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Understanding the evolution of human interactive behaviors is important. Recent experimental results
suggest that human cooperation in spatial structured population is not enhanced as predicted in previous
works, when payoff-dependent imitation updating rules are used. This constraint opens up an avenue to
shed light on how humans update their strategies in real life. Studies via simulations show that, instead of
comparison rules, self-evaluation driven updating rules may explain why spatial structure does not alter the
evolutionary outcome. Though inspiring, there is a lack of theoretical result to show the existence of such
evolutionary updating rule. Here we study the aspiration dynamics, and show that it does not alter the
evolutionary outcome in various population structures. Under weak selection, by analytical approximation,
we find that the favored strategy in regular graphs is invariant. Further, we show that this is because the
criterion under which a strategy is favored is the same as that of a well-mixed population. By simulation, we
show that this holds for random networks. Although how humans update their strategies is an open question
to be studied, our results provide a theoretical foundation of the updating rules that may capture the real
human updating rules.

E
volutionary game theory works if an individual’s performance not only depends on its own type, but also on
the type of individuals with whom they interact. It links the neutral drift theory1 with survival of the fittest in
evolutionary theory2–5. Evolutionary game theory can also be used to study cultural dynamics including

human strategic behavior and updating6–8. Interesting questions in this field include: i) based on what knowledge,
do individuals update their strategies? ii) how do individuals update their strategies?

It is important to understand how humans behave. Yet, it is still an open question to be studied, since various
updating mechanisms have been supported experimentally in humans9–12. It is a great challenge, which is mainly
because of a lack of verifiable constraint of human behaviors. Recent experimental investigation paves the way for
tackling such questions. It is found that the cooperation level does not change in spatial structures compared with
a well-mixed population12–14. This contradicts previous theoretical results based on imitation rules which show
that spatial structure promotes cooperation. Here imitation means that players update their strategies after the
comparison between their own payoffs via the game and another individual’s15–17. It provides a constraint on
searching for the updating rules of humans. Those that do not change the cooperation level in spatial populations
may likely be candidates. Progress along this line is fruitful. One of the key findings is that self-evaluation based
updating can result in the invariance of cooperation level in different population structures12,18,19. While simu-
lation results are abundant, analytical investigation is rare.

Here we analytically show that the aspiration dynamics makes the cooperation level invariant in different
population structures. In aspiration-driven updating, players switch strategies if an aspiration level is not met,
where the level of aspiration is an intrinsic property of the focal individual20–24. Aspiration-driven dynamics are
often observed in studies of animal and human behavioral ecology. For example, fish would ignore social
information when they have relevant personal information25. Experienced ants hunt for food based on their
own previous chemical trails rather than imitating others26. Aspiration also plays a key role in the individual
behaviors in rat populations27. These examples clearly show that the idea behind aspiration dynamics, i.e., self-
evaluation, is present in the animal world. In behavioral sciences, the view that individuals value their payoffs by
comparing them with an aspiration level has a long tradition28,29. It is also studied as in the domain of human
decision-making under risk30,31. Aspiration levels are frequently incorporated when predicting behaviors in
interactive situations21,32–36.

We study the statistical mechanics of a simple case of aspiration-driven self-learning dynamics in various
structured populations of finite size. For regular graphs, under weak selection approximation, we show that the
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favored strategy by aspiration dynamics is the same as that of a well-
mixed population. For irregular graphs, simulations suggest the same
result in random networks. Simulations also extrapolate our weak
selection results to stronger selection cases. Our results foster the
understanding of aspiration dynamics in structured population.
And it may trigger the studies in behavior experiments.

Results
Model definition. We consider stochastic evolutionary game
dynamics with two strategies in a structured population of finite
size, N. A focal player can be of type A, or B, and interact with all
of its neighbors according to the underlying population structure. In
the model, each individual occupies a vertex of a graph. The edges
denote connections between players in terms of interaction of
game. Here we only consider that the interaction graph and the
replacement graph are identical, although they need not be the
same37. In individual encounters, players obtain their payoffs from
simultaneous actions. Based on all the interactions, an average payoff
of an individual is calculated based on the payoff matrix as follows

A B

A a b

B c d

ð1Þ

For example, a B player, which encounters k other individuals and i of
those are type A, obtains payoff [ci1d(k 2 i)]/k. An A player con-
nected with i other A player and k 2 i B players obtains payoff [ai 1

b(k 2 i)]/k.
In the following, we introduce an update rule based on a global

level of aspiration. This allows us to define a Markov chain describing
the inherently stochastic dynamics in a finite population: probabil-
istic change of the composition of the population is driven by the fact
that each individual compares its actual payoff with an imaginary
value that it aspires to. Note here that we are only interested in the
simplest way to model such a complex problem and do not address
any learning process that may adjust such an aspiration level as the

system evolves. For a sketch of the aspiration-driven evolutionary
game, see Fig. 1.

