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As atmospheric CO2 concentration increases, many experiments have been carried out to study effects of
CO2 enrichment on litter decomposition and nutrient release. However, the result is still uncertain.
Meanwhile, the impact of CO2 enrichment on nutrients other than N and P are far less studied. Using
open-top chambers, we examined effects of elevated CO2 and N addition on leaf litter decomposition and
nutrient release in subtropical model forest ecosystems. We found that both elevated CO2 and N addition
increased nutrient (C, N, P, K, Ca, Mg and Zn) loss from the decomposing litter. The N, P, Ca and Zn loss
was more than tripled in the chambers exposed to both elevated CO2 and N addition than those in the
control chambers after 21 months of treatment. The stimulation of nutrient loss under elevated CO2 was
associated with the increased soil moisture, the higher leaf litter quality and the greater soil acidity.
Accelerated nutrient release under N addition was related to the higher leaf litter quality, the increased soil
microbial biomass and the greater soil acidity. Our results imply that elevated CO2 and N addition will
increase nutrient cycling in subtropical China under the future global change.

L
itter decomposition is a critical process in biogeochemical cycles in terrestrial ecosystems. Understanding
litter decomposition process and its controlling factors are important for studying nutrient cycling. With
increasing atmospheric CO2, many experiments have been carried out to study the effect of elevated CO2 on

litter decomposition. However, over the last decade, there is considerable debate about the net effects of elevated
CO2 on this ecological process. Lower mass-loss1–2, higher mass-loss3–4 and no effect5 of CO2 enrichment on the
leaf litter decomposition were reported. Atmospheric N deposition is a serious problem in some areas. Numerous
studies have also been done to show the effect of N addition on litter decomposition. The stimulation of litter
decomposition by N additions was shown in the studies of Torbert et al. (2000), Liu et al. (2006) and Mo et al.
(2006)6–8. However, the inhibitory effect of N addition on litter decomposition was also detected by Tu et al.
(2014) and Peng et al. (2014)9–10. The varied effects of elevated CO2 and N addition on quality of litter, soil
macroclimate environment, soil microbes etc. lead to different responses under different conditions8–9,11–12.

Elevated CO2 can affect litter quality by altering tissue concentrations of nutrients13. A decreased quality of
litter under elevated CO2 has long been considered the major mechanism decreasing litter decomposition14–15. A
meta-analysis of data from naturally senesced leaves in field experiments showed that the N concentration in leaf
litter was 7.1% lower in elevated CO2 compared to that in ambient CO2

16. Different effects of elevated CO2 on
litter quality and decomposition have been documented17. However, most of research has been done in temperate
areas18, which are often N-limited and with low N deposition. Atmospheric N deposition is a serious problem in
subtropical China. This led to high N deposition in precipitation in some forests (30–73 kg N ha21yr21)8.
Recently, some studies have been done about the effects of N deposition on litter quality and nutrient miner-
alization in this area8, while there is no report about the interactive effect of elevated CO2 and N addition on the
litter quality and decomposition in this N-rich subtropical area where N deposition will increase persistently in
the future19.

Elevated CO2 has the potential to alter nutrient mineralization not only by changing the litter quality, but also
by modifying forest-floor environmental conditions such as soil moisture and temperature20–22. Changes such as
these in the forest environment would further affect the rates of biogeochemical process. Soil microbial processes
are stimulated by soil humidity which accelerates litter decomposition and nutrient mineralization12,23. It was also
reported that elevated CO2 and N addition would change soil microbial biomass or community structure24–25,
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which would directly affect litter decomposition and nutrient loss.
Hence, to know the mechanism of elevated CO2 and N addition on
the litter decomposition, soil macroclimate factors and soil microbial
community structure should be monitored simultaneously.

