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DNA methylation is related closely to sequence contexts and chromatin modifications; however, their
potential differences in different genomic regions across cell types remain largely unexplored. We used
publicly available genome-scale DNA methylation and histone modification profiles to study their
relationships among different genomic regions in human embryonic stem cells (H1), H1-derived neuronal
progenitor cultured cells (NPC), and foetal fibroblasts (IMR90) using the Random forests classifier. Histone
modifications achieved high accuracy in modelling DNA methylation patterns on a genome scale in the
three cell types. The inclusion of sequence features helped improve accuracy only in non-promoter regions
of IMR90. Furthermore, the top six feature combinations obtained by mean decrease Gini were important
indicators of different DNA methylation patterns, suggesting that H3K4me2 and H3K4me3 are important
indicators that are independent of genomic regions and cell types. H3K9me3 was IMR90-specific and
exhibited a genomic region-specific correlation with DNA methylation. Variations of essential chromatin
modification signals may effectively discriminate changes of DNA methylation between H1 and IMR90.
Genes with different co-variations of epigenetic marks exhibited genomic region-specific biological
relevance. This study provides an integrated strategy to identify systematically essential epigenetic and
genetic elements of genomic region-specific and cell type-specific DNA methylation patterns.

I
n mammals, DNA methylation is a well-known epigenetic modification that plays major roles in gene
transcription regulation1. Abnormal DNA methylation is involved in multiple human cancers2–5 that almost
always display an overall DNA methylation loss of gene bodies but exhibit specific hypermethylation at gene

promoter CpG islands6,7. During the process of human stem cell differentiation and development, DNA methy-
lation is a critical mark that defines cellular identity and the development state8–11.

DNA methylation almost always takes place in the cytosine residues of CpG dinucleotide symmetrically on
both strands of the human genome12. Genome-scale DNA methylation profiles show that most CpG dinucleo-
tides are methylated throughout the genome except in CpG-rich CpG islands13,14. Genomic sequence contexts
contain important genetic information that can distinguish DNA methylation patterns15–17, but it is difficult to
comprehensively explain extensive DNA methylation changes during cellular differentiation, tumourigenesis, or
aging based only on sequence characteristics. For example, the promoter of the pluripotency gene Oct4 (also
known as Pou5f1) is hypomethylated in embryonic stem cells but becomes hypermethylated in foetal fibroblast
(IMR90) cells18. Most recent studies have reported that histone modifications were closely connected to DNA
methylation through biochemical interactions14,19–22. In mammals, the histone methyltransferase Suv39h is
required to establish histone H3 lysine 9 (H3K9) methylation, which is required to direct DNA methylation of
pericentric satellite repeats23. Similarly, the histone methyltransferase G9a is a master regulator required for H3K9
methylation and DNA methylation24,25. Methyl-CpG-binding proteins that interact with methylated DNA have
been linked with histone deacetylases26,27. Further, genes that are de novo methylated in cancer cells are enriched
with trimethylated histone H3 lysine 27 (H3K27me3)28. Therefore, it is of interest to investigate the DNA
methylation dynamics among different cell types by integrating sequence features and histone modifications.
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Computational and experimental approaches have been used to
investigate the correlation between DNA methylation and histone
modifications and/or sequence features. A strong negative correla-
tion was reported between DNA methylation and H3K4me3 at pro-
moters and CpG islands29–31. Moreover, genes with unmethylated
CpG-rich promoters enriched with H3K4me3 were found to play
important roles in regulating embryonic development, and some of
these genes were house-keeping genes32. Conversely, methylated
CpG-poor promoters devoid of H3K4me3 were reported to be
enriched preferentially in tissue-specific genes29,30. These computa-
tional analyses found that DNA methylation was linked closely with
histone modifications and that their interactions may have import-
ant biological functions. However, these analyses focused only
on CpG islands and promoters. Experimental approaches includ-
ing high-throughput sequencing of bisulfite-treated chromatin
immunoprecipitated DNA (BisChIP-seq)33,34 and single-molecular
analysis35, can directly detect genomic regions where DNA methyla-
tion and certain histone modifications are mutually exclusive or co-
occur. For example, Statham et al.34 found that the relationship
between H3K27me3 and DNA methylation was genomic-region
dependent (i.e., in normal epithelial cell, H3K27me3 occurred in
both unmethylated and methylated regions within transcription start
sites (TSSs) and CpG islands, whereas, in the rest of the genome,
H3K27me3 associated only with methylated regions) and was differ-
ent between normal somatic epithelial cell and prostate cancer cell. In
contrast, Brinkman et al.33 found that H3K27me3 and DNA methy-
lation were mutually exclusive in high CpG density genomic regions
such as CpG islands but co-occur throughout most of the genome in
both human colon cancer HCT 116 cells and mouse embryonic stem
cells. The different conclusions may be caused by different cell types,
suggesting DNA methylation of specific cell types may have specific
associations with H3K27me3 in particular genomic regions. These
experimental studies investigated only the relationships between
DNA methylation and repressive histone modifications such as
H3K27me3 and H3K9me3. Therefore, active marks closely involved
with gene expression were not explored.

