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One of the fundamental issues in polymer physics is to reveal the relation between the structures of
macromolecules and their various properties. In this report, we study the dynamical properties of a family of
deterministically growing semiflexible treelike polymer networks, which are built in an iterative method.
From the analysis of the corresponding dynamical matrix we derive the solution for its eigenvalues and their
multiplicities, making use of a combined numerical and analytical approach. The eigenvalue spectra allow us
to investigate the mechanical relaxation forms in depth for different values of the stiffness parameter. We
observe that the dynamics of semiflexible networks is sensitive to the stiffness parameter. Our work paves a
way to explore the structures of the highly symmetric polymers and provides a comprehensive
understanding of the role of semiflexibility for the regular treelike networks which possess a small-world
feature.

A
s a rapid developing discipline, polymer science has attracted much attention in the past few years, since it
provides a powerful tool to study the macromolecules with various structures1,2. Currently, an important
issue within the field of polymer science is to unveil how the underlying architecture of macromolecules

affects their dynamic behaviors. Among various models, the Generalized Gaussian Scheme (GGS)3, which
extends the well-known Rouse model4, has provided useful insights into many static and dynamic properties
of the polymers. In particular, it has been successfully applied to a large variety of flexible polymer structures, such
as dendrimers5, mesh-like polymers6,7, fractals8–10, dendritic11,12, regular hyperbranched structures13,14, scale-
free15,16 and small-world17,18 networks, and so on. All these examples are important representatives of different
classes of hyperbranched macromolecules, which possess macroscopically distinguishable behavior.
Experimentally, topological features of the materials are evident, despite the averaging, smoothing out character
inherent due to the structural disorder or polydispersity in the relaxation measurements19. While the GGS
approach provides a basic means for the relation of the structure to the physical properties of polymers, it neglects
some realistic features such as excluded volume and polymer stiffness, which are very important especially for
biological macromolecules (proteins, DNA, etc.)20–22.

While for analytic theories the inclusion of the excluded volume remains to be a hard task, recently, there have
been a considerable number of theoretical investigations on the dynamic properties of semiflexible polymers23–29.
Extending pioneering works for linear chains30,31 and stars32, it was put forward as a framework for the arbitrary
semiflexible treelike polymers (STP)24, for the complex semiflexible loop polymers25, and so on. In the theoretical
approaches the semiflexiblility was introduced by restricting the orientations of the bonds, which can be mon-
itored through the related stiffness parameters23–32. Under such additional restrictions, it turns out that these
approaches provide a more realistic description of semiflexible polymers23,29. However, the price one has to pay
for it is an increase of the complexity for an analytical solution of the problem. Indeed, the dynamical matrix of the
semiflexible polymers, which couples the set of equations of motion, contains more non-vanishing elements than
that of the fully-flexible polymers. Nevertheless, also in this case, based on the numerical and analytical methods,
one can determine the spectra of the dynamical matrix, which allows one to study the dynamic properties of
semiflexible polymers33,34.

The main purpose of this article is to uncover the dynamic properties of the regular treelike polymer networks
in the framework of the STP model24. For this, we investigate in the STP framework the mechanical relaxation
properties for a family of recursive treelike polymer networks which display a small-world behavior35. We first
analyze the structure of the corresponding dynamical matrix and derive and analyze its spectra. Based on them we
investigate for large polymer structures the mechanical loss moduli [G0(v)], which allows one to observe the
dynamical behavior of polymeric systems at different scales3,36,37. By comparing the [G0(v)] of the flexible
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polymer networks with that of the corresponding semiflexible ones,
we observe that the stiffness parameter has dramatic influence on the
dynamic properties of the polymers, especially in the high-frequency
domain. Here, the STP framework allows us to carry on an in-depth
analysis of the interplay between the structure and the dynamics of
the polymer system. In particular, following the scheme of Refs. 33,
34, we show that the eigenmodes of the fully-flexible recursive tree-
like polymers keep their structures also in case when one introduces
semiflexibility. This allows us to obtain analytic expressions for at
least half of the corresponding eigenvalue spectra as a function of the
stiffness parameter. It turns out that introducing semiflexibility leads
to a reduction of the degeneracy of the spectra.

The report is structured as follows: Section Results introduces the
construction of the recursive networks, whose dynamics is studied in
the STP-framework. Here we also analyze the corresponding dynam-
ical matrices, their eigenvectors and eigenvalue spectra, which allow
us to calculate and to discuss the mechanical relaxation loss moduli
G0(v) for the polymer networks. Section Discussion summarizes our
main results and conclusions. Finally, section Methods recalls briefly
the tools which use in the report, namely, the STP-model24 and the
eigenmodes of the fully-flexible recursive treelike polymers35.

Results
Network construction. We start by introducing a model for a class of
treelike networks with exponential growth35, which are constructed
in a deterministic iterative way. We denote by Ug (g $ 0) the
deterministic treelike networks after g iterations. Then the
networks can be generated as follows. Initially (g 5 0), U0 consists
of an isolated node, called the central node. For g 5 1, f (f is a natural
integer) new nodes are generated connecting the central node to
form U1. For g $ 1, Ug is obtained from Ug21 by adding f new
nodes to each existing node in Ug21. Fig. 1 illustrates schematically
the construction process of a network for the particular case of f 5 3
for the first several iterations.

