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We propose a method to construct universal order parameters for quantum phase transitions in many-body
lattice systems. The method exploits the H-orthogonality of a few near-degenerate lowest states of the
Hamiltonian describing a given finite-size system, which makes it possible to perform finite-size scaling and
take full advantage of currently available numerical algorithms. An explicit connection is established
between the fidelity per site between two H-orthogonal states and the energy gap between the ground state
and low-lying excited states in the finite-size system. The physical information encoded in this gap arising
from finite-size fluctuations clarifies the origin of the universal order parameter. We demonstrate the
procedure for the one-dimensional quantum formulation of the q-state Potts model, for q 5 2, 3, 4 and 5, as
prototypical examples, using finite-size data obtained from the density matrix renormalization group
algorithm.

O
rder parameters are pivotal to the Landau-Ginzburg-Wilson description of phase transitions for a wide
range of critical phenomena, both classical and quantum, in many-body systems arising from spontan-
eous symmetry breaking (SSB)1,2. Despite their importance, relatively few systematic methods for deter-

mining order parameters have been proposed. One method proposed for quantum many-body lattice systems
utilizes reduced density matrices3. This approach takes advantage of the degenerate ground states which appear
when a symmetry of the Hamiltonian is broken spontaneously in the thermodynamic limit. An order parameter
can be identified with an operator that distinguishes the degenerate ground states. The idea of the method is to
search for such an operator by comparing the reduced density matrices of the degenerate ground states for various
subareas of the system. This method was demonstrated in models that are considered to exhibit dimer, scalar
chiral, and topological orders3.

Another approach makes use of the ground-state fidelity of a quantum many-body system4–9. For a quantum
phase transition arising from SSB, a bifurcation appears in the ground-state fidelity per lattice site, with a critical
point identified as a bifurcation point10–12. This in turn results in the concept of the universal order parameter
(UOP)13, in terms of the fidelity per site between a ground state and its symmetry-transformed counterpart. The
advantage of the UOP over local order parameters in characterizing quantum phase transitions is that the UOP is
model independent, and thus universal, in sharp contrast with local order parameters, which are usually deter-
mined in an ad hoc fashion.

UOPs have been calculated with algorithms for systems with translational invariance. For Hamiltonians
possessing symmetry group G with g the element of G, UOPs for translational invariant infinite-size systems
are defined based on the orthogonal degenerate ground states corresponding to SSB, as a measure of distinguish-
ability between ground state jyæ and quantum state gjyæ, which can be interpreted in terms of the fidelity F as a
measure of the similarity between two states14.

Such UOPs satisfy the basic definition of an order parameter: namely in the SSB phase, with jyæ and gjyæ two of
the degenerate ground states, the corresponding UOP is nonzero, whilst in the symmetric phase, with gjyæ ; jyæ,
the UOP is zero. It has been demonstrated that such UOPs can successfully describe the symmetry broken phases
in both one-dimensional and two-dimensional quantum systems13,15.

Since SSB occurs only in the thermodynamic limit, this construction of UOPs only makes sense in infinite-size
quantum many-body systems. It is clearly desirable however, to construct UOPs directly from finite-size systems.
This will not only make it possible to perform finite-size scaling, but also make it possible to take full advantage of
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currently available numerical algorithms, such as quantum Monte
Carlo16, finite-size density matrix renormalization group
(DMRG)17–19, and finite-size tensor network algorithms20–23. Here
we propose and test a specific scheme to do this in the finite-size
context for systems with SSB.

Results
Construction of UOPs from H-orthogonal states. First, we recall
the notion of fidelity per lattice site. The fidelity F(jQ1æ, jQ2æ) 5

jÆQ1jQ2æj between two states jQ1æ and jQ2æ scales as F(jQ1æ, jQ 2æ) ,
d(jQ1æ, jQ2æ)L, with L the number of lattice sites. The fidelity per lattice
site4–7 d is the scaling parameter

ln d Q1j i, Q2j ið Þ: lim
L??

ln F Q1j i, Q2j ið Þ
L

, ð1Þ

which is well defined in the thermodynamic limit. With jQ1æ and jQ2æ
ground states for different values of the control parameter, the fidel-
ity per lattice site is nothing but the partition function per site in the
classical statistical lattice model24.