We conducted a 21-month decomposition study from the 3rd to
4th year of the CO2 fumigation and N addition. Our study was
designed to investigate the effects of elevated CO2 and N addition
on the nutrient loss from the decomposing litter. The effects of ele-
vated CO2 and N addition on the initial litter quality, soil moisture
and temperature as well as soil microbial community were also
studied to show the major mechanisms affecting litter decomposi-
tion. We focused on changes in the quality and nutrient loss rates of
litter from mixed leaf litter instead of individual species litter as
natural forest ecosystems with mixed tree species distributes most
area of subtropical China. We hypothesized that: (1) elevated CO2

would decrease litter quality but increase soil moisture, and hence it
would not affect litter decomposition rate in subtropical China; (2) N
addition would increase litter quality but decrease soil microbial
biomass, and it would not change litter decomposition and nutrient
release either; (3) the interaction of elevated CO2 and N addition
would increase litter decomposition, and hence lead to more nutrient
release.

Results
CO2 and N effects on initial leaf litter quality. Initial C, N
concentrations and C5N ratios in the leaf litter had no significant
responses to increased CO2 and N addition (Table 1). However, the
average initial P concentrations in the CC, NN and CN treatments
were 19.2%, 15.4% and 7.7% higher than CK, respectively (Table 1).
The statistical analysis also showed the decreased ratios of C5P and
N5P were found in the CC, NN and CN, when compared with CK.

Compared with the control, both elevated CO2 and N addition
increased significantly Ca and Mg concentrations in the leaf litter
(Table 1). About 38.0%, 33.9% and 20.4% greater Ca concentrations
in the leaf litter were shown in the NN, CN and CC treatments,
respectively. About 33.3%, 33.3% and 8.3% greater Mg concentra-
tions were detected in the NN, CN and CC treatments, respectively.
Higher Al, Mn and Pb concentrations in leaf litter were also found in
the chambers exposed to elevated CO2 treatment.

CO2 and N effects on soil pH, soil temperature and moisture. Both
elevated CO2 and N addition treatments significantly decreased soil
pH in the 0–20 cm layer (Table 2). There was no treatment effect on
soil temperature (Table 3). Soil moisture was significantly affected by

the CO2 treatment, N treatment and their interactions (P , 0.001 for
all, Table 3). The greater soil moisture was found in the CC and CN
chambers than CK. However, the N treatment decreased significantly
the soil moisture, with the lowest soil moisture in the NN chambers
(Fig. 1).

CO2 and N effects on soil microbial properties. Abundances of
PLFAs were used here as indicators of the active living biomass. The
abundance of PLFAs for bacteria, fungal, gram-positive bacteria, and
gram-negative bacteria were unaffected by elevated CO2 in either the
0–10 cm or 10–20 cm soil layer (Fig. 2). However, N addition
significantly increased (P , 0.05) the abundances of the total PLFAs
and the PLFAs for total bacteria, gram-negative bacteria, AMF and SF
PLFAs in the 0–10 cm soil layer (Fig. 2). The F5B ratio in the 10–
20 cm soil layer was significantly higher in CC treatment.

CO2 and N effects on leaf litter mass loss. Mass remaining was
significantly affected by sampling time (P , 0.01) and the
interactions of time and treatments (P , 0.0001). The significant
differences between treatments occurred in Jan.2008 (about half a
year), November 2008 (about 1.4 year) and Apr.2009 (about 1.8 year)
(P , 0.05, Fig. 3). The decay rate constant (k) of litter decomposition
was 0.711 for CK, 0.772 for NN, 0.831 for CC, and 1.076 for CN, with
the significantly higher value in CN than in CK. At the end of the
experiment, the average mass loss in the CN, NN and CC chambers
were 45%, 37% and 18%, respectively, higher than CK chambers.
Correlation analysis showed that decomposition coefficients (k)
were negatively correlated (R2 5 0.602, P 5 0.0399) with the
corresponding initial N5P ratio, however, the initial N and P
concentration did not influence their decomposition coefficients.

