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Glasses are rigid systems in which competing interactions prevent simultaneous minimization of local
energies. This leads to frustration and highly degenerate ground states the nature and properties of which
are still far from being thoroughly understood. We report an analytical approach based on the method of
functional equations that allows us to construct the Rayleigh approximation to the ground state of a
two-dimensional (2D) random Coulomb system with logarithmic interactions. We realize a model for 2D
Coulomb glass as a cylindrical type II superconductor containing randomly located columnar defects (CD)
which trap superconducting vortices induced by applied magnetic field. Our findings break ground for
analytical studies of glassy systems, marking an important step towards understanding their properties.

U
nderstanding the complexity of glassy behaviors resulting from the exponential degeneracy of their
ground states is key to gaining insight into a variety of systems in nature, including spins and magnetic
moments in magnetism1–3, electrons in metals4,5, Cooper pairs in disordered superconductors6,7, vortices

and interfaces in superconductors and magnets1,8–11, social12 and neural13 networks, and protein folding14 remains
one of the major challenges in physics. One of the furthest-reaching problems in the physics of glasses is that of
understanding the nature of Coulomb or electronic glasses where concurring effects of long-range Coulomb
interactions and disorder result in a depletion of the density of electronic states (referred to as the opening of a
‘Coulomb gap’) which turns metal into an insulator. This causes two key aspects of glassiness, namely disorder
and frustration, to become maximally pronounced. Disorder means that, unlike periodic structures, glasses do not
possess long-range order, while frustration refers to the competition among conflicting interactions.
Consequently, the system does not find an accommodation that complies with all constraints but arrives instead
at a multitude of degenerate, i.e. almost equally advantageous states the number of which exponentially grows
with the system size. These states are separated by nearly infinitely large free-energy barriers in a phase space that
acquires complex hierarchical structure. As a result, glasses are effectively non-ergodic and manifestly lack
equilibrium, that is they cannot equilibrate with their environment. This gives rise to remarkable aging and
memory effects and highly nonlinear dynamics. The reason that the properties of glasses are still not thoroughly
understood is that the same complex structure of a highly degenerate ground state that makes glasses interesting
and appealing, impedes the application of our standard theoretical physics machinery. Moreover, frustration and
non-ergodicity denigrate efficiency of even the best numerical algorithms, which are commonly used to study
glasses, because there is no guarantee that the process of a search for the ground state will take the system close to
the global minimum rather than getting stuck within some local potential well, see refs 15–17 and references
therein. The nature of the ground state of Coulomb or electronic glasses poses a special challenge since electronic
glasses are agreeably at the heart of physics of many strongly correlated systems, most notably, high temperature
superconductors18.

Here we address this challenge and offer an analytical approach to construct an approximation to a ground
state of the 2D random finite system in the first order with respect to disorder. We consider a two-dimensional
Coulomb gas subject to quenched disorder and take advantage of the latter’s equivalence to the system of 3D
vortices in type II superconductors containing randomly distributed columnar defects9, see Fig. 1a. Complete
identity is achieved by choosing a lateral size for the system not exceeding the London penetration depth, l. Then
vortex-vortex logarithmic interactions remain unscreened, and the vortex system becomes isomorphic to the 2D
Coulomb gas of logarithmically interacting electric charges, Fig. 1b, c. Hence the equivalence of the problems of
the lowest energy states of these two systems: the global minimum of the Ginzburg-Landau (GL) functional,
describing the configuration of vortices corresponding to the lowest energy, defines the ground state of both.
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We consider a large, i.e. containing a macroscopic number of
defects, but finite superconducting sample in a form of a cylinder,
with a circular base of the diameter Rs^l=2. The cylinder is stuffed
with columnar cavities or defects of radius R, mean spacing between
defects being a, see Fig. 1a. We take k:l=j?1, and assume the
chain of inequalities, j=R=a=l, where j is the superconducting
coherence length. In addition we impose the even stronger scale
separation condition that log kð Þj j? log R=lð Þj j. We restrict ourselves
to the range of magnetic fields H , Hc1, where Hc1 is the lower critical
field, so that vortices do not exist in the bulk of the sample but can
only be trapped by CDs. We develop an analytical approach for
finding the vortex distribution dj

