasets varies from 102 to 3889.

To apply the VFSA algorithm described in the previous section, I
fix Nin 5 100, and I follow the criterion proposed by Lin et al.11 to
estimate T0. For each synthetic catalog, I estimate the log-likelihood’s
image as the largest difference among the 100 log-likelihood values,
computed on as many random combinations of parameters. The
values of T0 obtained in this way vary from 1.0 to 22. Thus, I fix
the starting temperature to the mean value T0 5 10. Finally, I use the
conservative value M 5 10 to define the stopping criterion (see eq. 5),
and I fix , which I judge as an acceptable approximation for the log-
likelihood of the ETAS model.

I check the performance of the algorithm by running the
VFSA code 100 times on each catalog. Specifically, for each
parameter and each catalog, I measure the systematic and the
random errors by three quantities: the accuracy, i.e., the close-
ness of the estimations to the true values, the bias, i.e, the sys-
tematic shift of the estimations in one direction from the true
values, and the precision, i.e., the degree of agreement for a series
of estimations10. I measure these quantities as percentages of the

size of the range (RGk) of each parameter hk [~h, because the
ETAS parameters have different orders of magnitude. The bias
of hk is measured by:
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Figure 2 | Plot of median estimates hk
opt versus the pseudo-real values hk

pr for the 8 parameters of the ETAS model {m, k, p, c, a, d, q, c} and for all the
simulated catalogs. The color is scaled with the size of the catalog (see text for details).
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Bk~
hk

opt{hk
pr

RGk
ð13Þ

where hk
opt is the median of the output estimations of 100 runs

hk,ir
opt ,ir~1, . . . ,100

n o
and hk

pr is the pseudo-real value of hk (i.e.

the value used to simulate the dataset). I compute the accuracy as
the absolute value of the bias:

Ak~
hk

opt{hk
pr




 



RGk

: ð14Þ

Finally, the precision is given by:

Pk~
I90% hk,ir

opt ,ir~1, . . . ,100
n o

RGk
, ð15Þ

where I90% hk,ir
opt ,ir~1, . . . ,100

n o
is the size of the 90% confidence

interval for the estimated hk, computed as the difference between

the 95-th and 5-th percentiles of hk,ir
opt ,ir~1, . . . ,100

n o
.

Figure 2 shows the plot of hk
opt versus hk

pr for the 8 parameters {m, k,

c, p, a, d, q, c} and for all simulated datasets. hk
opt and hk

pr may
significantly differ, especially for small datasets, except for the para-

meter m. Figure 3 is a synthesis of the bias/accuracy/precision mea-
sures. It shows no systematic significant bias (under or over-
estimation); the distribution of Bk is centered at zero and is mainly
symmetric (see Figure 3a) for all parameters. Ak is well below 0.1 for
more than 50% of the catalogs, but it reaches 0.4–0.5 for the c para-
meter (see Figure 3b). Similarly, the precision is below 20–30% of
RGk many times but may reach 40% for the 1-year catalogs (see
Figure 3c). A possible proxy of the accuracy/precision of the algo-
rithm is the number of events N. Thus, I test the hypothesis of no
correlation/dependence between Ak/Pk and N by three statistic tests:
the Pearson’s linear, the Spearman rho and the Kendall’s tau coeffi-
cients3. The first is a measure of the linear relationship between two
samples, while the others quantify a more general association. The
results are shown in Figure 3d. The p-values of the tests (i.e. the
probabilities of non-correlation/independence) are well below 0.01
for all parameters, except for m, suggesting a strong influence of N on
the estimation. The high p-values for the m parameter confirm the
accuracy/precision results (see Figures 2 and 3): the algorithm is able
to estimate the overall background rate, no matter how large the
dataset is. In contrast, the sample size N strongly affects the fit of
the spatial probability background distribution (Figure 4). The med-
ians (on 100 runs, for each catalog) of the estimated probabilities ui

are closer to the pseudo-real values (mapped in Figure 1) as N
increases. For small datasets, the estimated and pseudo-real prob-
abilities may differ by as much as two orders of magnitude.
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Figure 3 | Analysis of bias, accuracy and precision of ML estimation of the ETAS parameters, obtained by the VFSA algorithm proposed in the present
study. (a) Distribution of the bias for all the simulated ETAS catalogs and for the 8 parameters of the ETAS model. Symbols mark the median values