In this paper, high-throughput DNA methylation profiles based
on the bisulfite-sequencing (BS-seq) technique and 16 histone modi-
fication profiles based on the chromatin immunoprecipitation fol-
lowed by sequencing (ChIP-seq) technique in human embryonic
stem cells (H1), H1-derived neuronal progenitor cultured cells
(NPC), and foetal fibroblasts (IMR90) were collected. We identified
whole genome-wide DNA methylation patterns and divided them
into four different genomic regions in the three cell types. Random
forests was applied to comprehensively analyze the relationships
between DNA methylation patterns and histone modifications and
sequence features in different genomic regions and in the three cell
types.

Results
Genomic context biases and cell line-specific chromatin modification
signals of DNA methylation patterns. The characteristics of DNA
methylation have been shown to be linked closely with histone
modifications14,36 and the underlying genomic contexts16. Our study
provides an integrated analysis framework to explore these
relationships in different genomic regions and in various cell types
(Figure 1), which may improve the understanding of their interactions.

A large number of reliable unmethylated regions and methylated
regions at the genome scale were identified in H1, NPC, and IMR90
using CpG_MPs37 (Supplementary Figure S1 and Table S1). To
investigate the distributions of DNA methylation patterns in differ-
ent genomic regions, the whole genome-wide DNA methylation
patterns were grouped into four categories according to their loca-
tion: promoter, gene body, downstream, and intergenic regions (see
Methods). The proportions of methylated regions in the four geno-
mic categories were almost similar and the distributions of methy-

lated regions were relatively stable among the three cell types
(Figure 2a). However, the distributions of unmethylated regions were
distinctive; in particular, the proportion of unmethylated regions in
the promoter regions of IMR90 was much lower than in the other two
cell types (H1: 35%, NPC: 27%, IMR90: 6%) and higher in the inter-
genic regions of IMR90 compared with H1 and NPC (H1: 36%, NPC:
39%, IMR90: 63%). In fact, the number of unmethylated regions in
the promoter regions was similar across the different cell types (H1:
11,765, NPC: 12,210, IMR90: 13,009), whereas in the intergenic
regions, the number of unmethylated regions was 8-fold higher in
IMR90 compared with that in H1 and NPC. This result indicates that
DNA methylation patterns in the promoter regions were relatively
conserved and that new unmethylated regions occurred mostly in the
intergenic regions of IMR90. Moreover, we found that about 35% of
the enhancers38 in the intergenic regions of IMR90 occurred in the
new unmethylated regions, compared to global enrichment of
enhancers in human intergenic regions (p , 0.001, hypergeometric
test), suggesting that the demethylation of genomic regions could be
allowed to access enhancers in the distal regulatory regions of genes.

Many studies have shown that unmethylated regions tend to be
enriched in high CpG density regions while methylated regions tend
to be enriched in low CpG density regions15,16. In this study, however,
distinct correlations were observed between sequence features (GC
content and CpG observed to expected ratio (O/E)) and DNA
methylation in different cell types. We found that the distributions
of the sequence features between unmethylated and methylated
regions were always similar and consistent with the known con-
sensus in H1 and NPC regardless of the genomic category, but
inverse trends were observed in the non-promoter regions of
IMR90 maybe because of the large amounts of hypomethylated
regions at the genome scale in IMR90 (Figure 2b). It suggests that
the relationship between DNA methylation and genomic context is
dependent both on cell type and genomic region.

The histone modifications of two DNA methylation patterns were
also investigated. Sixteen histone modification signals from
unmethylated and methylated patterns in the different genomic
regions of each cell line were clustered using the unsupervised hier-
archical clustering approach. As shown in Figure 2c, the active his-
tone modifications and repressive modifications were grouped into
two different clusters, while the same DNA methylation patterns
among different cell types tended to group together. Notably, the
unmethylated regions of the gene body, downstream, and intergenic
regions of IMR90 were mistakenly grouped into the cluster that
contained the methylated regions, indicating the correlation between
DNA methylation and histone modifications may also be specific in
these genome regions of IMR90.

Prediction of DNA methylation patterns through histone modifi-
cations and sequence contexts dependent on genomic regions
and cell types. The different DNA methylation patterns displayed
complex sequence features and histone modification signals among
the different genomic regions across the three cell types. To further
investigate their correlations, we compared the performances of
five common machine learning algorithms (Random forests (RF),
radial basis function support vector machine (RBF-SVM), decision
tree J48, naive Bayes, and logistic regression) in predicting DNA
methylation patterns with the combination of sequence features
and histone modifications. We found that the RF algorithm
performed better than the other algorithms in relating histone
modifications and sequence features with DNA methylation
patterns (see Methods). Therefore, this algorithm was used to
model the sequence features and/or histone modification effects
on DNA methylation patterns.