CO2 and N effects on nutrient loss during leaf litter decomposition.
Carbon, N, P, Na, Ca, Mg, Mn released faster in the decomposing litter
than other elements. Especially for Na, Mg and Mn, more than half of
original weight released in two-month litter incubation. While the
immobilization of K, Pb and Al from external sources was obvious
as they showed relative high concentrations in the soil (Fig. 4). Except
for Na and Mn, the other elements loss in the decomposing litter were
all increased by elevated CO2 treatment (Table 4, Fig. 4). The nutrient
loss was following the order: CN . CC . NN . CK. Except for Na, Al
and N, N addition also increased other element release from leaf litter.
The interactive effects of elevated CO2 and N addition only affected Ca,
Mg and Al loss. The N, P, Ca and Zn loss were more than three times
greater in the CN treatment than those in CK (Fig. 4). Statistical

Table 1 | Initial chemical composition of leaf litter used for the decomposition study under elevated CO2 and N addition treatments. The
treatments were: CK 5 control, NN 5 high N treatment, CC 5 elevated CO2 concentration treatment and CN 5 elevated CO2 concentration
treatment 1 high N treatment. Values are means 6 standard deviation. The different lowercase letters in the same row indicated significant
treatment differences at a 5 0.05 level

Concentration

Treatments

CK CC CN NN

C (mg g21) 448.6(18.5) 441.3(20.6) 450.0(17.4) 442.0(18.8)
N (mg g21) 12.4(0.5) 12.2(1.2) 11.6(0.6) 11.7(0.3)
P (mg g21) 0.26(0.03) c 0.31(0.03) a 0.28(0.01) bc 0.30(0.00) ab
K (mg g21) 0.62(0.04) 0.71(0.06) 0.74(0.15) 0.65(0.06)
Ca (mg g21) 12.33(0.8) c 14.85(0.087) b 16.51(1.98) ab 17.02(0.73) a
Mg (mg g21) 1.2(0.2) c 1.3(0.2) bc 1.6(0.2) ab 1.6(0.1) a
C:N ratio 36.31(1.87) 36.29(2.61) 39.04(1.95) 37.81(0.52)
N:P ratio 48.78(5.61) a 39.03(3.06) b 40.78(2.47) b 38.76(0.92) b
C:P ratio 1774(252) a 1414(125) b 1589 (82) b 1465(53) b
Al (mg g21) 2.3(0.3) b 2.9(0.3) a 3.1(0.6) a 2.2(0.1) b
Mn (ppm) 314.2(53.8) b 409.3(50.6) a 368.2(63.7) ab 312.9(0.6) b
Pb (ppm) 20.3(2.7) b 26.3(6.5) a 27.5(3.2) a 22.7(0.2) ab
Zn (ppm) 218.7(79.5) 266.8(75.8) 288.3(46.5) 286.2(72.9)
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analyses showed that increased P, Ca and Mg concentrations in the
initial leaf litter were significantly related to nutrient loss.

Litter C5N ratios were not affected by CN, CC or NN. However,
CO2 enrichment increased N5P and C5P ratios significantly (Fig. 5).
The ratios of N5P and C5P were also significantly affected by the
interactive effects of CO2 enrichment and N addition. However N
addition alone did not change the ratios of N5P and C5P.

Discussion
The effects of CO2 treatment on nutrient loss during leaf litter
decomposition. Litter chemistry has been shown to be an important
driver of litter decomposition in the tropics28–29. Although the litter
quality parameters of N content, C5N ratio and lignin contents have
been commonly recognized as important variables affecting litter
decomposition rates, Mo et al. (2006), Zhang et al. (2008) and
Waring (2012) indicated that P, Ca, Mg and K contents in litter
were positively related to litter decomposition rates in tropical
ecosystems8,18,30, however, N was not an important factor which
may due to the high N availability in this area18. Waring (2012)
demonstrated that P concentration can explain 36% of the
variance in foliar decay rates in tropical and subtropical forests18. It
is commonly assumed that elevated CO2 will reduce leaf litter
quality15–16; however, the increased P, Ca and Mg concentrations in
the initial leaf litter induced by elevated CO2 were found in our
experiment, which led to the greater litter decomposition and
nutrient loss in our study. In a review, Kasurinen et al. (2007) also
pointed out that litter P concentrations had generally increased
under elevated CO2

31. The impact of CO2 enrichment on nutrients
other than N and P are far less studied. Cotrufo et al. (1998) reviewed
pot seedling and growth chamber studies and did not find any clear
CO2 effects on K, Ca, Mg, Mn and Fe concentrations in tree litter32.

