

OPEN

SUBJECT AREAS:
RISK FACTORS
PREDICTIVE MARKERS

Received 30 July 2014

Accepted 13 November 2014

Published 4 December 2014

Correspondence and requests for materials should be addressed to L.-M.L. (lunIm@yahoo. com.cn); G.-W.H. (gwhezj@163.com) or C.X. (bio-x.c@hotmail.

Association Between MTHFR Polymorphisms and Congenital Heart Disease: A Meta-analysis based on 9,329 cases and 15,076 controls

Chao Xuan¹, Hui Li¹, Jin-Xia Zhao¹, Hong-Wei Wang¹, Yi Wang¹, Chun-Ping Ning², Zhen Liu³, Bei-Bei Zhang⁴, Guo-Wei He^{5,6} & Li-Min Lun^{1,7}

¹Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, P.R China, ²Department of Medical Ultrasonics, The Affiliated Hospital of Qingdao University, Qingdao, P.R China, ³The Key Laboratory of Hypertension, The Affiliated Hospital of Qingdao University, Qingdao, P.R China, ⁴Graduate School of Medicine, Mie University, Mie, Japan, ⁵TEDA International Cardiovascular Hospital, Tianjin & The Affiliated Hospital of Hangzhou Normal University, Hangzhou, P.R China, ⁶Department of Surgery, Oregon Health and Science University, Portland, Oregon, ⁷Medical College of Qingdao University, Qingdao, P.R China.

The aim of our study was to evaluate the association between polymorphisms in the methylenetetrahydrofolate reductase (*MTHFR*) gene and the risk for congenital heart disease (CHD). Electronic literature databases were searched to identify eligible studies published before *Jun, 2014*. The association was assessed by the odds ratio (OR) with a 95% confidence interval (CI). The publication bias was explored using Begg's test. Sensitivity analysis was performed to evaluate the stability of the crude results. A total of 35 studies were included in this meta-analysis. For the *MTHFR* C677T polymorphism, we detected significant association in all genetic models for Asian children and the maternal population. Significant association was also detected in T vs. C for a Caucasian paediatric population (OR=1.163, 95% CI: 1.008–1.342) and in both T vs. C (OR=1.125, 95% CI: 1.043–1.214) and the dominant model (OR=1.216, 95% CI:b1.096–1.348) for a Caucasian maternal population. For the *MTHFR* A1298C polymorphism, the association was detected in CC vs. AC for the Caucasian paediatric population (OR=1.484, 95% CI: 1.035–2.128). Our results support the *MTHFR*-677T allele as a susceptibility factor for CHD in the Asian maternal population and the -1298C allele as a risk factor in the Caucasian paediatric population.

ongenital heart disease (CHD) is the most frequently occurring congenital disorder in newborns and is the most frequent cause of infant death from birth defects. The aetiology of CHD is largely unknown. Epidemiological studies reveal a significant environmental contribution to the pathogenesis of CHD¹⁻². Familial aggregation and twin studies indicate the presence of genetic factors for susceptibility to this condition³⁻⁵. Except for a few types of CHD induced by a single gene mutation, the majority of CHDs are polygenic diseases affected by both genetic and environmental factors.

The importance of genetic factors in the development of CHD is also supported by recent data from genome-wide association studies (GWASs). Data from these studies have confirmed that a region on chromosome 4p16 adjacent to the *MSX1* and *STX18* genes was associated with the risk of ostium secundum atrial septal defect (ASD)⁶, and rs2228638 in *NRP1* on 10p11 significantly increased the risk of Tetralogy of Fallot (TOF)⁷. In our studies, we identified *HOMEZ and PLAGL1* as pathogenic genes in Chinese patients with isolated ventricular septal defects (VSDs)^{8–9}. In addition, our proteomic study revealed plasma protein changes in CHD patients¹⁰.

The 5,10-methylenetetrahydrofolate reductase (*MTHFR*) gene is located on chromosome 1 at 1p36.3. MTHFR is the key metabolic enzyme of homocysteine (Hcy). It catalyses 5,10-methylenetetrahydrofolate reduction to 5-methyltetrahydrofolate, which as a methyl donor induces Hcy remethylation to methionine¹¹. A common C677T mutation (rs1801133) in the *MTHFR* gene has been described, which results in the conversion of the amino acid alanine to valine at position 226 in the protein. This mutation was associated with a 50% reduction of MTHFR enzyme activity, an increase in plasma Hcy concentration and a decrease in plasma folic acid concentration. Another polymorphism (A1298C, rs1801131) is located in exon 7, within the presumptive regulatory domain,

and results in a glutamate-to-alanine change with decreased enzyme activity in vitro¹². It has been reported that *MTHFR* polymorphisms play important roles in diseases. For example, neural tube defects and pregnancy complications appear to be linked to impaired MTHFR function^{13–14}.