According to the construction algorithm of Ug, it is easy to see that
at each iteration gi (gi $ 1) the number of newly generated nodes is
L gið Þ~f f z1ð Þgi{1. Thus, the network order (i.e., the total number
of nodes), Ng, at iteration g leads to

Ng~
Xg

gi~0

L gið Þ~ f z1ð Þg : ð1Þ

The corresponding number of edges (bonds) at iteration g is Ng 2 1,
which holds for all treelike networks38.

This class of networks displays typical features of macromolecules
in the polymer science5–18. Their cumulative degree distribution
Pcum(k), defined as the probability that the degree of a uniformly
chosen node is greater than or equal to k, decays exponentially with

k as Pcum kð Þ~ f z1ð Þ{
k{1

f 35. The average path length (APL), which
represents the mean of the shortest distance between two nodes over
all node pairs, increases logarithmically with the network size35. The
diameter, defined as the maximum length of the shortest path
between two nodes over all node pairs, also grows logarithmically
with the network order35. The features of the APL and of the diameter
indicate that this class of polymer networks shows small-world beha-
vior39. In addition, the degree correlations of the networks depend on
the functionality f. The network is uncorrelated for f 5 3. And the
network is assortative and disassortative when the functionality f is in
the interval [1,2] and [4, ‘), respectively35.

After introducing the topological characteristics of the polymer
networks, next we will investigate the dynamical properties on them,
which is the primary topic of the present report.

Dynamics of semiflexible Ug. We start with a summary of the main
formulas concerning the dynamics of semiflexible Ug; the details of
the STP-model used here are provided in section Methods.

In the STP-framework24, the semiflexibility is modeled through
the complementary interactions between the next-nearest neighbor-
ing beads. In particular, one introduces the so-called stiffness para-
meters, which are related to the pairs of adjacent bonds. Exemplarily,
the stiffness parameter qi of bead i which connects bonds la and lb is
defined as qi:+ la

:lbh i
�

l2, where . . .h i denotes an average, l2 is the
mean-square length of each bond, and the sign depends on the ori-
entation of bonds. We note also that the beads of functionality fi 5 1
do not connect any pair of bonds, so that no stiffness parameters are
associated with them, see section Methods for details.

The dynamics of the polymer networks is described by a set of
Langevin equations3,37, i.e., say, for the x-component of the position
vector ri 5 {x, y, z} one has:

t0
L
Lt

xi tð Þz
XN

j~1

ASTP
ij xj tð Þ~~f i tð Þ

.
K, Vi: ð2Þ

Here t0 5 f/K, f is the friction constant, K is the spring constant (see
also equation (45) in Methods). Moreover, ~fi tð Þ is the x-component
of the usual fluctuating Gaussian force acting on the ith bead, for

which ~f i tð Þ
D E

~0 and ~f i tð Þ~f j t’ð Þ
D E

~2kBTfdijd t{t’ð Þ hold.

The interaction between the beads are described through the

dynamical matrix ASTP~ ASTP
ij

� �
, whose entries are known in closed

form24. Here it is worthwhile to introduce a notation to present the
situation of the bead sites, see Fig. 2. Starting from an arbitrary bead i
in the structure, we denote its neighbors by ik and the neighbors of ik

by iks. The corresponding functionalities of beads i and ik are fi and fik

respectively, while the corresponding stiffness parameter of junc-
tions i and ik are qi and qk respectively. For these all the non-vanish-
ing elements of the matrix ASTP are given by:

ASTP
ii ~

fi

1{ fi{1ð Þqi
z
X

ik

fik{1ð Þq2
ik

1{ fik{2ð Þqik{ fik{1ð Þq2
ik

, ð3Þ

ASTP
iik

~{
1{ fi{1ð Þ fik{1ð Þqiqik

1{ fi{1ð Þqið Þ 1{ fik{1ð Þqikð Þ , ð4Þ

and

ASTP
iiks

~
qik

1{ fik{2ð Þqik{ fik{1ð Þq2
ik

: ð5Þ

whereas all other elements of ASTP vanish24.
Based on the structure of ASTP, equation (3) , (5), it is a simple

matter to determine all elements of the matrix ASTP
g for Ug. For

simplicity, we assume that all beads of the same functionality fi in
the semiflexible polymer Ug have the same stiffness parameter qi.