Research showed that elevated CO2 can reduce diffusive conduc-
tance and stomatal conductance of the leaves33, which will lead to
decreased rates of canopy transpiration and increased soil moisture
in CO2 enrichment plots21,34. Due to increased water availability soil
microbial processes such as litter decomposition and nutrient miner-
alization were stimulated12,23. Increased soil moisture was found in
the chambers exposed to elevated CO2 treatment, which accelerated
litter decomposition and nutrient loss in our study. Elevated CO2

increased soil acidity in our study, which would increase cation
leaching and also benefit nutrient release from decomposing litter.

Soil microbial community composition affects decomposition
rates12. In our study, however, the abundance of PLFAs for bacteria,
fungal, gram-positive bacteria, and gram-negative bacteria were all
not affected by elevated CO2 in either 0–10 or 10–20 cm soil layer,
which suggests that the increased nutrient loss was not due to the
increase of microbial biomass other than the increased microbial
activity.

Higher litter decomposition rate and greater nutrient release in
response to CO2 enrichment were found in our study. This is not
consistent with our hypothesis. Overall, nutrient loss during leaf
litter decomposition induced by elevated CO2 was due to increased
leaf litter quality (increased P, Ca and Mg concentrations in the initial
leaf litter), improved soil moisture and higher soil acidity in our
study.

The effects of N addition on nutrient loss. In subtropical China, N
was not a limited factor due to the high N availability in this area8.
About 5.6 g N m22 yr21 wet N deposition was found in our study
site35; hence N addition did not increase N concentration in the leaf
litter in our experiment. N addition increased the nutrient loss from
the decomposing leaf litter as CO2 enrichment did. This was also in
part due to the increased P, Ca and Mg concentration in leaf litter
induced by high N addition. We also found that N addition decreased
soil pH values and our published data showed about 6.3% and 3%
added nitrogen was leached in 2006 in the CN and NN treatments,
respectively35, which led to the loss of cations to maintain an ionic
balance and accelerated nutrient release from decomposing litter.
The stimulation of litter decomposition by additions of N alone
was also shown in the study of Torbert et al. (2000) and Liu et al.
(2006)6–7.

N enrichment is an element of global change that could influence
the growth and abundance of many organisms36. With a meta-ana-
lysis, Treseder (2008)36 showed that microbial biomass declined 15%
on average under N fertilization and that declines in abundances of
microbes and fungi were more evident in studies of longer durations
and with higher total amounts of N added. However, N addition
increased significantly the abundances of the total PLFAs and the
PLFAs for total bacteria, gram-negative bacteria, AMF and SF in the
0–10 cm soil layer in our experiment. The higher microbial biomass
in our experiment also led to the higher nutrient loss in the N addi-
tion treatment.

Table 2 | Soil pH values in 0–20 cm soil layer from April 2007 to April 2009 under elevated CO2 and N addition treatments. The treatments
were: CK 5 control, NN 5 high N treatment, CC 5 elevated CO2 concentration treatment and CN 5 elevated CO2 concentration treatment
1 high N treatment. Values are means 6 standard deviation. The different lowercase letters in the same row indicated significant treatment
differences at a 5 0.05 level

Time

Treatments

CK CC CN NN

Apr.2007 4.42(0.10)a 4.38 (0.02)ab 4.23(0.12)b 4.39(0.25)ab
Aug.2007 4.45(0.05)a 4.40(0.07)ab 4.31(0.10)b 4.39(0.22)ab
Nov.2007 4.46(0.11)a 4.39(0.04)ab 4.31(0.16)b 4.36(0.07)ab
Apr.2008 4.33(0.09)a 4.31(0.09)ab 4.22(0.09)b 4.28(0.05)ab
Aug.2008 4.43(0.05)a 4.38(0.06)ab 4.30(0.15)b 4.37(0.07)ab
Nov.2008 4.40(0.06)a 4.37(0.05)a 4.23(0.06)b 4.32(0.02)ab
Apr.2009 4.45(0.11)a 4.35(0.06)ab 4.21(0.11)c 4.34(0.05)b