(circles for 1 year catalogs, stars for 5 year catalogs). The bounds show the 5-th and the 95-th percentiles (of the values obtained for each catalog). (b) The

same of (a), except for accuracy. (c) The same of (a), except for precision. (d) Results of statistical tests applied to check the correlation/dependence

between the number of earthquakes N and the accuracy/precision of the 8 parameters of the ETAS model. The hypothesis of independence is rejected for

all parameters, except for m.
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Figure 4 | Plot of the estimated median (on 100 runs) background probabilities ui versus the pseudo real values for all cells with at least an event and for
all catalogs. The color is scaled with the size of the catalog N. (a) Plot for catalogs with N # 1000. (b) The same as a), but for 1000 , N # 2000. (c) The

same as (a), but for N . 2000.
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The analysis of log-likelihood values confirms the previous results

(see Figure 5). First, the values DLL~L ~hopt

� �
{L ~hpr

� �
are negative

for N below 1000/1500 (see Figure 5a), suggesting that the data are
not sufficient to optimize the log-likelihood. If the background prob-
abilities ui are fixed to pseudo-real values, DLL is always positive,
varying from 0 to 20, with negligible differences for the remaining 8
parameters (see Figure 5b). This means that the negative values of
DLL are entirely due to the poor estimation of the background prob-
abilities ui. The largest difference among the log-likelihoods, deduced
from the best 100 runs as follows:

RGLL~maxir L ~hir
opt

� �h i
{minir L ~hir

opt

� �h i
ir~1, . . . ,100, ð16Þ

is mainly below 2 (see Figures 5c). This suggests that the low pre-
cision and accuracy of the estimations on the smallest catalogs are
due to the flatness of the log-likelihood function. In other words,
rather different combinations of parameters (see Figure 3c) may give
similar log-likelihood values on small datasets.

I further investigate this point by applying the three tests used in
Section 3 on all possible28 pairs of 100 parameter values obtained by
as many runs. Specifically, I compute the proportion of catalogs with p-values , 0.05 for each pair of parameters. The aim of this analysis

is to verify the hypothesis of non-correlation/independence among
the ETAS parameters. I find significant correlations inside two para-
meter subsets: {k, c, p, a} (Omori law) and {d, q, c} (spatial distri-
bution of triggered events). No systematic correlation is found
between m and the other parameters, confirming that the algorithm
is able to distinguish the background seismicity.

To clarify the procedure, I describe in more details the results of
the algorithm for the smallest and the largest simulated catalogs (see
Tables 1 and 2). The first catalog has 1 year of data (plus 1 year as an
auxiliary period) and 102 events; the second has 3889 events col-
lected over a five-year period (plus 1 year as an auxiliary period). The
solution for the first dataset has poor precision (such as for the c
parameter) and poor accuracy (the a parameter), but the values

L ~hir
opt

� �
are close and all lower than the pseudo-real value L ~hpr

� �
.

No significant change is found by varying some tuning parameters of
the algorithm ( ~0:1; T0 5 1, 100; np 5 5). If I fix the background
probabilities to pseudo-real values, the algorithm gives similar esti-
mations of the remaining 8 parameters and log-likelihood values

larger than L ~hpr

� �
and close to 2662.0. This confirms that the

log-likelihood values strongly depend on the background probabil-
ities. In contrast, the parameter estimation on the second catalog is
accurate and precise; this proves that the algorithm provides correct
solutions on sufficiently large datasets.

I repeated the analysis on simulations with an extended auxiliary
period (up to 5 years), but did not find significant changes.