Figure 1 | Construction of the network Ug corresponding to f 5 3 and
g 5 3.
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Note that the peripheral beads of the polymer Ug have functionality fi

5 1 and hence do not connect any bonds, thus we only have to
consider the stiffness parameter of inner beads. In the following,
we assume that the stiffness parameter qi of the inner bead i which

has functionality fi(fi . 1) is taken to be qi~
q

fi{1
, where q is a real

number between 0 and 1.
Now, we can categorize the diagonal elements into two different

situations:

1. If i is a peripheral bead then f gð Þ
i ~1. It is connected by a single

neighbor ik of functionality f gð Þ
ik

to the rest of the Ug. Thus, according

to equation (3) the value of ASTP
g

� �
ii

follows:

ASTP
g

� �
ii
~1z

q2

f gð Þ
ik

{1zq
� �

1{qð Þ
: ð6Þ

2. Otherwise, the bead i has functionality f gð Þ
i w1, hence the value of

ASTP
g

� �
ii

turns out to be:

ASTP
g

� �
ii
~

f gð Þ
i

1{q
z
X

ik[D
gð Þ

i

q2

f gð Þ
ik

{1zq
� �

1{qð Þ
, ð7Þ

where the set D gð Þ
i contains only the neighbor beads {ik} of bead i,

which have functionality f gð Þ
ik

w1 in the gth generation.
As a second step we consider the non-diagonal nearest-neighbor-

ing (NN) elements of ASTP
g . There are also two distinct cases:

1. If either i or ik is a peripheral bead. From equation (40) the value

of ASTP
g

� �
iik

leads to:

ASTP
g

� �
iik

~{
1

1{q
: ð8Þ

2. Otherwise, both two beads have functionality f gð Þ
i w1 and f gð Þ

ik
w1,

so that ASTP
g

� �
iik

turns out to be:

ASTP
g

� �
iik

~{
1zq
1{q

: ð9Þ

Finally, we have to determine the next nearest-neighboring (NNN)

elements of ASTP
g

� �
iiks

. These elements depend only on the bead ik of

functionality f gð Þ
ik

lying between the beads i and iks. From equation

(41), the ASTP
g

� �
iiks

can take only one single value, which is

ASTP
g

� �
iiks

~
q

f gð Þ
ik

{1zq
� �

1{qð Þ
: ð10Þ

All other non-diagonal elements of the matrix ASTP
g vanish.

According to the construction of Ug and the elements of ASTP
g

discussed above, it is easy to observe that the matrix ASTP
g has the

following block form:

ASTP
g ~

Lg Bg Bg . . . Bg

BT
g Dg Cg . . . Cg

BT
g Cg Dg . . . Cg

..

. ..
. ..

. ..
. ..

.

BT
g Cg Cg . . . Dg

0
BBBBBBBB@

1
CCCCCCCCA

f z1ð Þ| f z1ð Þ

, ð11Þ

where each block is a (f 1 1)g21 3 (f 1 1)g21 matrix. Here Lg repre-
sents the (f 1 1)g21 inner beads. Cg and Dg correspond to the f(f 1

1)g21 peripheral beads. Bg describes the interaction between them.
Furthermore, to bead i, at each subsequent iteration, f new beads

will be linked. Hence, the degree of bead i in the generation g evolves
as:

f gð Þ
i ~f g{1ð Þ

i zf , ð12Þ

Thus, in the generation g, all the inner beads have functionalities
larger than one. Therefore, from equation (7) all the diagonal ele-

Figure 2 | Schematic drawing of the nearest and next-nearest neighbors of
a bead i in a treelike network. Here we denote one of the nearest neighbors

of bead i by ik and one of the next nearest neighbors of bead i by iks.

Figure 3 | Schematic drawing of the beads movement corresponding to
the case when the inner beads are immobile. Here Ug has functionality f 5

3 and generation g 5 2. The sum of the amplitudes of all the f mobile beads

generated by the same ascendant in the second generation vanishes.

Figure 4 | Schematic drawing of the beads movement corresponding to
the case when the inner beads are mobile. Here Ug has functionality f 5 3

and generation g 5 2. All the f mobile beads generated by the same

ascendant in the second generation have same amplitude.
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ments of matrix Lg are:

Lg
� �

ii~
f gð Þ
i

1{q
z
X

ik[D
gð Þ

i

q2

f gð Þ
ik

{1zq
� �

1{qð Þ
, ð13Þ

and the NN elements of matrix Lg are:

Lg
� �

iik
~{

1zq
1{q

: ð14Þ

Moreover, the NNN elements of Lg are determined as:

Lg
� �

iiks
~

q

f gð Þ
ik

{1zq
� �

1{qð Þ
: ð15Þ

All other non-diagonal elements of the matrix Lg vanish.
Now, as can be inferred from the Ug construction, the structure of

the matrix Bg takes the form:

Bg~

B 1ð Þ
g B 2ð Þ

g B 2ð Þ
g . . . B 2ð Þ

g

B 3ð Þ
g B 4ð Þ

g 0 . . . 0

B 3ð Þ
g 0 B 4ð Þ

g . . . 0

..

. ..
. ..

. ..
. ..

.

