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We present a system-wide transcriptional network structure that controls cell types in the context of
expression pattern transitions that correspond to cell type transitions. Co-expression based analyses
uncovered a system-wide, ladder-like transcription factor cluster structure composed of nearly 1,600
transcription factors in a human transcriptional network. Computer simulations based on a transcriptional
regulatory model deduced from the system-wide, ladder-like transcription factor cluster structure
reproduced expression pattern transitions when human THP-1 myelomonocytic leukaemia cells cease
proliferation and differentiate under phorbol myristate acetate stimulation. The behaviour of MYC, a
reprogramming Yamanaka factor that was suggested to be essential for induced pluripotent stem cells
during dedifferentiation, could be interpreted based on the transcriptional regulation predicted by the
system-wide, ladder-like transcription factor cluster structure. This study introduces a novel system-wide
structure to transcriptional networks that provides new insights into network topology.

T
ranscriptional networks have been studied in relation to recurrent gene expressions patterns, which have
been interpreted previously as cell types1. In the context of network structure, network motifs2 and a human
transcriptional network among 119 transcription factors (TFs)3 have been reported. Hierarchical organiza-

tion of modularity was described in E. coli metabolic networks4. Additionally, network dynamics have been
examined based on relations between network motifs and dynamics5, and coordination of signalling and tran-
scriptional responses have been observed6. Another approach, co-expression analysis, has been used to study
functional gene modules7–10. Ruan et al. proposed gene modules related to a subtype of human lymphoma and to
yeast telomere integrity based on co-expression analyses7. Remondini et al. reported a relationship between co-
expression and the cascade of MYC-activated genes in rat8. Honkela et al. attempted to identify the targets of
transcriptional factors (TFs) based on ordinary differential equation models9,10. However, so far, no system-wide
structure involving the transition of expression patterns has been reported in transcriptional networks.

Here, we reveal a system-wide structure in a human transcriptional network based on co-expression analyses of
temporal expression profiles. Briefly, our approach was: (i) eliminate irrelevant TFs by filtering TFs based on
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covariance of temporal expression profiles; (ii) identify interactions
connecting the filtered TFs based on goodness-of-fit and slope ratio
information using a co-expression model; (iii) divide the filtered TFs
based on the goodness-of-fit to the co-expression model; (iv) infer a
system-wide structure in the identified interactions based on statist-
ical significance of the interactions between two classes; and (v)
simulate expression pattern transitions based on a transcriptional
regulatory model deduced from the system-wide structure. We
applied a proven index11 to step (i) and a proven co-expression
model12,13 to steps (ii) and (iii), to ensure that the approach was
reliable and that the predicted structure was convincing. We deduced
a system-wide, ladder-like transcription factor cluster structure and
validated predicted recurrent pattern transitions by state transition
simulations.

Results
We divided 2,247 TFs selected from the Genome Network Platform
(http://genomenetwork.nig.ac.jp/index_e.html) into two groups,
1,619 TFs relevant to the transcriptional network and 628 TFs that
were not relevant, based on the SUMCOV11 index in which covar-
iance was calculated between temporal expression profiles of the TFs
(see Methods, Supplementary Fig. S1 and TF_class_sumcov.xls at
http://debe-db.nirs.go.jp/nw/ for details). Interactions connecting
the filtered TFs were identified based on information provided by
the co-expression model13 (see FltdTF.zip at http://debe-db.nirs.go.
jp/nw/ for details). To identify interactions, we first selected the
threshold of the goodness-of-fit to the co-expression model as 0.7,
which retained almost all of the filtered TFs (99% 5 1,606/1,619).
Threshold values higher than 0.7 decreased considerably the number
of TFs that remained (see Supplementary Fig. S2), even though the
discarded TFs had been identified as relevant in the filtering stage.
Next, we calculated the slope ratio (see Supplementary Fig. S3), and
assigned a slope ratio threshold of 0.15, which is the same as the slope
ratio threshold used in a previous study13. Consequently, 80,540
interactions that satisfied the goodness-of-fit (.0.7) and slope ratio
(,0.15) criteria, were identified. These interactions connected 1,601
of the 1,619 relevant TFs (99% 5 1,601/1,619) (Fig. 1).