Since Wenstrom first noted an association between *MTHFR* gene polymorphism and susceptibility to CHD¹⁵, other studies have been undertaken to replicate this work. However, previous case-control reports have yielded inconsistent results. Wang and co-workers carried out a meta-analysis involving 2,554 CHD patients and 3,838 controls by searching the electronic literature for articles published before *July 22, 2012*. They suggested that the infant and maternal *MTHFR* C667T polymorphism may be associated with an increased occurrence of CHD¹⁶. By contrast, Mamasoula and co-workers indicated that the *MTHFR* C677T polymorphism, which directly influences plasma folate levels, is not associated with the risk of CHD¹⁷. Therefore, we performed an up-dated meta-analysis of all published studies (until *Jun, 2014*) to investigate the association between *MTHFR* polymorphisms (C677T and A1298C) and the risk of CHD.

Methods

Search strategy. We conducted a comprehensive search of Embase, Ovid, Web of Science, the Cochrane database, Medline (PubMed), the Chinese Biomedical Literature Database (CBM-disc, 1979–2014), the database of National Knowledge Infrastructure (CNKI, 1979–2014) and the full paper database of Chinese Science and Technology of Chongqing (VIP, 1989–2014) to identify suitable studies published before Jun, 2014. The following keywords were used for searching: ("congenital heart" OR "congenital cardiac" OR "heart defect*" OR "congenital car*") AND ("polymorphism*" OR "variant*") AND ("methylenetetrahydrofolate reductase" OR "MTHFR"). The most complete and recent results were used when there were multiple publications from the same study group. The references of reviews and retrieved articles were also searched simultaneously to find additional eligible studies.

Inclusion criteria. Two investigators reviewed all identified studies independently to determine whether an individual study was eligible for inclusion. The selection criteria for studies to be considered for this meta-analysis were as follows: 1) MTHFR polymorphisms in CHD; 2) case-control or case-cohort study; 3) proper CHD diagnosis criteria; 4) original data; 5) human subjects, not animal studies. We expected the clinical assessment of the patients to include anthropometric measurement and physical examination for dysmorphism and malformation, and diagnostic studies to include chest X-ray examination, electrocardiogram, ultrasonic echocardiogram, etc. Studies would be excluded if the necessary information could not be obtained.

Data extraction. Two investigators extracted the data independently, and a third investigator reviewed the result. The following information was extracted from each study: first author, year of publication, study population (country, ethnicity), the number of patients and controls in the study, genotype information, genotype methods, and main types of CHD. If any data essential to the analysis were not available from a study, best efforts were made to contact the authors to fill in the missing data.

Statistical analysis. Allele frequencies for the MTHFR (C677T and A1298C) polymorphisms from each study were determined by the allele counting method¹⁸. The genotype distributions of controls were used to estimate the frequency of the putative risk allele (-677T and -1298C) using the inverse variance method 19-20. The Hardy-Weinberg Equilibrium (HWE) is the most fundamental rule of population genetics. It prescribes the genotype frequencies at a locus in terms of its allele frequencies in a population. In the most general form, it states that selection, migration, and random genetic drift occur with random mating in a population in the absence of mutation²¹. The deviation from HWE for the distribution of the allele frequencies was analysed by Fisher's exact test in control groups. We examined the contrast of a vs. A, aa vs. AA, aa vs. Aa and also examined the recessive genetic model (aa vs. AA+Aa) and the dominant genetic model (Aa+aa vs. AA). The associations between MTHFR polymorphisms and CHD susceptibility were estimated by OR and its 95% CI. The significance of the pooled OR was determined by the Z-test; P < 0.05was considered statistically significant. To evaluate the specific effects of ethnicity, stratified analyses were performed.