B 3ð Þ
g 0 0 . . . B 4ð Þ

g

0
BBBBBBBBB@

1
CCCCCCCCCA

f z1ð Þ| f z1ð Þ

, ð16Þ

where each block is a (f 1 1)g22 3 (f 1 1)g22 matrix. The component
matrices B 2ð Þ

g , B 3ð Þ
g and B 4ð Þ

g are diagonal matrices. The matrix B 1ð Þ
g

obeys similar relations as matrix Bg.
Furthermore, in equation (11) the block Cg represents the NNN

interaction among the peripheral beads of the network. Therefore, its
elements are given by equation (10). Moreover, Cg is a diagonal
matrix. The main diagonal entries of Cg are given by

Cg
� �

11~
q

gf {1zqð Þ 1{qð Þ ð17Þ

and by

Cg
� �

ii~
q

g{jz1ð Þf zqð Þ 1{qð Þ , ð18Þ

where (1 1 f)j22 , i # (1 1 f)j21 and 2 # j # g.
Finally, let us consider the blocks Dg, which are also diagonal

matrices. According to equation (6) and the bead degree, the main
diagonal entries of Dg can be expressed as:

Dg
� �

11~1z
q2

gf {1zqð Þ 1{qð Þ ð19Þ

and

Dg
� �

ii~1z
q2

g{jz1ð Þf zqð Þ 1{qð Þ , ð20Þ

where (1 1 f)j22 , i # (1 1 f)j21 and 2 # j # g.
Based on the structure of dynamical matrix ASTP

g discussed above,
in the next subsection, we will determine the eigenvalue spectra of
this matrix.

Eigenvalue spectra of ASTP
g . In order to study the dynamical

properties of the semiflexible polymer Ug, we will use the results of
the previous subsections. In particular, the solution of the set of
equations (2) requires diagonalization of ASTP

g . For several highly
symmetric structures, such as dendrimers and Vicsek fractals, the
set of eigenvalues can be obtained with the help of the similarity

between the eigenvectors’ structure of the fully flexible polymer
and that of the corresponding semiflexible case33,34, fact which also
is of judicious use in case of Ug-networks. We develop our study of
the eigenvalues of the semi-flexible polymers in three steps: First, in
Methods we recall the spectra distribution of the fully flexible case;
here we discuss the features of the corresponding eigenvectors and
show that these features are also applicable to the semiflexible Ug

polymers – we use a combined analytical and numerical approach to
derive their eigenvalues.

Let v denote the eigenvector, whose corresponding eigenvalue is l.
v can be expressed as

v~

v1

v2

v3

..

.

v f z1

0
BBBBBBB@

1
CCCCCCCA

, ð21Þ

where all vi of the vector v have same sizes. For fully-flexible Ug (see
Methods), we distinguish between the following two cases:

In the first case, the vector v satisfies following relations:

v1~0, ð22Þ

v2zv3z . . . zv f z1~0: ð23Þ

Based on the above two expressions of the eigenvectors, one can
readily observe that, in this case, only beads of highest generation can
move, while their ascendants(inner beads) are immobile, see Fig. 3.
Moreover, the sum of the amplitudes associated with the f mobile
descendants, which are generated by arbitrary bead in the (g 2 1)th
generation, vanishes.

In the second case, the vector v satisfies following relation:

v2~v3~v4~ � � �~v f z1: ð24Þ

In this case, all of the f mobile descendants generated by the same
bead in the (g 2 1)th generation have the same amplitude, see Fig. 4.

We make a brief summary by noticing that for Ug the eigenmo-
tions of beads can be categorized into two groups: (i) Motions invol-
ving immobile inner beads. (ii) Motions involving mobile inner
beads. As we proceed to show, this finding allows us to readily study
the spectrum of the dynamical matrix in the corresponding semi-
flexible Ug polymers.

First we show that Ug have similar structure of eigenvectors in the
fully-flexible and in semiflexible cases, i.e. we consider the following
eigenvalue problem:

ASTP
g v~lv, ð25Þ

where ASTP
g is the dynamical matrix of Ug. Based on equation (11),

equation (25) can be expressed as

Lg Bg Bg . . . Bg

BT
g Dg Cg . . . Cg

BT
g Cg Dg . . . Cg

..

. ..
. ..

. ..
. ..

.

BT
g Cg Cg . . . Dg

0
BBBBBBBB@

1
CCCCCCCCA

v1

v2

v3

..

.

v f z1

0
BBBBBBB@

1
CCCCCCCA

~l

v1

v2

v3

..

.

v f z1

0
BBBBBBB@

1
CCCCCCCA

, ð26Þ

where vectors vi(1 # i # f 1 1) are components of v. Equation (26)
leads to the following equations:

www.nature.com/scientificreports
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Lg v1zBg v2z � � �zBg v f z1~lv1

BT
g v1zDg v2z � � �zCg v f z1~lv2

..

.

BT
g v1zCg v2z � � �zDg v f z1~lv f z1

8>>>>><
>>>>>:

: ð27Þ

When the inner beads are immobile, the eigenvector v satisfies equa-
tions (22) and (23). Then the system (27) can be reduced to

Dg{Cg

� �
v2~lv2

Dg{Cg
� �

v3~lv3

..

.

Dg{Cg
� �

v f ~lv f

8>>>>><
>>>>>:

: ð28Þ

Let Eg 5 Dg 2 Cg be the matrix that have the same size of Dg and Cg,
then Eg is also a diagonal matrix. The system (28) defines an eigen-
value problem which is corresponding to the following matrix:

ANg~

Eg 0 0 � � � 0

0 Eg 0 � � � 0

0 0 Eg � � � 0

..