We consider a hamiltonian H of a quantum system possessing
symmetry group G with g a unitary representation of G, i.e.,
UgHUg{ 5 H, with Ug 5 g 3 g 3 g … an infinite string of copies of
matrix g. With the SSB, the UOP is defined in terms of the fidelity per
lattice site d‘ for an infinite-size system by

O~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{d2

?

p
, ð2Þ

where d‘ 5 jÆyjgjyæj1/L with L R ‘ the fidelity per lattice site
between the ground state jyæ and the quantum state gjyæ13,15. Note
that there are other possible definitions of the UOP. E.g., one could
defineO~1{d? orO~ ln d?, which also vanish in the symmetric
phase.

To study UOPs in the finite-size context, it is natural to think of
using the fidelity per lattice site dL for systems of finite size L to
construct d‘ 5 limL R ‘ dL. However, applying the same definition
of dL with the ground states of a finite-size system fails because d‘ ; 0
in all the range for jÆyjgjyæj1/L 5 0 in both phases, as SSB occurs only
in an infinite-size system. There is however, a way to overcome this
obstacle for finite-size systems.

To outline the general idea, consider a system whose hamiltonian
has Zq, q [ Zz symmetry. At zero temperature, for the symmetry
broken phase, we have q degenerate ground states in the thermodyn-
amic limit and we do expect that the symmetry is spontaneously
broken. First we calculate q low-lying states of this system with finite
size L, denoting the ith eigenstate and corresponding eigenvalue by
jwiæ and Ei, satisfying Hjwiæ 5 Eijwiæ. The Zq symmetry can be under-
stood as rotations among the variables pointing in the corresponding
field directions. Thus the Hilbert space associated with Zq can be
separated into disjoint sectors labeled by the phases vm 5 exp
(2pi(m 2 1)/q) with m 5 1, 2, …, q. For our purpose, we construct
q H-orthogonal states jymæ from the q low-lying states jwmæ by

ymj i~
X

j

vj{1
m cj wj

��� E, ð3Þ

in terms of the above defined phases vm.
Here, each pair of the q states are set to be orthogonal with respect

to H, i.e.,

ym Hj jyth i~0, ð4Þ

with m ? t, so called H-orthogonality. The general notion of H-
orthogonality appears in many guises in various matrix problems,
e.g., as conjugacy or A-orthogonality in the Lanczos algorithm25,26.

The q coefficients cj in (3) are fixed by the H-orthogonality and
normalization conditions. The fidelity per lattice site of two H-ortho-
gonal states jytæ and jymæ takes the form

dL~ ym ytjh ij j1=L
~
X

j

v
j{1
t{m cj

�� ��2�����
�����

1=L

: ð5Þ

The final step in the scheme is to extrapolate the fidelity per lattice
site dL between two H-orthogonal states, d‘ 5 limL R ‘ dL, with the
UOP following from the definition in Eq. (2). This explains how
degenerate ground states in the thermodynamic limit, responsible
for symmetry breaking order, emerge from near degenerate low-
lying states in the finite-size system.

Application: the q-state Potts model. The quantum formulation of
the q-state Potts model has hamiltonian27

H~{
X

i

Xq{1

a~1

Ma
i Mq{a

iz1 zlMz
i

 !
, ð6Þ

where i are the lattice sites and l denotes the external field along the z
direction. The operators are written in matrix form:

M1~
0 Iq{1

1 0

� �
, Mz~

q{1 0

0 {Iq{1

� �
ð7Þ

with Ma 5 (M1)a for a 5 1, …, q 2 1, where Iq is the q 3 q identity
matrix. The hamiltonian has Zq symmetry. For l , 1 the system is in
the Zq symmetry broken ferromagnetic phase, and a symmetric para-
magnetic phase when l . 1. It is well known that a continuous
(discontinuous) quantum phase transition occurs for q # 4 (q .