Table 3 | Effects of CO2treatment (CO2), N treatment (N), sampling season (Season) and their interactions on soil temperature and soil
moisture. The probability values are shown in the table

Parameters CO2 N CO2*N Season CO2* Season N* Season CO2*N* Season R2

Soil temperature ,0.0001 0.0002 0.54
Soil moisture ,0.0001 ,0.0001 0.0007 ,0.0001 0.0006 0.38
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N addition increased leaf litter decomposition and subsequently
nutrient loss, which is also not consistent with our hypothesis. More
nutrient loss during leaf litter decomposition induced by N addition
was due to increased leaf litter quality (increased P, Ca and Mg
concentrations in the initial leaf litter), improved microbial biomass
and higher soil acidity in our study.

The effects of the interaction of elevated CO2 and N addition on
nutrient loss. There are many experiments to show the effects of
elevated CO2 and N addition alone on the quality of leaf litter. A
decreased quality of litter under elevated CO2 has long been
considered16–17. While an increased quality of litter under N
addition has been mostly reported8. The study concerning the
interactive effect of elevated CO2 and N addition on the litter

quality was few. In our experiment, we found that the interactive
effects of elevated CO2 and N addition improved significantly leaf
litter quality, which led to the higher loss of elements from leaf litter
decomposition process in the CN treatment.

Soil microbial processes are stimulated by soil humidity which
accelerates litter decomposition and nutrient mineralization12,23.
Although N addition alone decreased significantly the soil moisture
(p , 0.0001), the interaction of elevated CO2 and N addition
increased soil moisture significantly (p 5 0.0007), which also
induced the higher nutrient loss form decomposing leaf litter when
the chamber were exposed to both elevated CO2 and N addition.
Both elevated CO2 and N treatment increased soil acidity in our
study. Previous experiments demonstrated that high soil acidity
would accelerate cation leaching37. In order to maintain an ionic

Figure 1 | Dynamics of soil moisture of the top 5 cm soil layer (a), and soil temperature at 5 cm below the soil surface (b) under different CO2 and N
treatments. The treatments are: CK 5 control, NN 5 high N, CC 5 elevated CO2, CN 5 elevated CO2 1 high N. Data were cited from Deng et al.

(2013)26.
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balance, accelerated nutrient release from decomposing litter was
then found in the treatment of both elevated CO2 and N addition.

Overall, nutrient loss during leaf litter decomposition induced by
the interaction of both elevated CO2 and N addition was due to
increased leaf litter quality (increased P, Ca and Mg concentrations
in the initial leaf litter), improved soil moisture and higher soil acidity
in our study.

Increased litter nutrient release under CO2 enrichment and N
addition will benefit subtropical forests in the future global
change. In our study, we found higher litter decomposition and
nutrient release induced by elevated CO2, which is consistent with
the previous reports3–4. In a certain time, higher litter decomposition
indicates higher nutrient availability in soil6, which will benefit tree
growth. Nutrient limitation to forest primary productivity and other

Figure 2 | Soil microbial PLFAs in different soil layers in 2009under elevated CO2 and N addition treatments. (a) Total microorganisms (the sum of all

the bacterial and fungal PLFAs), (b) Total bacteria, (c) gram-positive bacteria, (d) gram-negative bacteria, (e) arbuscularmycorrhizal fungi,

(f) saprophytic fungi, and (g) the fungal to bacterial ratio. Bars indicate standard deviations of mean. In this figure, treatments are compared only within

each soil layer and not between layers. The treatments are: CK 5 control, NN 5 high N, CC 5 elevated CO2, CN 5 elevated CO2 1 high N.

www.nature.com/scientificreports
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ecosystem processes is widespread in tropical forests38–39. Nutrient
available to plants in highly weathered tropical soils mainly depends
on nutrient cycles in forest ecosystems40. Therefore, higher nutrient
release induced by elevated CO2 would increase nutrient cycles and
benefit for subtropical forests under the future global change.