At the whole-genome scale, the sequence features accurately mod-
elled the DNA methylation patterns in H1 and NPC with the area
under receiver operating characteristic curve (AUC) .0.88, but the
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accuracy was lower in IMR90 (AUC 5 0.64), indicating that the
prediction power of the sequence features differed among different
cell types (Figure 3). The histone modifications were consistently
better at predicting of DNA methylation patterns than the sequence
features in the three cell types; the predictive accuracies in H1, NPC,
and IMR90 were AUC 5 0.99, 0.99, and 0.85 respectively. With the
exception of IMR90, the predictive accuracy of the combination of
histone modifications and sequence features was similar to that of
histone modifications alone and was higher than sequence features
alone (Figure 3). In IMR90, the combination of histone modifica-
tions and sequence features improved the accuracy by 7% (28%)
compared with histone modifications (or sequence features) alone.
The whole genome-scale results suggest that sequence features may
be redundant when histone modifications are used to predict DNA
methylation patterns in H1 and NPC, whereas they are complement-
ary in IMR90.

Next, we compared the prediction accuracy of DNA methylation
patterns in the four genomic regions. In promoters, both sequence
features and histone modifications accurately predicted DNA
methylation in all three cell lines (Figure 3). Moreover, the combina-
tion of sequence features and histone modifications had almost same
prediction accuracy as using histone modifications alone, but the
combination slightly improved the prediction accuracy compared
with sequence features alone. These findings indicate that histone

modifications were more closely linked with DNA methylation than
with sequence features and their performances were relatively stable
in different cell types. However, in the gene body, downstream, and
intergenic regions, the sequence features got similar prediction
accuracies in H1 and NPC (AUC .0.85) but lower accuracies in
IMR90 (AUC ,0.67), demonstrating that the predictive perform-
ance of sequence features was dependent on specific genomic regions
and cell types. The combination of sequence features and histone
modifications had similar predictive powers as histone modifications
alone in H1 and NPC, and much higher predictive powers in IMR90.
Thus, in H1 and NPC cells, histone modifications could discriminate
unmethylated patterns and methylated patterns accurately, and little
improvement was gained by including sequence features. These
results imply that sequence features are relatively redundant in H1
and NPC regardless of the genomic regions. In contrast, in IMR90,
the combination of sequence features and histone modifications
improved the predictive accuracy depending on the specific genomic
regions, indicating that the sequence features and histone modifica-
tions were complementary.

To determine the performance of the RF algorithm in predicting
DNA methylation patterns based on histone modifications and
sequence features, we applied our analysis method to two other
DNA methylation datasets from human embryonic stem cells (H9)
and peripheral blood mononuclear cells (PBMC)10,39. Sixteen and

Figure 1 | Framework used to identify genomic-region specific and cell type-specific relationships between DNA methylation and histone
modifications/sequence features. (a) Identification of whole genome-scale unmethylated regions (URs) and methylated regions (MRs) from high-

throughput DNA methylation profiles. (b) Calculated sequence features (SFs) and histone modification (HM) signals of DNA methylation patterns. To

avoid data bias, we sampled the same numbers of unmethylated and methylated regions by 10 times repetition for the machine learning algorithms. (c)

Comparison of the performances of five frequently-used classification algorithms (Random forests, RBF-SVM, decision tree J48, naive Bayes, and logistic

regression) for DNA methylation prediction. 10-fold cross validation was applied to each of the 10 sampled datasets to obtain reliable model accuracy.

Random forests achieved the best performance and was applied to the following analysis. (d) DNA methylation patterns were grouped into four genomic

regions: promoter (P), gene body (G), downstream (D), and intergenic (I) regions. The prediction accuracies of sequence features, histone modifications,

and the combination of histone modifications and sequence features (HMs 1 SFs) were estimated in the promoter, gene body, downstream, and

intergenic regions. (e) Identification of essential effectors of DNA methylation in the promoter, gene body, downstream, and intergenic regions by

comparing the prediction accuracies of the top n most important feature combinations. The relative importance of each feature was evaluated by mean

decrease Gini and ordered from most important to least important. (f) Essential histone modifications used to predict DMR patterns (from unmethylated

to methylated patterns and from methylated to unmethylated patterns). DMR patterns also were classified into the four genomic regions between paired

cell types.
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five histone modifications in H9 and PBMC, respectively, were from
Encyclopedia of DNA Elements (ENCODE) by UCSD (University of
California, Santa Cruz) and were used in our analysis
(Supplementary Table S2). The RF algorithm performed better than
the other classifying models tested (Supplementary Figure S2).
Moreover, we showed that DNA methylation was more strongly
correlated with histone modifications than with sequence features,
in agreement with findings reported previously9. The accuracy of the
prediction with histone modifications was more than 0.9, and little
was gained by including sequence features (Supplementary Figure
S3). These results further confirmed that histone modifications were
indicative of genomic DNA methylation in different cell types.