To classify the TFs, we used an approach that differed from those
used in previous studies14–16 where genes were grouped into clusters
based on the expression profiles of the genes. In the present study, the
genes were grouped into clusters based on the goodness-of-fit of the
interaction; i.e., we grouped together two TFs that similarly inter-
acted with third-party TFs (see Methods, and TF_class_sumcov.xls,
FltdTF.zip and ClstView.zip at http://debe-db.nirs.go.jp/nw/ for
details). As a result, four TF clusters were identified in the good-
ness-of-fit matrix (Fig. 2). The promotive (red) and inhibitory (blue)
regulation patterns in the matrix for each cluster (Fig. 2) indicated
that two types of TFs existed in each cluster, implying that further
clustering was required. Therefore, we conducted a second clustering
using a conventional clustering method, k-means clustering with k 5

2, based on the temporal expression profiles. Four TF clusters com-
posed of two types of classes were identified; one roughly showing an
upward trend, A1, B1, C1 and D1, and the other showing a downward
trend, A2, B2, C2 and D2 (Fig. 3a).

The identified classes were associated with interclass interactions
as follows. The 80,540 interactions in the network were identified as
promotive or inhibitory (see NM.cys at http://debe-db.nirs.go.jp/nw/
for details), and anchored to a combination of the two classes that
included source TFs and sink TFs (Fig. 3b, left panels). A two-sample
test17 for equality of proportions of the interactions identified 19
promotive and 17 inhibitory inter-class interactions as statistically
significant (coloured elements in Fig. 3b, right panels). When the
eight TF classes were connected with the statistically significant
inter-class interactions, a system-wide structure that looked like
two channels bridged by interfaces was revealed (Fig. 3c). We call
this a system-wide, ladder-like transcription factor cluster structure.

The TF-level view (Fig. 1) can be described as a force-directed-lay-
out18 of the network, where the TFs are positioned by their connec-
tions based on mutual relationships. This view shows that the TFs in
cluster B, C, and D are aggregated among themselves in the order B,
C, and D, while the TFs in cluster A are positioned in peripheral parts
of the network. The TF-level and class-level (Fig. 3c) views were
consistent with each other.

The similarity of temporal profiles was evaluated between a rep-
resentative profile of each class and a unit step function that modelled
the external input by the phorbol myristate acetate (PMA) that was
applied at the beginning of the experiments and supplied continu-
ously over the entire experimental time course (see Methods and
Supplementary Fig. S4 for details). The calculated similarities are
indicated by the lengths of the vertical bars in Fig. 3a. The B1 and
B2 classes in the two channels in the system-wide structure (Fig. 3c)
both showed the highest similarities among the classes, and the fur-
ther away a class was from B1 and B2, the lower the similarities of the
class became. It is possible to speculate that the temporal profile of an
external input will be deformed as the external input is processed in a
channel. Based on this idea, the positioning of the classes (Fig. 3c) is
reasonable because the similarity of a class with the step function
decreased the further removed the class was from B1 and B2 (Fig. 3a).

Computer simulations based on Boolean functions1 were per-
formed to validate to proposal that the states transitioned and
recurred to attractors towards which patterns of gene activity con-
verged (Fig. 4). To simulate the PMA treatment, we supplied step
functions, 0 R 1 to class B1 and 1 R 0 to class B2, as external inputs.
The simulation results revealed eight basins of attraction that con-
tained multiple states (for which the attracters were indicated as a1 to
a8 in Fig. 4) and 16 singleton basins of attraction that contained one
state (indicated as a9 to a24 in Fig. 4). Together, the 24 basins dem-
onstrate multistability of the system-wide, ladder-like transcription
factor cluster structure. Some of attractors showed expression pat-
terns that were reminiscent of some cell types. Attractor a1, with an
‘‘ALL OFF’’ state, might suggest cell death (Fig. 4, upper left).
Attractors a6, a7, and a8 (Fig. 4, bottom) mimicked the final express-
ion pattern, determined by quantitative real-time reverse-transcrip-

Figure 1 | Transcriptional network of the filtered transcription factors.
All the interactions satisfy two criteria, coefficient of determination r2 .