Aspiration-level-driven stochastic dynamics. We consider the
simplest case of an entire population having a certain level of
aspiration. Players needn’t see any particular payoffs but their own,
which they compare with an aspiration value. This level of aspiration,
a, is a variable that influences the stochastic strategy updating. The
probability of switching strategy is random when individuals’ payoffs
are close to the level of aspiration, reflecting the basic degree of
uncertainty in the population. When payoffs exceed the aspiration,
strategy switching is unlikely. At high values of aspiration compared
with payoffs, switching probabilities are high.

Note that although the level of aspiration is a global variable and
does not differ individually, owing to payoff inhomogeneity there can
always be a part of the population that seeks to switch more often due
to dissatisfaction with the payoff distribution.

In our microscopic update process, we randomly choose an indi-
vidual, x, from the population, and assume that the average payoff of
the focal individual is px. To model stochastic aspiration-driven
switching, we can use the following probability function

g a{pxð Þ~ 1

1ze{v a{pxð Þ , ð2Þ

which is similar to the Fermi-rule20,38, but replaces a randomly drawn
opponent’s payoff by the aspiration level. The wider the positive gap
between aspiration and payoff, the higher the switching probability.
Reversely, if payoffs exceed the level of aspiration individuals become
less active with increasing payoffs. The aspiration level, a, provides
the benchmark used to evaluate how ‘‘greedy’’ an individual is.
Higher aspiration levels mean that individuals aspire to higher pay-
offs. In addition, when modeling human strategy updating, one typ-
ically introduces another global parameter, the intensity of selection,
v, which provides a measure for how important individuals deem the
impact of the actual game on their update. Irrespective of the aspira-
tion level and the frequency dependent payoff distribution, vanishing

Figure 1 | Evolutionary game dynamics in structured populations driven by global aspiration. In our mathematical model of strategy updating driven

by self-learning, players in the finite population are assigned on a graph structure to play the game. According to this, players calculate and obtain their

actual payoffs. They are more likely to switch strategies if the payoffs they aspire to are not met. On the other hand, the higher the actual payoffs compared

with the aspiration level a are, the less likely they switch their strategies. Besides, strategy switching is also determined by a selection intensity v. For

vanishing selection intensity, switching is entirely random irrespective of payoffs and the aspiration level. For increasing selection intensity, the self-

learning process becomes increasingly more ‘‘optimal’’ in the sense that for high v, individuals tend to always switch when they are dissatisfied, and never

switch when they are tolerant. We examine the simplest possible setup, where the level of aspiration a is a global parameter that does not change with the

dynamics. We show that, however, the average abundance of a strategy does not depend on a under weak selection.
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values of v refer to nearly random strategy updating. For large values
of v, individuals’ deviations from their aspiration level have a strong
impact on the dynamics. In the case of v R ‘, individuals are strict
in the sense that they either switch strategies with probability one if
they are not satisfied, or stay with their current strategy if their
aspiration level is met or overshot.

In the analysis process (see Methods and Supplementary Informa-
tion), we are interested in the limit of weak selection, v=1, and its
ability to predict the success of cooperation in evolutionary games in
structured populations. The weak selection, which has a long standing
history in population genetics and molecular evolution1, also plays
a role in social learning and cultural evolution. Recent experimental
results suggest that the intensity with which humans adjust their strat-
egies might be low8. Although it has been unclear to what degree and in
what way human strategy updating deviates from random11,39, the weak
selection limit is of importance to quantitatively characterize the evolu-
tionary dynamics. In the limiting case of weak selection, we are able to
analytically classify strategies with respect to the neutral benchmark,
v R 015,17,40–42. We note that a strategy is favored by selection, if its
average abundance under weak selection is greater than one half. In
order to come to such a quantitative observation, we need to calculate
the stationary distribution over the abundance of strategy A.