Essential histone modifications and sequence features for DNA
methylation patterns with respect to different genomic regions
and cell types. To derive the key modification factors or sequence
features associated with DNA methylation patterns, their relative
importance for DNA methylation prediction was further examined

(see Methods). Here, the mean decrease Gini (MDG) was used as the
importance score of each feature to provide a relative ranking of the
investigated features. The larger MDG indicates the increasing
importance of the corresponding feature for the prediction of
DNA methylation patterns. In the promoter regions, the top five
most important features for predicting DNA methylation patterns
were conserved across the three cell types. These five features were
three histone modifications, H3K4me2, H3K4me3, and H3K9ac, and
two sequence features, CpG O/E and GC content (Figure 4a).
However, in the other three genomic regions, the key features for
the prediction of DNA methylation patterns were different among
the different cell types. The top two important features in H1 and
NPC were H3K4me2 and H3K4me3, whereas in IMR90 they were
CpG O/E and H3K9me3 (Figure 4a).

Next, we investigated the prediction powers of the combinations
of different features (histone modifications and sequence features) to
identify feature redundancy. Because it is computationally expensive
to compare the all possible combinations, cumulative combinations

Figure 2 | Distribution of methylation patterns, sequence features, and histone modifications in three cell lines. (a) Identified unmethylated and

methylated regions were annotated in the promoters (P), gene body (G), downstream (D), or intergenic (I) regions of the genome. U and M represent

unmethylated patterns and methylated patterns respectively. (b) Comparison of sequence features (GC content and CpG O/E) between unmethylated

and methylated regions from the different genomic regions. Whole genome means sequence features of whole genome-scale DNA methylation patterns

were compared. (c) Hierarchical clustering of DNA methylation patterns from different genomic regions and cell types based on histone modification

signals.
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of the features were employed according to a prioritized order of
features for predicting DNA methylation patterns. Eighteen cumulat-
ive combinations of features were used as inputs to predict DNA
methylation patterns by 10-fold cross validation using the RF algo-
rithm. As shown in Figure 4b, the performance of the six most import-
ant features was comparable to that of the all features model (18
features) in the different genomic regions. It suggests that only a
few combinations of the most important features may classify DNA
methylation patterns precisely and reduce feature redundancy.
The combinations of the most important six features were defined
as essential factors to predict DNA methylation patterns
(Supplementary Figure S4). In the promoter regions, the essential
features were almost the same across the three cell types, which further
illustrated the relationships between DNA methylation and histone
modifications or sequence features were relatively conserved in this
region. In addition, we found that sequence features were complemen-
tally grouped with histone modifications to predict DNA methylation
patterns only in IMR90. H3K4me2 and H3K4me3 were the common
essential factors in the different cell types and in all genomic regions,
and displayed strong negative correlations with DNA methylation
(Supplementary Figure S5a, Figure S5b, and Figure S6). H3K9me3
was the essential feature only in IMR90, suggesting that it may be a
cell type-specific feature and that its correlation with DNA methyla-
tion may be more complex. In the promoter regions of IMR90,
H3K9me3 was positively correlated with DNA methylation and inver-
sely associated with DNA methylation in the other three genomic
regions (Figure 4c, 4d, and 4e, and Supplementary Figure S5c), imply-
ing that the relationship between H3K9me3 and DNA methylation
was dependent on the genomic regions.

Modelling DNA methylation dynamics by essential histone modifi-
cation changes between paired cell lines. Differentially methylated
regions (DMRs) are vital clues for understanding gene transcription
regulation in mammal development processes and diseases11,40.
DMRs between paired cell types can be described as two patterns,
from unmethylated to methylated (URM) and from methylated to
unmethylated (MRU). Differences in DNA methylation patterns
cannot be fully explained by sequence features because the same

sequence contexts are shared in all human cell types. In our
analysis described above, we have shown that the strength of
histone modification enrichment was closely related with the DNA
methylation patterns. Next, we explored the possibility of predicting
DMR patterns between paired cell lines based on the fold changes of
the identified essential histone modifications between paired cell
types.

As an example, we identified DMRs by comparing H1 and IMR90
using CpG_MPs37. We detected 4,651 DMRs that were more highly
methylated in IMR90 comparing with in H1 (URM), and 197,993
DMRs that were less methylated in IMR90 comparing with in H1
(MRU). It is consistent with previous reports that most of the
IMR90 genomic regions displayed low levels of DNA methylation41.
We also tested whether the identified DMRs overlapped with the pro-
moter, gene body, downstream, and intergenic regions (See Methods).
Interestingly, a large fraction (58%) of URM DMRs and 33% of
MRU DMRs were associated with three gene regions (promoter, gene
body, and downstream) (Figure 5a, p , 2.2e-16, chi-square test).