0.7 and the slope ratio ,0.15. Red indicates promotive interaction; blue

indicates inhibitory interaction. The network was drawn with Cytoscape33

using a force-directed layout. TFs are coloured according to their assigned

classes (lower left corner).
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tion polymerase chain reaction (qRT-PCR) during human THP-1
cell differentiation under PMA stimulation19, in which the repres-
entative profiles of B1, C1, and D1 were upregulated and the repres-
entative profiles of B2, C2, and D2 were downregulated compared
with their initial expression levels (Fig. 3a). Attractors a9 and a10

(Fig. 4, middle left) mimicked the initial expression patterns in which
the representative profiles of B1, C1, and D1 were low while the
representative profiles of B2, C2, and D2 were high compared with
their final expression levels (Fig. 3a). When the external inputs were
supplied, the trajectories moved out of attractors, a9 and a10, and into
the basin of attractors, a6 and a7. After a trajectory moved into the
basin of the a6 and a7 attractors, it converged there and did not
return, even when the external inputs were de-actuated. This result
demonstrated the irreversibility of the expression patterns, which
is similar to the irreversibility of cell types after stem cell differenti-
ation20. These results suggested that the trajectories mimic
expression pattern transitions that occur when human THP-1 mye-
lomonocytic leukaemia cells cease proliferation, become adherent,
and differentiate into mature monocyte- and macrophage-like phe-
notypes under PMA stimulation.

The behaviour of a Yamanaka factor essential to dedifferentiate
committed adult cells into a stem cell-like state21, MYC, was inter-
preted based on the system-wide, ladder-like transcription factor
cluster structure. Our clustering approach positioned the stem cell
reprogramming TF into the system-wide, ladder-like transcription
factor cluster structure. MYC was positioned in class B2 as a hub node

having promotive interactions with 34 downstream nodes (TFs)
positioned in class B2 (see TF_class_sumcov.xls and NM.cys at
http://debe-db.nirs.go.jp/nw/ for details). The simulation results
showed that enforced expression of class B2 containing MYC main-
tained the state at a high level either in a basin or in a singleton basin
(Fig. 4). These simulation results suggested that MYC activate the
TFs that are closely associated, thereby maintaining the energy
potential at a high level and keeping it in an undifferentiated prolif-
erative state. MYC is notable among the Yamanaka factors21, as
demonstrated in the effective generation of the induced pluripotent
stem cells (iPSCs) through the control of histone acetylation22.

Our simulations were performed on a class level so that identical
expression levels were assigned for TFs in a class. TF-level views of
the expression patterns also showed that the simulation results mim-
icked actual expression patterns well (Fig. 5). The 0th and 1st states in
the simulation results (Fig. 5a) mimicked high level expression over
the network in the actual expression patterns from 0 h to 6 h after
starting PMA treatment (Fig. 5b). The 2nd to 5th states in the simu-
lation results (Fig. 5a) mimicked the spreading and aggregating areas
of high level expression in the right-hand side of the network in the
actual expression patterns from 12 h to 96 h (Fig. 5b). These obser-
vations further validated our system-wide network model.

Discussion
Representative structure models for transcriptional networks have
been reported previously; for example, (i) a recurrent network in

Figure 2 | Goodness-of-fit matrices for the 1,619 filtered TFs in the transcriptional network. Each element (i, j) of a matrix indicates the goodness-of-fit,

measured by the coefficient of determination r2, by the depth of the colour. Red indicates bij . 0, where bij is the slope coefficient13 between the temporal

expression profiles of i-th and j-th TF, suggesting promotive regulation; blue indicates bij , 0, suggesting inhibitory regulation. Letters on the

dendrograms indicate the branch from which the TFs in the corresponding cluster split off. The heat-maps (right and below the matrices) show the

temporal expression profiles of the TFs.
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which multiple TFs mutually coordinated their activity changes19; (ii)
master regulator positioning at the top of fixed regulatory hierarch-
ies23; (iii) a combination of models (i) and (ii) with switching from
model (i) to (ii) as time passed24; and (iv) a three-layered model in
which each layer included multiple TFs and intra-layer connections3.
The system-wide, ladder-like transcription factor cluster structure

revealed in the present study, is novel in that two module series were
found to interact competitively.