Results and conclusions. We analytically derive a unified condition,
a 1 b . c 1 d, for one strategy to be favored over the other in regular
graphs, which is the same with that in a well-mixed population. The
analytical derivation process is detailed in Methods and Supplementary
Information. Further by simulation, we verify that under the limit of
weak selection, the criteria of strategy dominance for aspiration
dynamics with various population structures are the same (see
Fig. 2). Particularly, this criterion is the well-known condition for
risk dominance. Thus the risk-dominant strategy which has the
bigger basin of attraction always dominates the population for any
population structures. For random networks, we maintain that the
criterion holds for different population sizes and average degrees via
simulation. The results are depicted in Fig. 3.

For our aspiration-driven update rule, the transition probabilities
are differentiable at v 5 0; and it is symmetric for the two strategies.
Considering the concept of structural dominance43,44, for a popu-
lation structure and an update rule satisfying above conditions, strat-
egy A is favored over B for weak selection if s a 1 b . c 1 s d. Here a,
b, c, d are the entries of the payoff matrix (1), and s is the structure
coefficient, which depends on the model and the dynamics, such as
population structure and update rule, but not on the entries of the
payoff matrix. For death-birth process, birth-death process and

Figure 2 | Simulations for aspiration dynamics confirm the criterion a 1 b . c1d. We study a payoff matrix of a 5 1, 21 # b # 1, 20.5 # c # 1.5, and

d 5 0. The change trends of the abundance of strategy A for different structures are shown. According to the linear inequality s a 1 b . c 1 s d in [43],

the equilibrium condition is s 5 c 2 b, which is shown as the fitting (red dash dot) line in each panel. Below the line strategy A is favored. For the

structures considered, the simulation results fit for the theoretical prediction s 5 1. (a) A well-mixed population with N 5 8. (b) A cycle with N 5 8.

(c) A regular graph with k 5 3 and N 5 8. (d) A lattice with k 5 4 and N 5 9. (e) A star with N 5 8. (f) A random graph with N 5 8 and average degree
�k~2. For all the simulations, we use selection intensity v 5 0.01. Each point is an average over 2 3 108 runs.
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imitation process43–45, the corresponding s varies for different popu-
lation sizes and structures (see Fig. 4). Taking DB updating for
example, in a well-mixed population, s 5 (N 2 2)/N; in a cycle, s
5 (3N 2 8)/N; in a regular graph, s 5 [(k 1 1)N 2 4k]/[(k 2 1)N];
and in a star, s 5 1. Compared with former referred update process,
the structure coefficient for aspiration dynamics is always s 5 1
under weak selection limit (simulation results see Fig. 2). It is worth
noting that this is true for graphs of any population size. This reduces
structural dominance to the well-known concept of risk dominance,
a 1 b . c 1 d, as if the population was well mixed. This means that
the population structure never leads to a clustering of strategies in
such dynamics. Individuals treat counterparts of different strategies
alike without distinction when interacting. This explains why the
aspiration dynamics does not alter the cooperation level. It is shown
that under weak selection, the favored strategy is invariant for dif-
ferent structures. Moreover, for the aspiration dynamics, strategy
selection in structured populations share the same favored strategy
with well-mixed populations. It suggests that population structures
have little relevance as a cooperation promoter or inhibitor among
humans on this aspiration-driven behavioral rule.

We study the equilibrium strategy distribution in a finite popu-
lation and make a weak selection approximation for the average

strategy abundance for any population size with two strategies, which
turns out to be independent of the level of aspiration. This is different
from the aspiration dynamics in infinitely large populations, where
the evolutionary outcome crucially depends on the aspiration level46.
Numerical Simulations not only verify the analytical results, but also
extrapolate weak selection results to stronger selection cases (see
Fig. 5). It turns out that our weak selection predictions also hold
for strong selection in these examples.

Discussion
Recent experiments reveal that human cooperation level may not
change for different population structures. This motivates us to the-
oretically investigate what kind of updating rules satisfy this con-
straint. It is known that population structures can dramatically alter
the evolutionary outcome. This is true for the well-studied pair-wise
comparison process, Moran-like process, especially for Death-birth
(DB) process, and Birth-death (BD) process43–45. It seems unlikely to
have such an updating rule to make the evolutionary outcome robust
to all the structures. Here, surprisingly, we find that aspiration-dri-
ven dynamics can make the cooperation level unchanged in respect
to population structures, which agrees with the recent experimental
results. This suggests that humans may update strategies based on

Figure 3 | Numerical simulations confirm the criterion a 1 b . c 1 d for random graphs with different population sizes and average degrees. Entries in

the payoff matrix are a 5 1, 21 # b # 1, 0 # c # 2, and d 5 0. The fitting red line is the equilibrium condition c 5 b 1 s. Below this line A is favored. The

network structures are generated with population size N 5 10, 50, and 100. Random graphs are generated in much the same way as random regular

graphs, but relaxing the constraint that every node has the same number of links to having k links on average. Here, we first need to make sure that the

graph is connected, thus every node is first linked to a random node of the already connected ones. In a second step two randomly drawn nodes are linked.