The essential histone modifications for predicting different DNA
methylation patterns were identified across different genomic
regions and cell types (Supplementary Figure S4). We then used
the essential histone modifications of H1 and IMR90 to analyze
the DMR patterns (Supplementary Table S3) and calculated the dif-
ferences of histone modifications of DMRs between H1 and IMR90
based on the fold change [log2(IMR90/H1)]. As shown in Figure 5b–
e, the variations of H3K9me3 in the MRU DMRs in the gene body
and intergenic regions were stronger than the variations in the URM
DMRs in IMR90 (p , 0.001, Wilcoxon rank sum test), whereas the
variations of H3K9me3 between the two DMR patterns were not
statistically significant in the promoter and downstream regions
(p . 0.001, Wilcoxon rank sum test). It indicates that H3K9me3
was not always correlated with DNA methylation differences among
the different genomic regions. In contrast, the variations of
H3K4me2 and H3K4me3 were significantly different between the
two DMR patterns in the different genomic regions. Among the
selected histone modifications, most of them were informative for
distinguishing the DMR patterns.

Figure 3 | Random forests was applied to predict DNA methylation patterns. The prediction power of sequence features (SF), histone modifications

(HM), and the combination of histone modifications and sequence features (HM 1 SF) for DNA methylation patterns by Random forests was

estimated. The receiver operating characteristic (ROC) curves and the AUC for the three feature sets based on the results of ten-fold cross validation are

shown. Average AUC values were used to estimate the prediction accuracy of the features.
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The above analysis showed that differences in DNA methylation
between H1 and IMR90 were related closely to changes of the essen-
tial histone modifications. Therefore, the identified informative his-

tone modifications were applied to predict DMR patterns using the
RF algorithm. Because the number of MRU DMRs (197,993)
increased more than 42-fold compared with the number of URM

Figure 4 | Methylation patterns of different genomic regions were predicted by various groups of features. (a) Relative importance of each feature

(histone modifications and sequence features) for modelling DNA methylation patterns was quantified by mean decrease Gini (MDG) in the four

genomic regions of H1, NPC, and IMR90. The feature with the largest MDG is the most important and is shown as the reddest. The number in the box

corresponds to the rank of the feature. (b) Prediction accuracy of the combinations of the top n (n 5 1, 2, …, 18) important features was calculated by

Random forests. Eighteen features were ordered from the most important to least important, and the top six important feature combinations performed

with high accuracy. The prediction accuracy was evaluated based on average AUC values. (c–e) Example showing the correlation of DNA methylation and

H3K9me3 is genomic region-specific. Genomic regions located in the ARHGAP11B gene promoter (c) and NPAP1 gene promoter (d) indicated that

H3K9me3 and DNA methylation was positively correlated in the promoter regions. Genomic regions located in the ROCK1P1 gene body (e) indicated

that H3K9me3 was negatively correlated with DNA methylation.
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DMRs (4,651), we randomly sampled 4651 of the demethylated
regions for the 10-fold cross validation. Here, URM patterns were
used as the positive dataset, and MRU patterns were used as the
negative dataset. As a result, we found that the differences of histone
modifications could precisely predict DMR patterns across different
genomic regions (AUC .0.88) (Figure 5f). Thus, the variations of
essential histone modifications may predict the DMR patterns
between H1 and IMR90.

Functional annotation of co-variations of epigenetic marks in diffe-
rent gene regions. Among the chromatin modifications, H3K4me2
and H3K4me3 were found to be the most conserved and most
important indicators of DNA methylation patterns in different
genomic regions and in the different cell types. The variations of
H3K4me2 and H3K4me3 signals were strongly correlated with the
DNA methylation dynamics. For instance, in the promoter of the
pluripotency gene Oct4, unmethylated regions in H1 became
methylated regions in IMR90 following the decreases of H3K4me2
and H3K4me3 signals from H1 to IMR90 (Figure 6a), suggesting that
these patterns could be involved in the pluripotency of cells.

Finally, to explore the functions of the different co-variations of
H3K4me2, H3K4me3 and DNA methylation in the different gene
regions (promoter, gene body, and downstream), gene ontology
(GO) biological process terms and KEGG pathways were assigned
to the genes by enrichment analyses (See Methods). Here, the co-

variation with the decrease of H3K4me2 and H3K4me3 and the
URM DMRs from H1 to IMR90 was defined as Co-var1 and
the opposite was defined as Co-var2 (See Methods). Co-var1s in
the promoter regions were enriched in GO terms linked to cell/tissue
morphogenesis and positive regulation of transcription, while neu-
ron and spinal cord development terms were enriched in the gene
body and downstream regions respectively (Figure 6b). The top GO
terms for Co-var2s in the promoter regions were related to immune
response, while cell adhesion and sensory of smell related functions
were enriched in the gene body and downstream regions respectively.
This result suggests that Co-var1 was associated mainly with
development, differentiation, and gene transcription biological pro-
cesses, whereas Co-var2 was related to basic biological processes. The
KEGG pathway enrichment analysis showed that Co-var1s in both
the promoter and gene body regions were enriched with cancer-
related pathways such as TGF-beta signaling pathway and Notch
signaling pathway. Co-var2s from the gene body regions were also
enriched in cancer-related pathways (Figure 6c). Thus, the co-varia-
tions of epigenetic marks may provide important clues for under-
standing the mechanism of tumourigenesis.