4) at l 5 1 where the model is exactly solved28,29.
Consider first the case q 5 2, the quantum transverse Ising model,

where matrices M1 and Mz are the Pauli matrices sx and sz. Here the
continuous quantum phase transition at l 5 1 is between the Z2

symmetry broken ferromagnetic phase and the symmetric paramag-
netic phase. We compute the ground state wave function jwgsæ and the
first excited state wave function jwex1æ for a system with finite size L,
with corresponding ground state energy Egs and first excited state
energy Eex1. Substituting v1 5 1 and v2 5 21 into Eq. (3) gives the
two H-orthogonal states

y1j i~c1 wgs

��� E
zc2 wex1j i, ð8Þ

y2j i~c1 wgs

��� E
{c2 wex1j i, ð9Þ

which satisfy the H-orthogonality and normalization conditions
Æy1jHjy2æ 5 0 and Æy1jy1æ 5Æy2jy2æ 5 1. Thus, equivalently, we get

c1j j2Egs{ c2j j2Eex1~0, ð10Þ

c1j j2z c2j j2~1, ð11Þ
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with solution jc1j2 5 Eex1/(Egs 1 Eex1) and jc2j2 5 Egs/(Egs 1 Eex1).
The fidelity per lattice site between the two H-orthogonal states is
thus

dL~j y1 y2jh ij1=L~ c1j j2{ c2j j2
�� ��1=L

~
dL

EgszEex1

����
����

1=L

, ð12Þ

with energy gap dL 5 Eex1 2 Egs.
In a similar fashion we have constructed the UOPs from the q low-

lying states of the q 5 3, 4 and 5-state quantum Potts model. The q 2 1
excited states share the same energy Eex above the ground state Egs.
Proceeding as for the q 5 2 case, the coefficients cj in Eq. (3) ensuring
the H-orthogonality (Eq. (4)) and normalization conditions are
obtained, with the expression for the fidelity per lattice site now

dL lð Þ~ dL lð Þ
q{1ð ÞEgs lð ÞzEex lð Þ

����
����

1=L

, ð13Þ

where dL(l) 5 Eex(l) 2 Egs(l). As such we have established an
explicit connection between the fidelity per site between two H-
orthogonal states and the energy gap between the ground state and
low-lying excited states, which in turn renders clear physical implica-
tion for the UOP. We emphasize that each pair of H-orthogonal
states shares the same value of dL for given l. We note also that
the relevant physics is accommodated in the numerator of equation
(13), i.e., in the energy gap dL(l). This will be seen below in the
discussion on scaling.

For values of the transverse field in the range 0.7 # l # 1.3, we
calculated the fidelity per lattice site dL(l) between the H-orthogonal
states for finite-size systems L ranging from 10 to 500 using the
DMRG algorithm. We obtained d‘(l) and thus the UOP for each
value of l by simple extrapolation with dL(l) 5 d‘(l) 1 aL2b.

Fig. 1 shows the UOPs obtained for q 5 3, 4 and 5 for values of the
transverse field in the range 0.7 # l # 1.3 from finite-size systems L
ranging from 10 to 500 using the DMRG algorithm. Also shown for
comparison are the results obtained for infinite-size translation-
invariant systems with the infinite time-evolving block decimation
(iTEBD) algorithm30. The UOPs obtained from the finite-size
approach outlined here and the infinite-size approach match with
a relative difference of less than 2.5 percent, which indicates the
success of our scheme. In general, as also shown in Fig. 1, the UOP

is seen to be capable of characterizing the nature of the quantum
phase transition. For q 5 2, 3 and 4 there is a continuous phase
transitions at l 5 1, whilst for q 5 5 the phase transition is first-
order (discontinuous) at l 5 1. Here we remark that the fidelity per
site has been demonstrated to be capable of detecting the discontinu-
ous phase transitions in this model through the so-called multiple
bifurcation points31.