The simulations based on the transcriptional regulatory model
deduced from the system-wide, ladder-like transcription factor clus-
ter structure indicated the validity of the network structure. The
simulations successfully mimicked expression pattern transitions

Figure 3 | Identification of a system-wide transcriptional network structure. (a) Normalized temporal expression profiles of TFs in eight classes. Grey

lines indicate the temporal profiles of the TF; black lines indicate the representative profile for each class defined as a series of medians. The length

of the bar adjacent to each graph indicates the calculated similarity ratio between the unit step function and the representative profile (see Supplementary

Fig. S4). The number of TFs assigned to each class is shown above each of the graphs. (b) Distributions of identified interactions between the eight TF

classes. The two panels on the left show the numbers of identified interactions between the TFs in the corresponding classes; the upper and lower panel

show the numbers of promotive and inhibitory interactions, respectively. The two panels on the right show the Z-scores based on the test statistic in the

two-sample test for equality of proportions (see Methods for details); the upper and lower panels show the Z-scores for the promotive and inhibitory

interactions, respectively. The p0 in the test statistic is the probability that an interaction with r2 . goodness-of-fit threshold and slope ratio , slope ratio

threshold is observed by chance (the formula is given in Methods) and given as p0 5 2,180/6282 5 0.0055. The pink and blue shading indicates statistically

significance as p , 0.005 (one-sided probability). The values (i-th row, j-th column) are for the interactions for which directionality13 was assigned such

that the TFs in a class in the i-th row R the TFs in a class in the j-th column. (c) System-wide ladder-like structure of statistically significant inter-class

interactions. External inputs were suggested to be supplied to classes B1 and B2.
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when human THP-1 myelomonocytic leukaemia cells ceased prolif-
eration and differentiated under PMA stimulation (Fig. 4). Further,
based on the transcriptional regulatory model from the system-wide,
ladder-like transcription factor cluster structure, the behaviour of
MYC during dedifferentiation could be interpreted, indicating that
the factor may be essential for iPSCs. Importantly, the system-wide
structure on which the transcriptional regulatory model was based is
a novel concept (Fig. 3c).

A two phase model has been reported for the reprogramming
process that induces iPSCs24. In this model, an early probabilistic
phase of gene activation was followed by a later deterministic phase.
Our simulation results can be interpreted equivalently; i.e., the
diverse expression patterns in the early phase eventually converged
into a fixed pattern of an attractor that recurred (Fig. 4). The simula-
tions also suggested validity of the system-wide, ladder-like tran-
scription factor cluster structure for the reprogramming process,
because the results (Fig. 4) matched the interpretation based on
the two phase model.

Additionally, the system-wide, ladder-like transcription factor
cluster structure exhibited some of the properties of a self-organ-
izing system25, namely, positive feedback and multiple interactions
as well as a pattern at the global level that arose from numerous
interactions among lower-level components (Fig. 1, 3c). The
reproduction of the expression patterns in the transcriptional net-
work could be interpreted based on the paradigm of self-organ-
ization; i.e., positive feedback by mutual inhibitions between two
channels in the system-wide, ladder-like transcription factor clus-

ter structure (Fig. 3c) autocatalytically amplified fluctuations of TF
expressions (Fig. 3a), and external input by the induction of MYC
triggered and maintained the process. As a result, the transcrip-
tional network was pushed farther from equilibrium and reached
high potential states that were maintained by the enforced
expression (orange checkerboards in Fig. 4).