Histone modifications are conserved for DNA methylation patterns
in CpG islands. CpG islands are regarded as vital and conserved
unmethylated regions across various normal cell types, and their
abnormal DNA methylation has been linked closely with disease

Figure 5 | Random forests to predict DMR patterns. (a) Proportions of URM and MRU patterns in the promoter, gene body, downstream, and

intergenic regions. (b–e) Distribution of the union of essential histone modifications in H1 and IMR90 among the four genomic regions. Histone

modifications that significantly differ between URM and MRU patterns were informative effectors and used to further predict DMR patterns (p ,

0.001, Wilcoxon rank sum test). (f) Prediction accuracy of DMR patterns was evaluated by 10-fold cross validation. ROC curves were plotted based on the

prediction results in the promoter, gene body, downstream, and intergenic regions. The values in parentheses are the average AUC scores.
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Figure 6 | Co-variations of DNA methylation, H3K4me2, and H3K4me3. (a) Example genomic region where the variation of H3K4me2 and H3K4me3

was closely associated with the DNA methylation dynamic between H1 and IMR90. ML and MP correspond to methylation level and methylation

pattern respectively. In methylation pattern, green squares represent unmethylated regions and red squares represent methylated regions. (b–c) Genes for

which the co-variations of DNA methylation, H3K4me2, and H3K4me3 occurred in the promoter, gene body, and downstream regions were PG, GG and

DG respectively, and were used in the enrichment analysis. Functional enrichment (p , 0.05) of GO biological process terms and KEGG pathway for three

gene sets of Co-var1 and Co-var2 are showed in b and c respectively. We chose the top 10 enriched GO terms (b) and the top six enriched KEGG pathways

(c) in the PG, GG, and DG regions of Covar1 and Covar2; -log10(p) was used to generate the heat map.
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occurrence42,43. Recent studies using BisChIP-seq have shown a
distinct relationship between DNA methylation and H3K27me3 in
CpG islands33,34. To investigate their interactions in CpG islands, we
applied the RF algorithm to predict DNA methylation patterns with
the corresponding 16 histone modifications and sequence features.
We obtained a high prediction accuracy of histone modifications
(AUC .0.96) in the CpG islands in all three cell types (Figure 7a).
The prediction accuracy of the sequence features was lower;
AUCs 5 0.83, 0.88, and 0.73 in H1, NPC, and IMR90
respectively. Histone modifications accurately predicted the CpG
islands DNA methylation patterns and the combination of histone
modifications and sequence features produced similar results
(Figure 7a), which is similar in the promoter regions. It suggests
that the relationship between DNA methylation patterns and
histone modifications may be much closer and more conserved
than the relationship with sequence features in the promoter
regions and CpG islands.

The relative importance of chromatin modifications and sequence
features for DNA methylation prediction in CpG islands shows that
H3K4me2 or H3K4me3 were still the most important features
(Figure 7b). It’s consistent with previous studies that showed
H3K4 methylation was associated with the maintenance of the
CpG islands unmethylated patterns14. Repressive H3K9me3 mark
was stably positively correlated with DNA methylation in the pro-
moter regions and in CpG islands (Figure 7b and Supplementary
Figure S5c). Inactive CpG islands promoter regions are thought to
be regulated by DNA methylation, a long-term repressive state39,41.
Methylated promoters are occupied by nucleosomes at TSSs that are
enriched with H3K9me3 and stabilized by methylated DNA-binding
proteins, which in turn recruit histone deacetylases to the region44.
We also extracted the essential features for DNA methylation pre-
diction of CpG islands. Figure 7c shows that only the most essential
six feature combinations could correctly classify the CpG islands
DNA methylation patterns in H1, NPC, and IMR90. Among these

Figure 7 | Modelling DNA methylation using histone modifications and sequence features in CpG islands. (a) Prediction accuracies of DNA

methylation patterns using sequence features, histone modifications, and the combination of sequence features and histone modifications were indicated

by AUC scores. (b) Heat map showing the relative importance of each feature for DNA methylation prediction. The numbers on the right are the Pearson

correlation coefficients that indicate the correlation extent of DNA methylation and each of the features. (c) Prediction accuracies of the combinations of

the top n (n 5 1, 2, …, 18) important features. (d) Combinations of essential features for H1, NPC, and IMR90.
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combinations, H3K4m2, H3K4me3, and H3K36me3 were common
essential factors in the three cell types, suggesting that H3K36me3
may also be conserved in CpG islands (Figure 7d). Moreover, the
essential factors in the CpG islands were also predictive of the DMR
patterns between H1 and IMR90 (AUC 5 0.91) (Supplementary
Figure S7).

Discussion
In this work, we investigated the relative relationship of histone
modifications and genomic sequence contexts to DNA methylation
patterns in H1, NPC, and IMR90 based on the RF classifier. Although
previous studies have found that both histone modifications and
sequence features were correlated with DNA methylation, our work
provides a genome-wide insight into their genomic region-specific
and cell type-specific relationships.

Recently, many whole genome DNA methylation profiles have
been produced by BS-seq, and the ENCODE project has provided
a wealth of histone modification profiles by ChIP-Seq. The wide
range of data allowed us to employ computational methods on a
whole genome-scale and in different functional genomic regions,
without being limited to only CpG islands or promoters9,45.