� �
, j~1,2, � � � ,N , where vorticity

or degree {dj} measures the number of flux quanta trapped by the jth
CD, minimizing the system energy, i.e. for finding the vortex distri-
bution corresponding to the ground state of the system. The maximal
filling of a CD is defined by the condition19 nmax 5 [R/2j]. Vortex
quantization, i.e. the condition that the degrees must be integers
imposes a constraint on the minimization of the energy. Our tech-
nique is based on the method of functional equations20–24, see
Methods and Supplementary Information (SI) for details. That the
found energy-minimizing distribution (minimizer) corresponds to a
unique global energy minimum follows from convexity of the energy
functional. If the array of CDs is regular, the vortex system can
assume a terrace-like ground state i.e. form a hierarchical nested
domain structure25,26.

Each domain is characterized by its filling factor {dj}, which
grows upon traversing from the sample border to its center. To
emphasize the net effects of disorder we consider initially a regular
arrangement of CDs and then watch how the nested domain’s
ground state structure evolves upon randomizing the distribution
of the defects. We reveal that, as the randomness grows, the vortex
count within each vortex domain remains approximately the same
but the smooth domain walls of the regular defect array acquire
fractal character and turn into fractal interfaces with non-univer-
sal fractal dimensionality depending on the degree of disorder. We
find that disorder generates energy states for vortices, that lie
below those corresponding to the regular array of CDs. These
low-lying vortex energy states that can be viewed as a hallmark
of emergent glassiness manifest themselves, in particular, in
decreasing the field of the first vortex trapping with increasing
degree of disorder.

We describe our system with the Ginzburg-Landau (GL)
functional:
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where V is the volume of the sample, Y(r) is the superconducting
order parameter, H is the external magnetic field applied along the z-
axis aligned with the cylinder, r the coordinate vector in the plane of
V perpendicular to z, m and 2e are the electron mass and charge,
respectively, and A(r) is the vector potential of the magnetic field so
that B 5 curl(A). The London penetration depth l2 5 (mc2b)/
(8pe2jaj) and the coherence length j2 5 2/(4mjaj) are encoded in
the coefficients of the GL functional. For the sake of convenience, we
define the standard dimensionless order parameter u5Y/Y0 where

Y0~{
ffiffiffiffiffiffiffiffi
a=b

p
, measure lengths in units of l and the magnetic field

in the units of W0/(2plj), W05p c/e is the magnetic flux quantum.
The dimensionless columnar defect radius r~R=l=e:a=l=Rs

: 1=2ð Þdiam Vð Þ=l<1. We consider the case when the CD’s radii
are small as compared to their spacing and are parameterized by r5

exp(2c/e2), where c is a constant of the order of unity, which implies
an exponential separation of the characteristic lengths. Since the
spatial scale of the variation of the order parameter j is the smallest
scale in the problem, we can set the order parameter juj5 1 every-
where besides the CDs. It has been established25,26 that the distri-
bution of vortices obtained from the minimization of (1) is identical
to that obtained by minimizing the energy

E hð Þ~ 1
2

ð
V

+hj j2d2rdzz
1
2

ð
V

h{hað Þ2d2rdz, ð2Þ

where the distribution of the field corresponding to the ground state
of the system, or the minimizer h 5 h({dk}) satisfies the following
Euler-Lagrange equations

{Dhzh~2pm rð Þ ð3Þ

with m rð Þ~
X

j
djd r{rj

� 	
ensuring the correct boundary condi-

tions at the CDs interfaces: h(r) 5 ha 5 constant on the exterior
boundary and constant boundary conditions on interfaces, dj repre-
sents the degree of the vortex in the jth CD, i.e. the number of flux
quanta trapped by jth CD. The task now is to derive the unique global
minimizer of (2) as an asymptotic solution to boundary value prob-
lem (3) for the magnetic field given an n-tuple of degrees d 5 (d1, …,
dN), N being the total number of CDs. To this end one first finds the
magnetic field h as a function of the degrees by employing the ana-
lytical method of functional equations developed for Poisson equa-
tion23, which we outline below, see also SI. The derived h({dj}) is
plugged in into the energy functional (2), and then the numerical
minimization over the class of all n-tuples of degrees with the addi-
tional constraint that each degree must be an integer is carried out.