μ μ μ μ μ μ μ k k k k k k p p p p p c c c c α α α d d q0
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Figure 6 | Analysis of dependence/correlation for all possible pairs of the
8 parameters of the ETAS model. The probability of independence/

non-correlation is computed on values obtained by 100 runs for each

catalog, each pair of parameters and each statistical test. The proportion of

catalogs with p-values , 0.05 is plotted as a function of the pairs of

parameters (the parameters are labeled on the top and bottom x-axes).

μ k p c α d q γ
0

0.07

0.14

0.21

0.28

0.35

0

0.2

0.4

0.6

0.8

1

μ k p c α d q γ
2

4

6

8

10

12

10 -3

A
cc

ur
ac

y Precision

ΔL
L

a)

b)

Figure 7 | ‘‘Partial’’ estimation of the ETAS model on 1-year simulated
catalogs. Each parameter is estimated one at a time by keeping the

remaining parameters and the background probabilities fixed to the

pseudo-real values. (a) Distribution of accuracy and precision. The

symbols mark the median values (circles for accuracy, stars for precision).

The bounds indicate the 5-th and the 95-th percentiles (of the values

obtained for each catalog). (b) Difference of the median log-likelihoods

computed on pseudo-real and estimated parameters (DLL), as a function

of the ‘‘free’’ parameter. Due to the high precision of this type of

estimation, the log-likelihoods of 100 runs for each catalog are close.

Table 3 | Estimation of ETAS parameters for the Italian catalog. The
results obtained by using the VFSA and the Quasi-Newton algo-
rithms are compared. For the VFSA algorithm, the median (on 100
runs) values are reported. The values in the brackets are the 5-th
and the 95-th percentiles of the relative parameter

Parameter VFSA algorithm Quasi-Newton algorithm

m 2.0 (2.0, 2.1) ?1021 2.1 ?1021

k 2.3 (2.2, 2.6) ?1022 2.2 ?1022

p 1.13 (1.12, 1.15) 1.15
c 7.0 (6.0, 9.0) ?1023 8.0 ?1023

a 1.4 (1.4, 1.5) 1.5
d 9.3 (9.0, 9.7) ?1021 8.8 ?1021

q 1.78 (1.75, 1.80) 1.78
c 4.8 (4.4, 4.9) ?1021 4.9 ?1021

Nev 1789 (1777, 1806) 1793
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Finally, I apply the algorithm presented here on real data as a
further check. Specifically, I consider the events that occurred in
the last 10 years or so (16/04/2005-31/08/2014) in the region shown
in Figure 1 with local magnitude larger than 3.0 and depth lower than
30 km. This database is down-loadable from the site http://iside.rm.
ingv.it and consists of 1788 events. It includes two important
sequences, which occurred near L’Aquila city (2009, stronger event
ML5.9) and in the Emilia region (2012, stronger event ML5.9). I run
the VFSA algorithm 100 times, obtaining the median values and the
90% confidence bounds of the ETAS parameters, which are reported
in Table 3. The comparison with the output estimations of the code
developed by Zhuang and co-workers is not trivial, because they
adopt a different formulation of the model with a normalized
Omori law27,28. However, I find negligible differences by adapting
the best parameters found with Zhuang’s code to my formulation
(see Table 3).

Discussions and Conclusions
In this study, I present a new algorithm to estimate the parameters of
a spatio-temporal ETAS model. The algorithm is based on SA and
allows an automatic ML estimation of the model, without ad-hoc
tuning of the parameters. Moreover, it quantifies the uncertainties by
multiple runs. It is a versatile and testable tool, used here to invest-
igate the model and the possibility to give a physical interpretation to
the parameters. This type of study needs repeated simulations and
estimations, which are difficult to do using conventional ML proce-
dures. Numerical optimization procedures may be computationally
intensive or may have some convergence problems, especially when
the log-likelihood is extremely flat or multimodal. Moreover, it is
quite difficult to decide if log-likelihoods have converged to the glo-
bal maximum. Finally, their performance strongly depends on the
starting values of the parameters.