The association between DNA methylation and histone modifica-
tions or sequence features was similar in H1 and NPC, but, in IMR90,
the association was specific to the gene body, downstream, or inter-
genic regions. We found that additional information was gained by
including sequence features only in these three regions by comparing
the performance of histone modifications with the performance of
the combination of histone modifications and sequence features.
Thus, the epigenetic state seemed to have experienced important
remodelling during development, and the mechanisms involved in
regulating the association of histone modifications and DNA methy-
lation may be different in IMR90. The active histone modification
signals of unmethylated patterns in IMR90 decreased markedly com-
pared with in the other three cell lines (p , 0.05, Wilcoxon rank sum
test). In contrast, repressive histone modifications H3K27me3 and
H3K9me3 signals were much stronger and may be associated with
the loss of pluripotency in IMR9018,30. Compared with differentiated
cell types, the epigenetic status is an open chromatin structure with
characteristic methylation and histone modification maps in embry-
onic stem cells30. H3K9me3 domains in these cells are small and
interspersed, but are substantially expanded in IMR9018, implying
that the relationship between DNA methylation and histone mod-
ifications is nuanced and complex during development. Illustrating
their associations may help improve the understanding of somatic
cell reprogramming.

We employed the RF algorithm to further confirm that histone
modifications were predictive of the dynamics of DNA methylation
between paired cell types, and also compared H1 to NPC. Compared
with the relationship between H1 and IMR90, NPC is derived
directly from H1; therefore, the DNA methylation landscapes of
these two cell types do not change dramatically, meaning that the
DMRs are relative less. For example, the number of URM patterns
in the promoter and downstream regions was only 72 and 27 respect-
ively (Supplementary Table S4). The datasets of the promoter and
downstream regions were small, making it difficult to obtain stable
and reliable prediction accuracies by ten-fold cross validation using
RF. Therefore, to predict whole genome DMRs between H1 and

NPC, we used the variations of the 16 histone modifications and
obtained a highly accuracy (AUC 5 0.93) (Supplementary Figure
S8). We have shown that the variations of histone modifications may
also be used to predict the DNA methylation dynamics between H1
and NPC. These results suggest that the co-variations of epigenetic
marks are important clues for cellular identity. By applying this
method to find the co-variation relevant genes between normal
and cancer cell types may help to obtain potential cancer-related
marks. Therefore, it is essential to identify the co-variations of paired
cell types to gain new understanding of biological processes from the
large amounts of data that is now publicly available.

Methods
DNA methylation and histone modification datasets. We collected genome-wide
DNA methylation and 16 histone modification profiles in three cell types: embryonic
stem cells (H1), H1-derived neuronal progenitor cultured cells (NPC), and foetal
fibroblasts (IMR90). The DNA methylation profiles were measured by whole-
genome shotgun BS-seq, which provides comprehensive single-nucleotide resolution
DNA methylation. DNA methylation maps of H1 and IMR90 were downloaded from
http://neomorph.salk.edu/human_methylome/41, and a DNA methylation map of
NPC was obtained from the ENCODE project by UCSD46. Bismark47 was used to map
the BS-seq reads onto the human reference genome (hg19) and the corresponding
methylation information was obtained. The common 16 histone modifications of H1,
NPC, and IMR90 were sourced from ENCODE (H3K4me1, H3K4me2, H3K4me3,
H3K79me1, H3K27me3, H3K9me3, H3K36me3, H3K9ac, H3K27ac, H2BK12ac,
H3K4ac, H4K8ac, H4K91ac, H3K23ac, H3K14ac, and H3K18ac)46. Histone
modification profiles were detected by ChIP-seq and their sequencing reads were
aligned to the hg19 sequence.

Identify genome-wide methylation patterns and classify them into different
genomic regions. CpG_MPs was developed to accurately identify genome-wide
unmethylated regions and methylated regions from high-throughput BS-seq
methylation profiles based on a hotspot extension algorithm37. CpG_MPs was applied
to identify the DNA methylation patterns of H1, NPC, and IMR90.

To evaluate whether the correlation between DNA methylation and features of
interest (histone modifications and sequence features) was consistent across different
genomic regions, we classified the DNA methylation patterns into four genome-wide
categories: promoter, gene body, downstream, and intergenic regions. Promoter
regions were centred [21000 bp, 1500 bp] to a TSS; gene body regions were centred
in the region .[1500 bp] to a TSS and ,[2500 bp] to the corresponding TTS;
downstream regions were centred [2500 bp, 11000 bp] to the corresponding TTS;
and intergenic regions were the regions that remained after the other three regions
were classified.

Sequence features and histone modification signals of DNA methylation patterns.
The human reference genome (hg19) was downloaded from the UCSC and the
sequence features including GC content and CpG O/E (observed/expected) were
calculated by CpG_MPs37. The GC content and CpG O/E of a genomic region were
determined as:

GC content~
NCzNG

L
, ð1Þ

CpG O=E~
NCpG|L

NC|NG
, ð2Þ

where L is the length of the genomic region, and NC, NG, and NCpG are the number of
cytosine, guanine, and CpG in the investigated genomic region respectively.