Furthermore, the system-wide structure described here can be
linked with complex networks. The scale-free topology criterion
can be defined as the coefficient of determination for a power-law
distribution ,ck2c, where k is the number of interactions per node
and c is the degree of decay26. For the predicted network (Fig. 1), the
criterion was calculated as 0.67 (see Supplementary Fig. S5), which
indicated that the predicted network had a near scale-free property.
C was calculated to be 1.44 in the predicted network, similar to the
value obtained in previous study based on co-expression analyses (c
5 1.19 in human27). This similarity further confirmed our inference
of the system-wide, ladder-like transcription factor cluster structure,
despite the structure being unique. Most importantly, the above
observations imply that the approach described in this study uncov-
ered an ordered structure that differed significantly from the homo-
geneous appearance (Fig. 3c) in the nearly scale-free network (Fig. 1),
which had promised a homogeneous appearance.

Methods
Expression analysis. The expression profiles of 2,315 human TFs measured in a
genome-wide dynamics analysis of a THP-1 cell line over a time course of growth,
arrest, and differentiation were collected from the Genome Network Platform (http://

Figure 4 | Computer simulations of state transitions in the system-wide, ladder-like transcription factor cluster structure. The states of the network

structure are shown in the checkerboards, where the upper row, from left to right, indicates the state of the A1, B1, C1, and D1 classes, and the lower row

indicates the state of the A2, B2, C2, and D2 classes. Solid arrows indicate state transitions where no step functions (described below) were supplied. Dashed

arrows indicate state transitions where step functions (0 R 1 to class B1 and 1 R 0 to class B2) were supplied to mimic THP-1 cell differentiation under

PMA stimulation. The ordinal numbers indicate state transitions after supplying the step functions, which model the external PMA input. Orange

checkerboards indicate a final state when the enforced expression was added to the class B2 containing the MYC reprogramming factor under the

condition without supplying the step functions which model the external PMA input. Ai indicates an attractor of basin.
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genomenetwork.nig.ac.jp/index_e.html). qRT-PCR was performed using primer
pairs generated automatically from a single exon of each target gene. To obtain high
quality expression data, the reliability and specificity of each primer pair were
confirmed in a preparatory experiment. Temporal expression profiles were observed
at 0, 1, 2, 4, 6, 12, 24, 48, 72, and 96 hours after starting PMA treatment of human
THP-1 cell during differentiation across two biological replicates. Human THP-1
myelomonocytic leukaemia cells cease proliferation, become adherent, and
differentiate into a mature monocyte-and macrophage-like phenotype by stimulation
with PMA28,29. By eliminating expression data with suspected measurement errors,
2,247 TFs were selected from the 2,315 available TFs. Of the 2,247 TFs, 1,350 (60%)
were common to another independently developed dataset of 1,962 human TFs30. The
averaged expression levels (copy numbers) of the two biological replicates were used
for further analyses.

Filtering TFs. The SUMCOV11 (sum of covariance) criterion was used to eliminate
single TFs that were irrelevant to the transcriptional network. This criterion is based
on the covariance matrix of the gene expressions assuming that there are groups of
genes that are correlated among themselves, while being uncorrelated with the other
groups. The SUMCOV for each TF was calculated using the averaged expression
levels to identify the relevant genes. We implemented k-means clustering with k 5 2
based on the logarithm of the SUMCOV provided by Gene Cluster 3.031, to form a
relevant and irrelevant group of genes. The cluster that included the TFs with the
highest average criterion value was taken to represent the relevant group of genes for
the network. The cluster that included the remaining TFs (representing the irrelevant
group of genes) was used in a null-hypothesis to test significant interaction between
the classes (see the ‘‘Inferring system-wide network structure’’ section in Methods for
details).

Identification of interaction. The temporal profiles were fitted to a linear co-
expression model13, xj 5 aij 1 bijxi, that represented an interaction between the i-th
and j-th TFs, where xi indicates the expression level of i-th TF. The coefficient of
determination (r2) was calculated to determine the goodness-of-fit of the equation.
The nodes connected by interactions with r2 values higher than the goodness-of-fit

thresholds were investigated. We selected a goodness-of-fit threshold that left the
highest numbers of filtered TFs in the network. Directionality of an interaction was
assigned so that a small expression change in the ‘source’ gene was associated with a
large change in the ‘sink’ gene. We chose a slope ratio threshold that imposed
directionality on the interaction so that the ratio between the magnitudes of the slope
coefficients (smallest/largest) in the linear model13 was less than the threshold.