Heterogeneity across the eligible studies was tested using the Q-test, and the results were considered statistically significant when $P < 0.1^{22-23}$. Heterogeneity was also quantified with the I^2 metric ($I^2 = (Q - df)/Q \times 100\%$; $I^2 < 25\%$, no heterogeneity; $I^2 = 25-50\%$, moderate heterogeneity; $I^2 = 50-75\%$, large heterogeneity; $I^2 > 75\%$, extreme heterogeneity). When the effects were assumed to be homogenous (P > 0.1, P < 50%), the fixed-effects model was used; otherwise, the random-effects model was more appropriate $^{24-26}$. Sensitivity analysis was performed to evaluate the stability of the results. If more than seven studies were included, Begg's test was used to measure publication bias, which was shown as a funnel plot $^{27-28}$. P < 0.05 was considered

representative of statistically significant publication bias. All analyses were performed using STATA software, version 10.0 (Stata Corporation, College Station, TX, USA), Review Manager (RevMan version 5.1.1, The Nordic Cochrane Centre: http://ims.cochrane.org/revman/download) and R statistical software (version 2.15.2, http://www.r-project.org).

Results

Studies included in the meta-analysis. A total of 126 abstracts that met the inclusion criteria were retrieved through the databases. Two reviewers then selected the relevant studies independently. Forty-five relevant studies that described the association between the MTHFR polymorphism and CHD were identified. However, after reading the full articles and contacting the authors, we excluded five metaanalysis studies²⁹⁻³³, four family-based studies³⁴⁻³⁷, and one study in which information could not be obtained even after the authors were contacted³⁸. Figure 1 shows the process of study selection and exclusion, with specification of reasons. Finally, 35 studies that met the inclusion criteria, corresponding to 9,329 CHD children and 15,076 normal controls, 3,232 mothers with CHD offspring and 27,174 normal controls for the C677T polymorphism and 1,761 CHD children and 1,868 normal controls/705 mothers with CHD offspring and 15,458 controls for the A1298C polymorphism, were considered in the meta-analysis 15,17,39-71. The main characteristics of the included studies are listed in Table 1-2.

Pooled Prevalence of MTHFR -677T and -1298C in the Controls.

The pooled *MTHFR* –677T allele frequency determined using the random-effects model was 28.99% (95 CI: 26.14%–32.02%) in the Caucasian paediatric population and was 42.28% (95% CI: 34.17%–50.83%) in the Asian paediatric population. There was no heterogeneity among the Caucasian and Asian maternal population studies. The *MTHFR* –677T allele frequency was 31.76% (95 CI: 30.14%–33.43%) in the Caucasian maternal population and was 41.51% (95% CI: 37.50%–45.64%) in the Asian maternal population.

The pooled –1298C allele frequency in the fixed-effects model was 33.12% (95 CI: 29.80%–36.61%) in the Caucasian paediatric population and was 31.09% (95% CI: 25.34%–37.46%) in the Caucasian maternal population using the random-effects model.

Association between MTHFR C677T polymorphism and risk of **CHD.** We investigated the association between the MTHFR C677T polymorphism and the risk of CHD for each study. When all the eligible studies were pooled in the overall population of children with random-effects models, significant associations were observed in all genetic models: T versus C (OR = 1.248, 95% CI: 1.093-1.426; P = 0.001), TT versus CC (OR = 1.485, 95% CI: 1.140-1.935; P = 0.003), and TT versus CT (OR = 1.312,95% CI: 1.100-1.565; P = 0.003), the dominant model (OR = 1.240, 95% CI: 1.053-1.461; P = 0.010), and the recessive model (OR = 1.410, 95% CI: 1.139-1.724; P =0.001;(Figure 2). In addition, significant associations were observed in the overall maternal population in all genetic models for T versus C (OR = 1.215, 95% CI: 1.085–1.361; P = 0.001), TT versus CC (OR =1.488, 95% CI: 1.169–1.859; P = 0.001), TT versus CT (OR = 1.315, 95% CI: 1.042–1.659; P = 0.021), the dominant model (OR = 1.258, 95% CI: 1.144–1.383; P = 2.14e-6), and the recessive model (OR = 1.408, 95% CI: 1.128-1.757; P = 0.002; (Figure 3). The Z-testindicated that the pooled ORs were statistically significant.

In the stratified analysis by ethnicity, significant associations were found when all studies were pooled with fixed or random-effects models for T versus C (OR =1.163, 95% CI: 1.008–1.342; P=0.039) in Caucasian children, and for T versus C (OR =1.125, 95% CI: 1.043–1.214; P=0.002), dominant model (OR = 1.216, 95% CI: 1.096–1.348; P=2.24e-4) in the Caucasian maternal population. In addition, significant associations were found when all studies were pooled in fixed or random-effects models for all genetic models in Asian children and the maternal population. The main results of meta-analysis are shown in Table 3.