The second step is repeated until the desired average connectivity is reached. For various N and average degree �k~2, 3, and 4, the simulation results fit

for the theoretical prediction s 5 1. For all the simulations, we use selection intensity v 5 0.01. Each simulation point is an average over 2 3 108 runs.
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aspiration. The next question is whether or not this aspiration
dynamics is the only dynamics that keep the invariance of strategy
abundance? If not, what else can be there? Are there any similarities
among those candidate updating rules? These questions will foster
the understanding of the human updating.

Our analytical results hold for weak selection, which might be a
useful framework in the study of human interactions, where it is still
unclear with what role model individuals compare their payoffs and
with what strength players update their strategies. Although weak
selection approximations are widely applied in the study of fre-
quency-dependent selection, it is not clear whether the successful
spread of human behavioral traits operates in this parameter regime.
Owing to that selection intensity can have crucial effects on the
evolutionary outcome47, it will be interesting to derive analytical
results that either hold for any intensity of selection or at least for
the limiting case of strong selection in finite populations. On the
other hand, further theoretical results for all the structures will be
essential to our fundamental understanding of human behaviors and
may guide insights to the effective functioning of the human mind.

Compared with imitation (pairwise comparison) dynamics, our
self-learning process, which is essentially an Ehrenfest-like Markov
chain, has some different characteristics. Without the introduction of
mutation or random strategy exploration, there exists a stationary
distribution for the aspiration-driven dynamics. Even in a homogen-
ous population, there is a positive probability that an individual can
switch to another strategy owing to the dissatisfaction resulting from
payoff-aspiration difference. This facilitates the escape from absorb-
ing states in the pairwise comparison process and other Moran-like
evolutionary dynamics. Hence there exists a nontrivial stationary
distribution of the Markov chain satisfying detailed balance.

Our model illustrates that aspiration-driven self-learning dynamics
alone, irrespective of any discrepancy of population structure, may be
sufficient to alter the expected strategy abundance. The weak selection
criterion under aspiration dynamics that determines whether a strat-
egy is more abundant than the other, differs from the criterion under
imitation dynamics, especially when the population size is not too
large. Based on this, a strategy favored under imitation dynamics can
be disfavored under aspiration dynamics. This highlights the intrinsic
difference between imitation and aspiration dynamics.

Methods
Analysis for a well-mixed population. The expected payoffs for any A or B in a finite
well-mixed population of size N with i players of type A and N 2 i players of type B,
are given by pA(i) and pB(i).

The spread of successful strategies is modeled as follows in discrete time. In one
time step, three events are possible: the abundance of A, i, can increase by one with
probability p i?iz1ð Þ~Tz

i , decrease by one with probability p i?i{1ð Þ~T{
i , or

stay the same with probability p i?ið Þ~T0
i . All other transitions occur with prob-

ability zero. The transition probabilities can be obtained (see Supplementary

Information). Based on the probabilities, we can obtain Tz
i

� �’
and T{

i

� �’
. In the limit

of weak selection (v R 0), we have Tz
i

� �’���
v~0

, T{
i

� �’���
v~0

, P
j{1
i~0 Tz

i

� ����
v~0

,

P
j
i~1 T{

i

� ����
v~0

,
Xj{1

i~0
Tz

i

� �’
P

j{1
k~0,k=i Tz

k

� �h i���
v~0

, andXj

i~1
T{

i

� �’
P

j
k~1,k=i T{

k

� �h i���
v~0

, when we denote the following equivalent pay-

offs, pA ið Þ~ a i{1ð Þzb N{ið Þ
N{1

and pB ið Þ~ cizd N{i{1ð Þ
N{1

.

In each time step, a randomly chosen individual obtains its payoff in the evolu-
tionary game, and compares it with the level of aspiration. Individual changes strategy
with probability lower than 1/2 if its payoff exceeds the aspiration. Otherwise, it
switches with probability greater than 1/2, except when the aspiration level is exactly
met, in which case it switches randomly (note that this is very unlikely to ever be the
case).