. ..
. ..

. ..
. ..

.

0 0 0 � � � Eg

0
BBBBBBB@

1
CCCCCCCA

f {1ð Þ| f {1ð Þ

: ð29Þ

Obviously, each eigenvalue of matrix Eg is also an eigenvalue of
matrix ANg with multiplicity f21. As a real and diagonal matrix,
Eg has exactly (f 1 1)g21 eigenvalues and the eigenvalues of matrix Eg

is equivalent to the main diagonal entries of matrix Eg.
Based on equations (17)-(20), the main diagonal entries of matrix

Eg can be easily evaluated:

Eg
� �

11~ Dg
� �

11{ Cg
� �

11~1{
q

gf {1zq
ð30Þ

and

Eg
� �

ii~ Dg
� �

ii{ Cg
� �

ii~1{
q

g{jz1ð Þf zq
, ð31Þ

where (1 1 f)j22 , i # (1 1 f)j21 and 2 # j # g. From equation (30)
and (31), there are g distinct eigenvalues of matrix Eg, namely,

l1~1{
q

gf {1zq
, ð32Þ

whose multiplicity is 1 in the matrix Eg and f 2 1 in the matrix ASTP
g ,

and

lj~1{
q

g{jz1ð Þf zq
, ð33Þ

where 2 # j # g. The multiplicity of this eigenvalue is (f 1 1)j22 f in
the matrix Eg, while in the matrix ASTP

g its multiplicity is

Mj~ f z1ð Þj{2f f {1ð Þ: ð34Þ

We now calculate the total number Nn of eigenvalues for the group
that the inner beads are immobile

Nn~f {1z
Xg

i~2

f {1ð Þf f z1ð Þi{2
~ f {1ð Þ f z1ð Þg{1: ð35Þ

A special case of equation (32) and (33) is the fully flexible case, for
which q vanish. We observe that in this case l1 R 1 and lj R 1, which
corresponds to the eigenvalue set FE1g of the fully flexible case.

When the inner beads are mobile, the eigenvector v satisfies equa-
tion (24). Then equation (27) can be reduced to

Lg v1zf Bg v2~lv1

BT
g v1z Dgz f {1ð ÞCg

� �
v2~lv2

(
, ð36Þ

which is equivalent to determining the eigenvalues of the following
matrix:

ASg~
Lg f Bg

BT
g Dgz f {1ð ÞCg

 !
, ð37Þ

in which each block is a (f 1 1)g21 3 (f 1 1)g21 matrix and ASg is a 2(f
11)g21 3 2(f 1 1)g21 matrix. The diagonalization of matrices ASg can
be performed numerically. As discussed in previous subsection, Lg

and Bg are sparse matrices, while Dg and Cg are diagonal matrices,
that is to say, the matrix ASg is considerably sparse, which is of great
help to the diagonalization procedure.

In summary, the total number of eigenvalues corresponding to the
group that inner beads are mobile is:

Ns~2 f z1ð Þg{1: ð38Þ

By summing those from group (i), equation (35), and, from group
(ii), equation (38), we have

NnzNs~ f {1ð Þ f z1ð Þg{1
z2 f z1ð Þg{1

~ f z1ð Þg:Ng : ð39Þ

which indicates that we have found the all eigenvalues of Ug.
In order to demonstrate the influence of stiffness, we plot in Fig. 5

and Fig. 6 the distribution of the eigenvalue spectra for Ug. The left
part and the right part of Fig. 5 display the eigenvalues in ascending
order for Ug of f 5 3 and of f 5 4, respectively. From Fig. 5, it is easy to
notice that with the increase of the stiffness parameter q, the large
eigenvalues of the dynamical matrix grow, while the small ones
decrease. By comparing the left part and the right part of Fig. 6, we
observe that the number of distinct eigenvalues in the semiflexible Ug

is higher than for its flexible counterparts. In case of Ug, the reason for
this phenomenon lies in the the dynamical matrix, which has more
non-vanishing elements for semiflexible Ug. However, one should
note, that semiflexibilty not always leads to a different structure of the
eigenvalue spectra. For example, the multiplicities of the eigenvalues
for fully-flexible and for semiflexible dendrimers are the same33.

Another feature which becomes apparent in both parts of Fig. 5 is

that the eigenvalue lg~
f

f zq
, which is located in the in-between

part of the spectra, has the highest multiplicity. As the stiffness para-
meter q decreases from 1 to 0, lg increases gradually and approaches
1 (Note that in the corresponding fully flexible network, this eigen-
value equals to 1 for any functionality). From equation (34) we know
that the multiplicity of lg is (f 1 1)(g22)f(f21), which is increasing
with functionality f and generation g. For Ug of any g, lg occupies
exactly [f(f 2 1)/(f 1 1)2] part of the whole spectrum. For example, lg

takes 3/8 part for f 5 3 and 12/25 part for f 5 4, respectively. As we
will show, these differences of spectra between the two types of
polymer networks Ug will lead to different dynamic behaviors.