Higher litter decomposition and nutrient loss induced by N addi-
tion were found in our study. Mo et al. (2006) also showed that N
addition increased significantly litter decomposition rates in dis-
turbed and rehabilitated forests in subtropical China8. Higher nutri-
ent loss from decomposing litter induced by N addition would also
increase soil nutrient availability and benefit for the tree growth in
the subtropical forests. However, as N deposition will increase per-
sistently in the future in subtropical China19 and the growth and
abundance of many organisms will often be reduced with higher
total amounts of N added36, continuing monitoring should be done
in the future study in this area.

Our Open-top chambers had a 0.7-m-deep belowground part. The
part was delimited by a brick wall that prevented water exchange with
soil outside the chamber. As tree seedlings in subtropical area grew
very fast, we designed to add extra 600 mm water in each chamber
every year. This might increase litter decomposition rates in all the
chambers. However, we assumed that it won’t affect the differences
of elevated CO2 and N addition treatments with the control on litter
decomposition rates in our study.

Figure 3 | Litter mass remaining (%) in decomposition litter under
elevated CO2 and N addition treatments. The treatments are: CK 5

control, NN 5 high N, CC 5 elevated CO2, CN 5 elevated CO2 1 high N.

Error bars are standard errors. Data were cited from Huang et al. (2014)27.

Figure 4 | Amounts of element remaining (as % of initial amount) in leaflitter residue during leaf litter decomposition process under elevated CO2 and
N addition treatments. Values .100% indicate net immobilization and values ,100% net mineralization. The treatments are: CK 5 control, NN 5 high

N, CC 5 elevated CO2, CN 5 elevated CO2 1 high N.

www.nature.com/scientificreports
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Methods
The study site and model forest ecosystem. The experimental site (23u10’46’’ N,
113u21’9’’ E) was located at the South China Botanical Garden in Guangzhou City,
with an elevation of 126 m a.s.l. The site experiences a subtropical monsoon climate
and has an average annual temperature of 21.9uC during the study period. July is the
warmest, and January is the coolest month. The average annual rainfall during the
study period was 1787 mm. More than 80% of the rain falls in the wet season (April-
September), i.e., there is a distinct wet and dry season. The mean annual relative
humidity of the ambient air is 78%. About 5.6 g N m22 yr21 wet N deposition was
found in this study site35.

In April 2005, a model forest ecosystem was established in each of 10 circular
chambers with diameters of 3 m. The chamber system consisted of two parts. A 0.7-
m-deep belowground part was enclosed by a brick wall that prevented water exchange
with soil outside the chamber. All water discharged from the chamber was collected
through three holes at the chamber base. A 3-m-high aboveground part was made
from impermeable and transparent plastic sheets with an open top. Only 3% of the
full sunlight was reflected or absorbed by the aboveground circular chamber wall. Soil
at three depths (0–20, 20–40, and 40–70 cm) was collected from a nearby evergreen
broad-leaved forest and used to fill the same depths of the belowground part of the

chamber. The soil was a laterite with chemical properties shown in Table 5. One to
two year old tree seedlings grown in a nursery were transplanted in the chambers with
minimal damage to the roots. All the chambers were planted with 48 randomly
located seedlings with 8 seedlings for each of the following 6 species: Castanopsis
hystrix, Syzygium hancei, Pinus massoniana, Schima superba, Acmena acuminatis-
sima, and Ormosia pinnata. These tree species are native and the most widely spread
in Southern China. One tree for each species in each chamber was randomly har-
vested at the end of each year in the experiment to reduce crowding and to measure
the tree biomass. As most seedlings of Pinus massoniana died in the second year of the
experiment, only the leaf litter of other 5 species was considered in the study. For
further details please see Liu et al. (2011, 2013)41–42.