The Markov chain satisfies the detailed balance condition yj{1Tz
j{1~yjT

{
j ,

where (y0, y1, � � � , yj, � � � , yN ) is the stationary distribution over the abundance of

A in equilibrium48,49. Considering
XN

j~0
yj~1, we find the exact solution by

recursion, given by

yj~

j~0 : 1

1z
PN

k~1
qz

0 k{1=q{
1 k

jw0 :
qz

0 j{1

�
q{

1 j

1z
PN

k~1
qz

0 k{1=q{
1 k

8>><
>>: , ð3Þ

where q+j k~Pk
l~j T+

l is the probability of successive transitions from j to k. The
analytical solution Eq. (3) allows us to find the exact value of the average abundance of
strategy A,

XAh i vð Þ~
XN

j~0

j
N

yj vð Þ, ð4Þ

for any strength of selection.
To better understand the effects of selection intensity, aspiration level, and payoff

matrix on the average abundance of strategy A, we further analyze which strategy is

Figure 4 | Comparison of different dynamics in various structures. For update rules satisfying the assumptions in [43], the condition that strategy A is

favored over B reads s a 1 b . c 1 s d. Under weak selection, the structure coefficient s for aspiration dynamics in various graphs is compared with

those in birth-death updating, death-birth updating and pair-wise comparison process of different population sizes. As shown in [43,44], the structure

coefficient for those updating rules is s~
N{2

N
in well-mixed populations. For BD updating and pair-wise comparison on a wide class of homogeneous

graphs, s~
N{2

N
, which is the same as that in well-mixed populations; while on a star s~

N3{4N2z8N{8
N3{2N2z8

. For DB updating, s~
kz1ð ÞN{4k

K{1ð ÞN for a

regular graph of degree k (including cycle and lattice); while on a star s 5 1. In particular, most of the results for Moran-like process in structured

populations depend on the mutation rate, thus the theoretical s is obtained under low mutation limit.
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more abundant based on Eq. (3). For a fixed population size, under weak selection, i.e.
v R 0, the stationary distribution yj(v) can be expressed approximately as

yj vð Þ<yj 0ð Þzv
L

Lv
yj vð Þ

� 	
v~0

, ð5Þ

where the neutral stationary distribution is simply given by yj 0ð Þ~Ci
N

�
2N , and the

first order term of this Taylor expansion amounts to

L
Lv

yj vð Þ
� 	

v~0

~
Cj

N

2Nz1

Xj

k~1

pA kð Þ{pB k{1ð Þ½ �{ 1
2N

XN

k~1

Ck
N

Xk

l~1

pA lð Þ{pB l{1ð Þ½ �
( )

:

ð6Þ

Interestingly, in the limiting case of weak selection, the first order approximation of
the stationary distribution of A does not depend on the aspiration level. For higher
order terms of selection intensity, however, yj(v) does depend on the aspiration level.

Based on the approximation (5), with two strategies of normal form (1), we can
calculate a weak selection condition such that in equilibrium A is more abundant than

B. As for neutrality, yj 0ð Þ~Cj
N

.
2N holds, and thus ÆXAæ(0) 5 1/2, it is sufficient to

consider positivity of the sum of jv [hv yj(v)]v 5 0/N over all j~0, � � � , N . Under
weak selection, strategy A is favored by selection, i.e., ÆXAæ(v) . 1/2, if

azbwczd: ð7Þ

It is similar to the concept of risk-dominance translated to finite populations40. For a
detailed derivation of this analytical result, see Supplementary Information.

Analysis for general regular graphs. We can calculate the average abundance of
strategy A for any two-strategy game on a regular graph by using pair
approximation22,50–52 (see Supplementary Information). We still show that if a 1 b . c
1 d, strategy A is favored in abundance for any degree k. Therefore, it implies that
under weak selection, aspiration dynamics does not alter the average abundance of a
strategy in a pairwise game, irrespective of the aspiration and the degree of a regular
graph.
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20. Szabó, G. & Tőke, C. Evolutionary prisoner’s dilemma game on a square lattice.
Phys. Rev. E 58, 69–73 (1998).

21. Roca, C. P. & Helbing, D. Emergence of social cohesion in a model society of
greedy, mobile individuals. Proc. Natl. Acad. Sci. USA 108, 11370–11374 (2011).
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