We seek an analytical solution to (3) as a series h 5 ha(h(0) 1 h(1) 1

h(2) 1 …) with respect to a small parameter 1/jln rj, where

h 0ð Þ~
I0 rj jð Þ
I0 1ð Þ , I0(x) is the modied Bessel function of order zero and

each term h(k) 5 O(1/jlnk rj). This expansion solves equations from
the cascade of problems27:Dh(0) 5 h(0),Dh(1) 5 0,Dh(2) 5 h(1), …,Dh(k)

5 h(k21). We find the minimizer for the random distribution of CDs
within Rayleigh approximation truncating the expansion at the low-
est order terms28,29. Let f 5 x1 1 ix2 be a complex variable corres-
ponding to r and complex numbers ak be coordinates of CD centers

Figure 1 | Superconducting cylinder with columnar defects and
corresponding single-particle potential relief. (a): Sketch of a

superconducting cylinder with arbitrarily distributed columnar defects.

The characteristic lengths are related by the inequalities chain,

j=R=a=Rs^l. (b): Egg-crate energy potential relief for a single particle

in the related two-dimensional Coulomb gas of charged particles. (c):

Cross-section of the egg-crate potential relief for a charge emphasizing its

random character.
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in the f-plane. We look for a solution to (3) in the form h < ha(h(0) 1

h(1)) with

h 1ð Þ fð Þ~Re Q fð Þ, f[D, ð4Þ

where the perforated domain D is a cross section of V and Q(f) is an
unknown function holomorphic in D. One can prove the conver-
gence of the successive approximations for the functional equations
for y(f) (see SI), where y(f) 5 Q9(f). The solution to (4) in the multi-
connected domain D is found up to the order of O(1/ln2 r) as

Q fð Þ~c0z
XN

m~1

bm ln f{amð Þ{ln
1

�am
{f

� �
 �
zO r2

� 	
, f[D, ð5Þ

with unknown c0[R. From the boundary conditions at the CDs, we
express c0 linearly through bk and derive a system of linear algebraic
equations for the constants bk, k 5 1, …, N. The coefficients of this
system depend on r and we retain terms up to O(1/ln2 r). This
system has a dominant diagonal part for small r implying the
uniqueness of the solution. One can observe that in the lowest order
in 1/ln r terms, bk , 1/ln r and hence hð1Þ*1=ln r. If more terms are
included into the Rayleigh expansion (with each term h(p) , 1/lnp r),

then the series
X?

p~0
h pð Þ would converge to h. The linear system for

bk can be solved numerically which completes the calculation of the
magnetic field h in the Rayleigh approximation for given d 5 (d1, …,
dN). Once all bk are obtained, we minimize the energy as a function of
degrees, d, and determine d corresponding to the energy minimum.
Since the energy functional is convex, the local minimizer is a global
minimizer, which solves the problem of finding the ground state. The
derivation of d 5 (d1, …, dN) for random CD array constitutes the
main result of our work.

A fundamental implication of the randomization of the CD arrange-
ment is the formation of a Bose glass state endowed with arbitrarily
low-lying energy states for vortices9. While the Rayleigh approximation
cannot guarantee the construction of a true glassy state, the observed
decrease of the effective lower critical field, i.e. the field of the first
vortex trapping HG as compared to the critical field Hreg where first
vortices appear at the regular (periodic) CD array, can be viewed as a
direct manifestation of emerging glassiness in a finite superconducting
cylinder. Shown in Fig. 2a, b is the is the behavior of HG as function of
the degree of disorder and of the total number of CDs in a fully
randomized array. Trapping vortices modifies the phase diagram of
the type II superconductor as shown in Fig. 2c.