CO2 enrichment and N addition. Treatments were applied starting in April 2005. A
completely randomized design with two levels of CO2 and two levels of N was used.
Three chambers were enriched with CO2 to achieve a concentration of 700 ppm
inside the chamber’s ambient air (treatment CC). Two chambers were treated by
spraying seedlings with an NH4NO3 solution at an N addition rate of 10 g N m22 yr21

(treatment NN). Three chambers were treated with both elevated CO2 and N addition
(treatment CN). The remaining two chambers were used as controls and did not

Table 4 | Effects of CO2 treatment (CO2), N treatment (N), sampling time (Time) and their interactions on element release from decomposing
leaf litter. The probability values are shown in the table

Parameters CO2 N CO2*N Time CO2* Time N* Time CO2*N*Time R2

K 0.04 0.002 ,0.0001 0.40
Na ,0.0001 ,0.0001 0.044 0.80
Ca ,0.0001 ,0.0001 0.0013 ,0.0001 0.77
Mg 0.0132 ,0.0001 0.009 ,0.0001 0.20
Al 0.0102 0.0162 ,0.0001 0.0031 0.0219 0.49
Mn 0.044 ,0.0001 0.0071 0.0105 0.58
Pb ,0.0001 ,0.0001 ,0.0001 ,0.0001 0.0012 0.0068 0.67
Zn 0.0057 0.0024 ,0.0001 0.45
C ,0.0001 0.0003 ,0.0001 0.0005 0.0133 0.91
P 0.0091 0.0001 ,0.0001 ,0.0001 0.67
N 0.014 ,0.0001 0.023 0.80

Figure 5 | Dynamics of N:P, C:N and C:P in the leaf litter residue during leaf litter decomposition process under elevated CO2 and N addition
treatments. The treatments are: CK 5 control, NN 5 high N, CC 5 elevated CO2, CN 5 elevated CO2 1 high N.
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receive the CO2 enrichment or N addition (treatment CK); the ambient CO2

concentration inside the CK chambers and NN chambers at mid-day ranged from
390 to 430 ppm during the experiment. All chambers had the same fan-generated
wind speed and received 600 mm of extra tap water per year for irrigating the
seedlings. The major element concentrations of the tap water were: K 0.68 mg L21, Na
0.33 mg L21, Ca 1.6 mg L21, Mg 0.77 mg L21, N 0.62 mg L21, P 0.001 mg L21, Fe
0.05 mg L21, Cu 0.01 mg L21, Mn 0.02 mg L21 and Al 0.15 mg L21. The experiment
was conducted for 5 years. Further details about the treatments and operation can be
found in Liu et al. (2011, 2013)41–42.

Soil pH, soil temperature and soil moisture. From April 2007 to April 2009, soil
samples were collected from 0–20 cm layer. Soil pH was measured using a soil: water
ratio at 152.5. From July 2007 to April 2009, soil temperature at 5 cm below the soil
surface was monitored on five random locations within a treatment chamber with a
thermocouple sensor once a week. Simultaneously, volumetric soil moisture of the
top 5 cm soil layer was measured on five random locations within a treatment
chamber using a PMKit43.

Microbial community analysis. Soil was sampled by randomly collecting three cores
of 2.5 cm diameter per chamber on 25 February 2009. The cores from each chamber
were divided into 0–10 and 10–20 cm soil layers. The soil from each layer in each
chamber was combined giving one composite sample. After stones and coarse roots
were removed, each composite soil sample was passed through a 2-mm sieve and used
for Phospholipid Fatty Acid (PLFA) analysis using the method described by Bossio et
al. (1998)44.