To conclude this part, it turns out that the determination of eigen-
values discussed here is based on a judicious use of the typical bead
motions in the highly symmetric polymers. This approach can pro-
vide analytical expressions of a large part of the spectra and their
multiplicities in the semiflexible polymer network with arbitrary
functionality and genaration. Instead of the traditional brute-force
numerical diagonalization of the complete dynamical matrix, this
approach considerably reduces the computational complexity of
the eigenvalue problem and may pave the way for exploring other
semiflexible polymers with complex topology, especially for symmet-
ric architectures.

Mechanical relaxation. The eigenvalue spectrum {lk} of ASTP
g plays a

fundamental role in the static and dynamic properties of
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polymers3,23. In this report we focus on the mechanical relaxation,
which is represented by the complex shear modulus37

G� vð Þ~G’ vð ÞziG’’ vð Þ, ð40Þ

where its real part G9 (v) and imaginary part G0 (v) are the storage
modulus and the loss modulus respectively. The dimensionless
storage [G9(v)] and loss [G0(v)] moduli are given by3

G’ vð Þ½ �~ G’ vð Þ
nkBT

~
1
N

XN

k~2

vt0=2lkð Þ2

1z vt0=2lkð Þ2
, ð41Þ

and

G’’ vð Þ½ �~ G’’ vð Þ
nkBT

~
1
N

XN

k~2

vt0=2lk

1z vt0=2lkð Þ2
, ð42Þ

where t0 is as in in equation (2) and the {lk} are the nonvanishing
eigenvalues of the matrix ASTP

g .
Based on the eigenvalues discussed in the previous subsection, we

calculate the reduced loss moduli [G0(v)] of Ug. In the left part and
the right part of Fig. 7, we display in double logarithmic scales the
[G0(v)] of Ug of f 5 3 and f 5 4, respectively, for different values of
the stiffness parameter q. Here we keep the generation fixed by taking
g 5 6 and vary the stiffness parameter by increasing q from the pure
Rouse (fully-flexible) case, q 5 0, to the semiflexible case q 5 0.888.
From Fig. 7, it is easy to observe that in both Rouse case and semi-
flexible case, for very low frequencies v, we have [G0(v)] , v1; and

that for very high frequencies v, we have [G0(v)] , v21. Note that
these well-known universal scaling laws hold for nearly all finite
polymer networks3. Hence, the particular structure of a polymer
leaves its significant fingerprints in the intermediate region. Here,
in the double-logarithmic scale, nearly no straight lines are observ-
able in the intermediate region of [G0(v)], which means that it
appears a nonscaling behavior in this region. In Fig. 7, we can infer
from the curve, that differences in the stiffness parameter q affect the
intermediate behavior of [G0(v)] dramatically.

As it is shown in Fig. 7, the [G0(v)]-curves show a major peak in
the intermediate region. With increasing stiffness parameter q, the
[G0(v)] curve starts to bend downwards in the in-between region.
The semiflexibility is reflected in the [G0(v)] through a local min-
imum and a second minor peak appearing at intermediate frequen-
cies. The reason for this fact lies in the unique spectra distribution of
the polymer network. In Fig. 5, we can see that there is a clear gap in
each spectrum near the value 1.0: In the left part of Fig. 5, for q 5

0.333, the largest eigenvalue smaller than 1.0 is l<0.9808, and the
smallest eigenvalue greater than 1.0 is l<5.1127, thus this gap is
about 4.1319, while it is equal to 7.489 for q 5 0.666 and to 20.947
for q 5 0.888, respectively. Hence, the gap in the spectra depends
strongly on q, growing with q dramatically. Moreover, with increas-
ing stiffness parameter q, the [G0(v)] curves get wider especially in
the high frequency region, which is also observed before in a series of
semiflexible polymer networks23,33,34. The explanation for this phe-
nomenon lies in the broadening of the eigenvalue spectra with grow-
ing stiffness parameter q.

Figure 5 | Spectrum curves of polymer network Ug of generation g 5 6 and functionality f 5 3 (a) or f 5 4 (b) for different degrees of stiffness q.

Figure 6 | Number of distinct eigenvalues for polymer network Ug of generation g 5 6 and functionality f 5 3 for different degrees of stiffness q, with
q 5 0 (a) and q 5 0.666 (b).
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In order to have a deeper understanding of [G0(v)] curves, in

Fig. 8 we plot the derivative a vð Þ~ d log10 G’’ vð Þ½ �
d log10 vt0=2ð Þ for the [G0(v)]

curves of Fig. 7 as a function of log10(vt0/2) in a simple logarithmic
scale. As we can see from Fig. 8, the value of a(v) starts to decrease
from 1.0 in the low frequency domain and falls down around vt0/2
< 1. In the intermediate region, the value again goes up rapidly and
then it descends to the value 21.0 in the high frequency. From the left
part of Fig. 8, we can see that there are 3 intersection points between
the straight line a(v) 5 0 and the a(v) curve for the q . 0.729, which
indicates that a local minimum of the [G0(v)] can be observed when
q . 0.729. Moreover, the intersection points between these two
curves shift to higher v-region with growing stiffness parameter,
which means that, in the [G0(v)], the local minimum and the second
minor peak shift to the high frequency region with increasing q. This
feature is also apparent from Fig. 7.