Scaling. For the q-state Potts model, the q low-lying eigenstates are
the single ground state and q 2 1 degenerate first excited states. The
energy gap dL for a system of finite size L obeys the relation dL*dL

L as
Eq. (13) indicates. In the SSB phase with l , 1 away from the phase
transition point, the eigenspectrum is gapful and the energy gap dL is
related to the correlation length jL by dL , exp (2L/2jL). Taking
L R ‘, the fidelity per lattice site d‘ and correlation length j‘ are
expected to be related by

j?~{
1
2

1
ln d?

: ð14Þ

Fig. 2 shows this expected relation between d‘(l) and j‘(l) for
different values of l. Here, the data are mainly obtained using the
iTEBD algorithm for infinite-size systems. The results are consistent
with the relation (14) holding throughout the SSB phase l , 1. At the
critical point l 5 1, the correlation length j and energy gap dL scale as
j , 1/dL. With scale invariance at criticality, j , L, and thus dL , 1/L.
Then with dL

L*dL the expected relation between the fidelity per site of
the H-orthogonality states and finite size L at criticality is ln dL , 2 ln
L/L. The results presented in Fig. 3 indicate that this relation is more
precisely

ln dL^{2 ln L=L: ð15Þ

At the same time, keeping enough states with the DMRG algo-
rithm, we have accurately obtained the gap D between the ground
state and the (q 1 1)-th lowest state at criticality. Here it is known
thatDj 5 constant, which can be seen in the results of Fig. 4. The case
q 5 5 is particularly challenging because the mass gap is small, with
the exact valueD5 0.0020544 …29,32–34. We note that in principle one
could perform calculations on the equivalent staggered XXZ

Figure 1 | Comparison of UOPs O for the q-state quantum Potts model
for q 5 2; 3; 4 and 5 shown in (a), (b), (c) and (d), respectively. In each

case the UOP is calculated from finite-size systems and compared with

the value obtained in the infinite-size context.

Figure 2 | The effective relation between the correlation length j‘ and the
UOP. In each case we calculate the correlation length j‘(l) and UOP

O lð Þ for control parameter l , 1 then fit j‘(l) and ln d‘(l) to the relation

j‘ 5 2a/ln d‘, with d? lð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{O lð Þ2

q
. A simple linear fit gives the

values (a) a 5 20.503, (b) a 5 20.490, (c) a 5 20.491 and (d) a 5

20.506.
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Heisenberg chain, using the known mapping between the two mod-
els29. However, it is not clear how this mapping applies to the wave
functions.

Discussion
We have introduced a scheme for constructing UOPs to investigate
quantum phase transitions using a set of H-orthogonal states in
finite-size systems. We have established an explicit connection
between the fidelity per site between two H-orthogonal states and
the energy gap between the ground state and low-lying excited states
in the finite-size system, which clarifies the physical meaning of the
UOP. This makes it possible to perform finite-size scaling and take
full advantage of currently available numerical algorithms. The
scheme has been tested for the q–state quantum Potts model with
q 5 2, 3, 4 and 5 using the finite-size DMRG algorithm. We have
demonstrated that the UOPs obtained in the finite-size context agree
with the UOPs obtained directly from the infinite-size context
(Fig. 1). Our results suggest that, in the range where SSB occurs,
the H-orthogonal states defined and obtained in finite-size systems

correspond to the q degenerate ground states for the infinite system
when system size L R ‘. This clarifies how degenerate ground states
emerge in the thermodynamic limit from low-lying near-degenerate
states through H-orthogonality. The UOPs we have thus defined are
a further application of the fidelity per site in the characterisation of
quantum phase transitions.

Furthermore, the general relation (14) between the correlation
lengths and the fidelity is seen to hold in the SSB phase. At criticality
we have established the result (15) for the scaling of the fidelity per
site. Although we have considered UOPs from the point of view of
finite-size systems with Zq symmetry breaking, it is anticipated that
the scheme outlined here can also be extended and applied to any
system undergoing a phase transition characterized in terms of SSB.
For example, it can be applied to systems in which the symmetry is
broken with a continuous symmetry group.
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