The emergence of glassy features in the sample containing N 5

770 columnar defects and nv 5 1105 vortices is illustrated in Fig. 3.
Initially CDs are arranged into a regular lattice. Accordingly, vortices
form two nested domains with the degrees d 5 0 and d 5 1. Panels a–
c of Fig. 3 demonstrates how the terrace structure of the nested
domains evolves and gets blurred upon incremental growth of the
randomness in the CD’s locations. While the domains corresponding
to different degrees retain their identities, the interfaces between
them acquire a fractal structure. Making use of the Box-Counting
method30, we find the fractal dimension of the interface,
D : ~{ln Nað Þ=ln sað Þ, where Na is the number of cells the interface
curve crosses and sa is the scale for the trial a. The evolution of the
interface between the d 5 0 and d 5 1 domains, clearly seen in Fig 3,
visualizes incremental fractalization. The fractal dimensionality as a
function of the degree of disorder quantified by the number of steps
M in the randomization procedure, see SI, is presented in Fig. 3d. Its
initial part is reasonably fitted asD Mð Þ~cMnz1:000 with c 5 0.060
6 0.01 and n 5 0.335 6 0.01. Upon further increase of the random
steps, fractal dimensionality converges to D~1:286+0:021.

Fractalization of the interface leads to the shrinking of the vortex-
free shell near the sample surface: its average width first decreases
with the growing level of randomness (see Fig. 3e) as c1Mn1zc2, with
n1 5 0.323 6 0.01, c1 5 20.025 6 0.01, and c2 5 0.257 6 0.01, and
then saturates, which parallels the behavior of D Mð Þ. Note that n1

appears to be close to n.

Figure 2 | Emergence of glass. (a): The field of the first emergence of a

vortex trapped by CD, HG, as function of the number of the randomization

steps M. Incremental decrease of HG reflects the decrease of the lowest

energy of the vortex trapped by CD, i.e. emergence of glassiness. (b): Fields

of the first penetration Hreg for periodic array of CDs and HG for random

array as functions of the number of CDs in the sample. Upon increasing the

number of CDs, Hreg saturates, but HG continues to gradually decrease.

This illustrates the increasing glassiness of the system: as the number of

CDs grows, more and more deep potential wells associated with CDs

appear. (c): Low-temperature part of the H-T vortex phase diagram.
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A special situation, where the defect radius is chosen to be com-
parable with the superconducting coherence length, R *> j so that
nmax 5 1, is identical to a 2D Coulomb glass of bosons in which the
double occupancy is forbidden. The calculated set d describes thus
the distribution of charges corresponding to the minimal energy, i.e.
the ground state, of the system. Thus, our finding offers a firm
ground for numerical study of hopping conductivity of the
Coulomb glass. Using the minimizer d an initial state in numerical
simulations of hopping ensures that the transport indeed occurs due
to excitations over the ground state as it should in reality. Note
further that although our derivation is done for a particular situation
where the lateral size of the system is close to the screening length of
the 2D Coulomb interaction, our results carry importance well
beyond their immediate context and break ground for a general
analytical description of the ground state of glassy systems.

Methods
Since the spatial scale of the variation of the order parameter j is the smallest scale in
the problem we can set the dimensionless order parameter juj5 1 everywhere besides
the CDs. Then the problem of minimizing GL functional is formulated as a problem
of finding a minimizer for the so-called harmonic map-type functional25,

FG u,A½ �~ 1
2

ð
V

+{iAð Þuj j2z curlA{hað Þ2
� 

d2rdz, ð6Þ

which, in its turn, is reduced to minimizing the energy given by Eq. (2). The solution
for the field distribution is sought in a form given by function Q of Eq. (4), having the
general representation

Q fð Þ~~Q fð Þz
XN

m~1

Am ln f{amð Þ, ð7Þ

where ~Q fð Þ is single-valued, Am are real constants23, and the summation is taken over
all arbitrarily located CDs. By extending this function to the CD boundaries and
taking its derivative (y(f): 5 dQ/df) one arrives at the classical Riemann-Hilbert
problem for y analytic in the multiply connected domain D, which results in a
solution in a form of (5). Now the key step is to apply the method of functional
equations that allows us to express d through bk. Further, it is convenient to minimize
numerically the energy as a function in bk (k 5 1, 2, …, N) and after to calculate the
optimal values of d 5 (d1, …, dN) by exact formulas through the optimal values of bk.
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