We conclude that the mechanical relaxation functions show that
the networks Ug belong to the class of polymeric structures whose
dynamics does not scale in the intermediate frequency (or time)
domain. Such a non-scaling behavior show other well-known struc-
tures, namely dendrimers and some structurally disordered SFNs
(SDSFNs)12,15,27,33,41. Nevertheless, their relaxation dynamics differs
from that of the Ug, especially for the semiflexible case. Namely, the
[G0(v)] of semiflexible dendrimers show a considerable broadening
towards both low and high frequencies33, whereas for Ug the curves in
the low-frequency domain display only little differences. Hence the

relaxation at the large scales is for the Ug networks less affected by
stiffness than for dendrimers. In comparison to SDSFNs41, inclusion
of stiffness leads for several SDSFNs to a local minimum in [G0(v)]
which, however, considerably less pronounced than by Ug. This is
also obvious from the inspection of the corresponding local slopes,
which for SDSFNs do not show big jumps as in Fig. 841.

Discussion
In summary, we presented a systematic theoretical investigation of
the dynamic properties of a family of growing semiflexible treelike
polymer networks in the framework of STP. The main goal of this
article is to explore the impact of various polymer structures and of
the different degrees of stiffness q, on the dynamic behavior of the
polymer networks. To achieve this goal, we analyzed the dynamical
matrix for the polymer networks and characterized their spectra. We
succeeded to obtain a large part of the spectra analytically.

Based on the eigenvalue spectra, we have investigated the mech-
anical relaxation forms for the semiflexible polymer networks. In the
in-between region, [G0(v)] curve shows a nonscaling behavior, while
in the very low and very high frequency, it shows v21 and v1 beha-
viors respectively. Moreover, it turns out that the relaxation behavior
is very sensitive to the stiffness. Indeed, with the increasing stiffness
parameter q, the [G0(v)] curves get broader especially in the high
frequency domain (showing that the stiffness is very important at the
local scales) and they start to show a local minimum and another
minor peak in the in-between region. Such a distinct qualitative

Figure 7 | Reduced loss moduli [G0(v)] for Ug of functionality f 5 3 (a) and f 5 4 (b), based on the spectra of Fig. 6.

Figure 8 | The corresponding slopes a(v) of reduced loss moduli [G0(v)] for Ug of functionality f 5 3 (a) and f 5 4 (b), plotted for different degrees of
stiffness.
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behavior is observed when the stiffness parameter q gets higher than
0.729 (for f 5 3), as it follows from the analysis of the derivative for
the [G0(v)]. These observations show that the considered networks
Ug belong to the same class as the well-known, extensively synthe-
sized42 dendrimers. As we have found, however, the semiflexibility
allows one to distinguish the Ug networks from dendrimers and from
other representatives of the common class. We hope that recent
progress in the synthesis, in particular, the realization of dendrimers
with hypermonomers (monomers with high number of functional
groups) and with monomers consisting of both active and inactive
groups42, will pave the way to the compounds with the properties of
Ug. Finally, it is expected that the methods presented here can be
extended to other classes of large semiflexible polymer networks.

Methods
Modelling Semiflexiblity. The polymer structure is modeled as a network, which
consists of N beads located at r i i~1 � � �Nð Þ connected by springs (bonds)

la~r i{r j: ð43Þ

We can express the transformation (43) from the bond to the positions’ variables by
the incidence matrix G38,

la:
X

k

GT
� �

akrk: ð44Þ

Here the GT is the transposed matrix to G; the matrix G 5 (Gia) has nonzero entries
only Gja 5 21 and Gia 5 1, where the bond a starts in bead j and ends in bead i.

For the fully flexible polymers, the potential energy between beads is purely har-
monic, so that it is diagonal in the bonds,

Vfl laf gð Þ~ K
2

X
a

l2
a: ð45Þ

Here the sum runs over all the bonds that build up the polymer. In equation (45), the
spring constant K equals 3kBT/l2, where kB denotes the Boltzmann constant, T is the
temperature, and l2 is the mean-square bond length (all bonds are of the same mean-
square length). From equation (45) it follows that in the GGS picture the equilibrium
bond-bond correlations la

:lbh ifl evaluated with respect to the Boltzmann distribution
exp(2Vfl/kBT) vanish24.