Peak areas (i.e., response values) were converted to nanomoles of PLFA per g of C
using internal standards (1950 nondecanoic methyl ester). Bacterial-specific PLFAs
were i1550, a1550, i1650, 1651v7c, i1750, a1750, 1750, cy1750, 1851v7c, and
cy195045–46. The amount of 1651v7c and i1550 can be used to estimate the abund-
ance and relative abundance of gram-negative and Gram-positive bacteria, respect-
ively47. The biomarker for arbuscular mycorrhizal fungi (AMF) was1651v5c48. The
biomarker for saprophytic fungi (SF) was 1852v6, 9C49. The ratio of fungal PLFAs
(sum of 1651v5c and 1852v6, 9C) to all bacterial PLFAs was used to indicate the ratio
of fungal biomass to bacterial biomass (F5B)45. The biomarkers for actinomycetes
were 10 Me 1650, 10 Me 1750, and 10 Me 185050. Other PLFAs (i1450, 1450, 1550,
1650, 1650 2 OH, 1851v5c, 1850, 1651v9c, 1751v8c, 1851v9c, and 1853v3c) were
common to both bacteria and fungi. The amount of all PLFAs (sum of all lipids
present, 20 or fewer carbons in length) was used as an index of living microbial
biomass45.

Leaf-litter decomposition and nutrient release. Naturally senesced mixed leaf litter
was collected every month from March to June in 2007 in litter fall traps (0.3 3 0.3 3

0.1 m3). Four litter fall traps were placed randomly in each chamber. The traps were
made of plastic net that allowed throughfall to percolate easily but retained litter
particles. The traps were located at a height of 10 cm aboveground. After removing
understory litter and other woody material, leaf litter was aggregated within each
chamber, air-dried and pooled across collection dates. A total of 15 g (ratios of oven-
dried mass were determined by the proportion of air-dried mass of the litter fall after
drying for 48 h at 70uC) of leaf litter was placed in 15 3 20 cm litterbags. Each
litterbag had similar leaf litter composition. The mesh bags had a 1 mm mesh nylon
top and a 0.2 mm mesh Dacron cloth bottom to reduce fragmented litter losses, and
to allow microorganisms and small soil animal access. Litterbags were placed on the
soil surface in the same chamber from which the litter was collected and left
undisturbed until collection. Decomposition was followed for 621 days from July
2007 to April 2009. Two litterbags were retrieved on the following dates from each
chamber: September 2007 (after 2 months), January 2008 (after 6 months), April 2008
(after 9 months), September 2008 (after 14 months), November 2008 (after 16
months) and April 2009 (after 21 months). At each removal, the litter samples were
sorted to remove foreign material, weighed for mass loss after drying for 48 h at 70uC,
and then finely ground for element concentration analysis.

Leaf litter chemical composition. Nutrient loss via the leaf litter composition,
nutrient concentration in the initial leaf litter and the residual litter were determined.
Carbon concentration was determined following the Walkley-Black’s wet digestion
method51. N concentration was measured using the Kjeldahl method52. Phosphorus
concentration was measured photometrically after samples were digested with nitric
acid. The concentrations of K, Ca, Mg, Al, Cu, Mn and Zn were measured by

inductively coupled plasma atomic emission spectroscopy (ICP-AES; Optima-2000
DV, PerkinElmer, USA) after acid digestion.

Statistical analysis. The mass remaining of the leaf litter in each retrieved litterbag
was expressed as a percentage of the initial dry weight of the leaf litter. The annual
fractional weight loss is calculated using an exponential decay model53 which is
represented by the following equation: X/X0 5 e-kt, where X/X0 is fraction mass
remaining at time t, X the remaining oven-dry weight at time t, X0 the original oven-
dry weight, ‘‘e’’ the base of natural logarithm, k the decomposition coefficient, and t
the time.

Data analyses were carried out using the SAS (version 9.2, SAS Institute, Inc)
software. Distributions that did not conform to homogeneity of variances or nor-
mality requirements were logarithmically transformed prior to analysis. ANCOVA
was used to detect significant effects of CO2 and N treatments on litter quality and its
decomposition rate. When the effects were significant, they were further analyzed
using Tukey multiple comparison test (HSD). Repeated measures ANOVA with
Tukey’s HSD test was used to examine treatment effects on soil pH, soil temperature
and moisture as well as the element releasing rates during the litter decomposition
process (including the main effects of CO2 treatment, N addition, sampling time
(season) and their interactions).
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