I test the algorithm proposed here on two classes of 100 synthetic
datasets: 1 and 5 years (plus 1 year of an auxiliary period, see Ref. 26);
these are simulated by using a specific formulation of ETAS model
and randomly generated sets of parameters (see Section 3). The
choice of testing the algorithm on relatively small datasets is inten-
tional. The efficiency of the ML criterion on large catalogs is
expected, if a proper auxiliary region is taken into account26.
However, it is still unexplored if the ML criterion is able to discern
the ETAS parameters on small catalogs, even if such datasets are
largely used in studies on non-stationarities4,9,13.

The results of this study consistently show that a few data (below
1000) do not produce a precise and correct estimation of the model;
only the overall background rate is correctly distinguished from the
triggering contribution, regardless of the number of data. In particu-
lar, the algorithm is not able to give a reliable estimation of the
discrete background probabilities ui for small datasets. This is
the only cause for the failure in the log-likelihood optimization
(see Figure 5a) and does not affect the other parameters (see
Figure 5b). These inefficiencies may derive from the specific proced-
ure used here, the inappropriateness of the ML criterion itself, as
outlined by Veen and Schoenberg25, or the intrinsic impossibility
of estimating so many parameters with a few events. This will be
the topic of a future communication. What is certain is that rather
different combinations of parameters may give close log-likelihoods
on small datasets (see Figure 5c and Tables 1–2); this is the main
cause of the low precision of the algorithm and it is in part due to the
high correlation among the parameters of the triggering contribution
(Figure 6).

This study gives important hints on the ETAS model as a dia-
gnostic tool of the physical processes responsible for seismicity.
First, it shows that the spatial-temporal variability of the m parameter
may be a proxy of the magma/fluid signal4,13 or of induced seismic
activity9 because the ML method allows the background rate to be
distinguished from the triggering contribution. However, any specu-

lation on spatio-temporal variations of the triggering contribution
must be treated with the utmost care. This topic needs more work, of
course. However, to give more arguments, I conduct a ‘‘partial’’
estimation on the 1-year catalogs. Specifically, I estimate each para-
meter one at a time, keeping both the remaining parameters and the
pseudo-real values of the background probabilities fixed (Figure 7).
The resulting accuracy does not differ much from the one obtained
from a ‘‘full’’ analysis (see Figure 3), for which the precision is much
higher (Figure 7a) and the log-likelihood values are always larger

than L ~hpr

� �
(Figure 7b). All these results suggest two points: first,

the low precision of the ‘‘full’’ estimation (Figure 3c) is mainly due to
the correlation of parameters; second, the low accuracy (Figures 3b
and 7a) derives from the low resolution of the ETAS model and/or of
the ML criterion on small datasets. In particular, the limited mag-
nitude ranges, covered with small datasets, make the estimations of
the a and c parameters inaccurate.

Different ETAS estimation methods might clarify if all these pro-
blems are intrinsic to the model or due to the flatness of log-like-
lihood. Until now, the only possible alternative is the EM-method of
Veen and Schoenberg25, proposed as a better method than the ML
criterion, especially on limited datasets. This does not mean that the
ML criterion is wrong, but that the quality and amount of experi-
mental data may be too poor to estimate the parameters unambigu-
ously. And, if the model parameters are not well set, then all the
points inferred from their estimation are misleading.

The procedure proposed here allows an estimation of ETAS para-
meters without an ad hoc tuning of the algorithm, as the Quasi-
Newton methods require. Moreover, multiple runs quantify the
errors. The results on the real Italian dataset show that the uncer-
tainties are not symmetric (see Table 3). Therefore, the Hessian
matrix18 may wrongly estimate the errors, because it needs a normal
distribution of the uncertainties.

In the present study, strong attention is not paid to cutting the
computational time of the algorithm. However, I judge it reasonable
in this first version, also for large datasets. Parallelization and/or
some changes would make the code faster. This will be the topic of
future work.
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