However, for semiflexible polymers, the bonds are correlated, i.e. their orientations
are not arbitrary. In order to account for this feature, as discussed in Ref. 24, one may
extend equation (45) and use the generalized potential energy Vs:

Vs laf gð Þ~ K
2

X
a,b

Wabla
:lb, ð46Þ

Under the assumption that la follow normal distribution, the average of la
:lbh i with

respect to the Boltzmann distribution is

la
:lbh is~l2 W {1

� �
ab ð47Þ

In this way one has the relation between the potential energy and the mean scalar
products of bonds. For the latter the following traditional23–32 conditions are taken:
First, the mean-squared length is

la
:lah is~l2: ð48Þ

For adjacent bonds la and lb which are connected by the bead i one has

la
:lbh is~+l2qi: ð49Þ

Here the parameter qi reflects the stiffness degree of the bead i; the plus or minus sign
of qi depends on the connection of bonds la and lb , e.g. the plus sign holds for a head to
tail arrangement whereas the minus sign appears in the other cases. In a three-
dimensional space qi is restricted by qi , 1/(fi 2 1), where fi is the functionality of the
bead i40. Another limit qi 5 0 leads to a fully-flexible model. For non-adjacent bonds
la and lc, one has as in the freely rotating chain model,

la
:lch i~ la

:lb 1

� �
lb1
:lb2h i . . . lbk

:lch il{2k: ð50Þ

Here (a, b1, b2, …, bk, c) denotes the unique, shortest path from bond la to bond lc.
Under the conditions of equations (48) – (50), the potential energy Vs({la}) of

equation (4) has an analytic-closed form24. In order to get the Vs the frame of beads,
we substitute equation (44) into equation (49), leading to

Vs r if gð Þ~ K
2

X
k,n

ASTP
kn rk

:rn, ð51Þ

where ASTP is the so-called dynamical matrix and is given by ASTP 5 GWGT. Based on
equation (51), one can readily write down the equation of motions (2), where the
structure of ASTP is presented in equations (3), (5).

Spectra of flexible polymer networks Ug. According to the construction of Ug, the
dynamical matrix AGGS of fully-flexible Ug is the connectivity matrix and is given by35

AGGS
g ~

AGGS
g{1zf Ig{1 {Ig{1 {Ig{1 � � � {Ig{1

{Ig{1 Ig{1 0 � � � 0

-Ig{1 0 Ig{1 � � � 0

..

. ..
. ..

. ..
. ..

.

{Ig{1 0 0 � � � Ig{1

0
BBBBBBB@

1
CCCCCCCA

, ð52Þ

whose characteristic polynomial satisfies following recursive relation35

Qg lð Þ~ l{1ð Þf f z1ð Þg{1

Qg{1 l{f {
f

l{1

	 

: ð53Þ

We use notation FEg to represent the eigenvalues set of matrix AGGS
g . Note that the

polymer networks have (f 1 1)g nodes, which indicted that there are (f 1 1)g

eigenvalues in the set FEg. Based on the recursive relation of the characteristic
polynomial Q(l), FEg can be divided into two subset FE1g and FE2g. That is to say,
FEg~FE1g|FE2g , where FE1g contains eigenvalue 1 with multiplicity (f 2 1)(f 1

1)g21. Thus,

FE1g~ 1,1,1, � � � ,1,1f g|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
f {1ð Þ f z1ð Þg{1

: ð54Þ

FE2g consists the remaining 2(f 1 1)g21 eigenvalues which are determined by the
following equation35

l{f {
f

l{1
~l

g{1
i , ð55Þ

where l
g{1
i is an arbitrary eigenvalue in the set FEg21. Note that equation (55) have

two roots for each l
g{1
i . Thus, each eigenvalue in FEg21 generates two new

eigenvalues in FE2g. And the FEg set can be fully determined by recursively applying
above two equations.

Similarly to the eigenvalues, the eigenvectors of AGGS
g can be determined from

those of AGGS
g{1. Let v denote the eigenvector, whose corresponding eigenvalue is l. v

can be expressed as

v~

v1

v2

v3

..

.

v f z1

0
BBBBBBB@

1
CCCCCCCA

, ð56Þ

where all vi of the vector v have same sizes. We can solve equation lI{AGGS
g

� �
v~0

to determine the vector v. We distinguish two cases: l g FE1g and l g FE2g, which
will be addressed as follows.

For the first case of l g FE1g, where all l 5 0, the equation lI{AGGS
g

� �
v~0 leads

to the following equations:

v1~0 ð57Þ

v2zv3z � � �zv f z1~0: ð58Þ

For the second case of l g FE2g, we can have following relations.

l{fð ÞIg{1{AGGS
g{1

h i
v1zv2z � � �zv f z1~0, ð59Þ

v1z l{1ð Þv i~0 2ƒiƒf z1ð Þ: ð60Þ

Resolving equations (59) and (60) to find

l{f {
f

l{1

	 

Ig{1{AGGS

g{1

� 
v1~0, ð61Þ

v i~{
1

l{1
v1 2ƒiƒf z1ð Þ, ð62Þ

which shows that all the vi(2 # i # f 1 1) have same values and are uniquely
determined by the v1. Equation (61) together with equation (55) indicates that vi is an

eigenvector of matrix AGGS
g associated with the eigenvalue l{f {

f
l{1

determined
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by l
g{1
i . Thus, eigenvector v can be expressed as

v~

v1

v2

v3

..

.

v f z1

0
BBBBBBB@

1
CCCCCCCA

~

v1

{ 1
l{1 v1

{ 1
l{1 v1

..

.

{ 1
l{1 v1

0
BBBBBBB@

1
CCCCCCCA

, ð63Þ

which implies that v satisfies the following relation:

v2~v3~v4~ � � �~v f z1: ð64Þ
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