Clustering TFs. The filtered TFs were divided by the co-expression model into
clusters based on a series of rij

2 values, ri1
2, …, rij

2, …, rin
2, where rij

2 indicates the r2 of a
model in which the i-th TF regulates the j-th TF. Based on this method, if two TFs
regulate all other TFs identically, the distance between the two rij

2 series will be zero. It
is important to note that r2 is an absolute value that allows two interactions to be
determined as identical based on their goodness-of-fit to the co-expression model,
even if the effect of the interaction indicated by the sign of the slope coefficient bij is
different. Situations similar to this can be seen in the checkered patterns in Fig. 2.

Hierarchical clustering was performed using Gene Cluster 3.031 with the Euclidean
distance between the rij

2 series and the centroid linkage method. Clusters were
visualized using Java Treeview32. The TF clusters were divided into two classes based
on the temporal profiles of the TFs assigned to the clusters. For this clustering, we
implemented k-means clustering with k 5 2 of the normalized expression levels
(between zero and one) with the Euclidean distance31. Suffix ‘1’ was assigned to the
classes where the representative profiles showed an upward trend and suffix ‘2’ to was
assigned to the classes where the profiles showed a downward trend.

Inferring system-wide network structure. The effect of an interaction was decided
based on the sign of the slope coefficient (bij), which was estimated based on the co-
expression model: promotive if bij .0 and inhibitory if bij ,0. A two-sample test for
equality of proportions was used to evaluate the statistical significance of the
proportion (p1) of the interactions in the total number of potential ni 3 nj interactions
between the classes, where ni and nj indicate the number of TFs contained in the
classes. The null hypothesis was that p1 5 p0, where p0 is the probability that an
interaction, with r2 . goodness-of-fit threshold and slope ratio , slope ratio
threshold, is observed by chance. The p0 was calculated based on the potential

Figure 5 | TF-level views of the simulated and actual expression pattern transitions in the transcriptional network. (a) Simulated expression patterns of

the 0th to 5th states after supplying the step functions, 0 R 1 to class B1 and 1 R 0 to class B2, which modelled the external input by PMA. In these images the

averaged expression levels between the two trajectories (from a9 to a6 and from a10 to a7 (Fig. 4)) are displayed. (b) Actual expression patterns 0 to

96 hours after starting PMA treatment. The coloured bar on the right hand side indicates the expression level of the TFs in both panels.
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interactions between the TFs identified as single TFs (see OtherTF.zip at http://debe-
db.nirs.go.jp/nw/ for details) that were irrelevant to the transcriptional network in the
filtering analysis as (number of interactions, with r2 . goodness-of-fit threshold and
slope ratio , slope ratio threshold, between single TFs)/(number of single TFs)2. The
test statistic for the two-sample test for equality of proportions17 was:

Z~
p1{p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p(1{p) 1
m z 1

n

� �q , where p~
p1mzp0n

mzn
, and m and n are the number of

potential interactions between TFs in the corresponding two classes, and between TFs
identified as single TFs, respectively. Additionally, we investigated the similarity
between the representative profile of each class and the step function that modelled
external input by PMA applied at the beginning of the experiments and supplied
continuously over the entire time course (see Supplementary Fig. S4).

State transition simulation. The network state transition was simulated based on
Boolean functions (modified from Kauffman1). In the simulation, the states were
presented as binary values (zero or one) at the class level. The significant interclass
interactions were used to model transcriptional regulations in the network structure
(see Supplementary Fig. S6). In the simulation of THP-1 cell differentiation under
PMA stimulation, step functions (0 R 1 and 1 R 0) were provided to the B1 and B2

classes, respectively, as external inputs modelling the PMA stimulation.
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