RPKM (reads assigned per kilobase of target per million mapped reads) is normally
used to quantify gene expression level from RNA-seq48. Here, we calculated RPKM as
histone modification signals according to the method described by Hon et al49. To
avoid RPKM being equal to zero, a pseudocount was added to Reads and was cal-
culated as:

pseudocount~
N
2

, ð3Þ

where N represents the total number of histone modification reads in the experiment.

Table 1 | Performance of five machine learning algorithms for DNA methylation prediction

Cell line Random forests RBF-SVM Decision tree J48 Naive Bayes Logistic regression

H1 0.991 0.972 0.977 0.951 0.980
NPC 0.987 0.961 0.974 0.942 0.983
IMR90 0.920 0.854 0.891 0.695 0.826

The numbers are the average AUC scores that were used to evaluate the prediction accuracy of the algorithms.
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Each histone modification signal in a genomic region was defined as:

RPKM~
(Readszpseudocount)|109

Length|N
, ð4Þ

where Reads represents the number of corresponding histone modification reads
located in the genomic region, and Length is the number of nucleotides in the genomic
region.

Robust model for predicting DNA methylation patterns. Five frequently-used
machine learning classification algorithms (RF, RBF-SVM, decision tree J48, naive
Bayes, and logistic regression) were used to predict DNA methylation patterns using
WEKA50 with the sequence features and histone modifications. Here, we compared
the performances of the five algorithms using the methylated regions as the positive
dataset and the unmethylated regions as the negative dataset. We randomly sampled
the same number of unmethylated regions and methylated regions from whole
genome-wide DNA methylation patterns to avoid bias caused by an unbalanced
proportion of positive and negative datasets, and performed 10-fold cross validation
for the sampled datasets to estimate the model accuracy. The process was repeated ten
times and the average area under the receiver operating characteristic curve (AUC)
was computed as the major indicator of prediction accuracy (Supplementary Figure
S9). To further evaluate the models, we also calculated accuracy (ACC), sensitivity
(SE), and specificity (SP) for each model. The RF algorithm achieved the highest
accuracy (AUC .0.90) and obtained comparable accuracy, sensitivity, and specificity
values across H1, NPC, and IMR90 (Table 1 and Supplementary Figure S10).
Therefore, RF was used to integrate the histone modifications and sequence features
for DNA methylation prediction.

We also compared the performance of sequence features (GC content and CpG O/
E), histone modifications (16 histone modifications), and the combination of
sequence features and histone modifications (GC content, CpG O/E and 16 histone
modifications) genome-wide and in the different genomic regions. We used the
RandomForest R package to evaluate the importance of features for classifying DNA
methylation patterns by MDG51. At each node of RF, a low Gini indicates that samples
are well classified. Then MDG of all the nodes in all trees in the forest was used to
evaluate the overall discriminative power of a particular feature for the classification.

Identify differentially methylated regions. CpG_MPs was applied to identify DMRs
between H1 and IMR9037. We classified DMRs into URM pattern (DMR in H1 is
unmethylated and methylated in IMR90) and MRU pattern (DMR in H1 is
methylated and unmethylated in IMR90). Sequence features and histone
modification signals of DMRs were also computed. To predict DNA methylation
dynamics between paired cell lines by RF, we used URM as the positive dataset and
MRU as the negative dataset. We also performed 10-fold cross validation by
sampling the same number of URM and MRU DMRs in a random manner, as
described above for the unmethylated and methylated regions. The process was
repeated 10 times and the average AUC, ACC, SE, and SP values were calculated to
evaluate the predictive performance.

Gene Ontology analysis. URM patterns and MRU patterns are characterized with
distinctive H3K4me2 and H3K4me3 marks. In the promoter regions, we chose URM
patterns with variations of H3K4me2 (log2(IMR90H3K4me2/H1H3K4me2)) and
H3K4me3 (log2(IMR90H3K4me3/H1H3K4me3)) that were less than their three-quarters
quantile and MRU patterns with variations of H3K4me2 (log2(IMR90H3K4me2/
H1H3K4me2)) and H3K4me3 (log2(IMR90H3K4me3/H1H3K4me3)) that were higher than
their one-quarter quantile. Genes that corresponded to the promoter URM DMRs or
MRU DMRs were obtained. Genes relevant to the gene body and downstream
regions were also identified as promoters. These different gene sets were assigned GO
terms and KEGG pathways by enrichment analysis using DAVID52.

CpG island analysis. CpG islands are important epigenetic regulatory elements and
abnormal methylation patterns in these regions are associated with cancer53. To
analyze DNA methylation patterns in CpG islands, we downloaded the CpG islands
data from UCSC http://genome.ucsc.edu/. DNA methylation patterns centred in
CpG islands were grouped into CpG islands category.
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