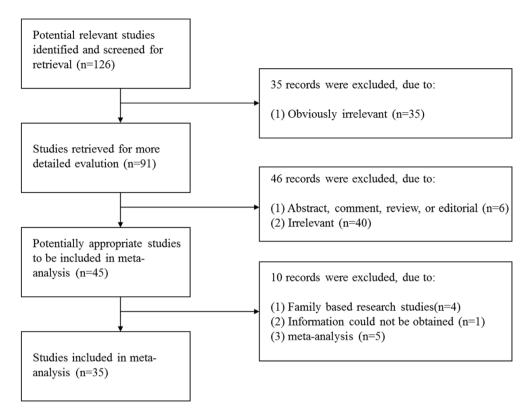


Figure 1 | Flow chart of the study selection process and specific reasons for exclusion from the meta-analysis.

CHD. We investigated the association between the *MTHFR* A1298C polymorphism and the risk of CHD for each study. Overall, when all the eligible studies were pooled in the fixed-effects model, significant

Association between MTHFR A1298C polymorphism and risk of

associations were observed for CC vs. AC (OR=1.354, 95% CI: 1.022-1.793; P = 0.034), and for the recessive model (OR=1.322, 95% CI: 1.015–1.732; P = 0.038) in the overall paediatric population. The main results of the meta-analysis are shown in Table 4.

In the analysis stratified by ethnicity, significant associations were found in the Caucasian paediatric population when all studies were pooled in the fixed-effects model for CC versus AC (OR = 1.484, 95% CI: 1.035–2.128; P = 0.032; Figure 4). The main results of the meta-analysis are shown in Table 4.

Sensitivity analyses. We removed the studies due to the genotype distribution in the control groups deviating from HWE. We found that the corresponding ORs for the C677T polymorphism for the TT vs. CT and recessive models in the overall paediatric population and for all genetic types in the overall maternal population and the Asian maternal population were not substantially altered (Table 5). This finding supports the reliability of the results.

Publication bias. Begg's test and a funnel plot were performed to assess the publication bias of the literature. We detected publication biases for the C677T polymorphism for the T vs. C and dominant models in the Caucasian paediatric population (Table 3). This might represent a limitation of our analysis because the studies with null findings, especially those with small sample size, were less likely to be published. By using the trim and fill method, we showed that, if the publication bias was the only source of the funnel plot asymmetry, they needed two and one more studies, respectively, to balance the funnel plot. The adjusted risk estimate was attenuated. The adjusted OR for T vs. C was 1.142 (95% CI: 0.729-1.786) and for the dominant model was 1.253 (95%CI: 0.738-2.133). The results suggest no evidence of publication biases in other genetic models and populations (Figure 5).

Discussion

It is estimated that 7.9 million children are born with a serious birth defect of genetic or partially genetic origin each year in the world. CHDs are the most commonly occurring conditions. However, the aetiology of CHDs is largely unknown, and there are no established strategies for reducing their public health impact.

Many studies have demonstrated that genetic factors play important roles in the pathogenesis of CHD. In our previous studies, we have detected several novel variations of the PLAGL1 and HOMEZ genes in Chinese patients with isolated VSD. We believe that these two genes are directly linked aetiologically with isolated VSD in the population^{8,9}. In addition, the results of recent genome-wide association studies indicated that a region on chromosome 4p16 adjacent to the MSX1 and STX18 genes was associated ($P=9.5 \times 10^{-7}$) with the risk of ostium secundum ASD6. These studies also showed that 1p12 (rs2474937 near TBX15; $P = 8.44 \times 10^{-10}$) and 4q31.1 (rs1531070 in MAML3; $P = 4.99 \times 10^{-12}$) were associated with congenital heart malformations in Han Chinese populations⁷².

In 1999, Kapusta and associates first reported that maternal hyperhomocysteinaemia is correlated with an increased risk of CHDs⁷³. More recently, Hobbs and co-workers studied mothers whose pregnancies were affected by congenital heart defects (224 case subjects) or unaffected by any birth defect (90 control subjects) and identified Hcy, S-adenosylhomocysteine, and methionine as the most important biomarkers predictive of case or control status³⁶. The MTHFR protein is a key enzyme in Hcy metabolism. The MTHFR gene is located on chromosome 1 at 1p36.3. The major product of the MTHFR gene is a catalytically active 77 kDa protein that catalyses the conversion of 5,10-methylenetetrahydrofolate into 5-methyltetrahydrofolate, the major circulating form of folate. Two common genetic polymorphisms associated with reduced MTHFR activity have been identified. The C677T polymorphism is located in exon 4 at the folate-binding site and results in an alanine-to-valine substitution. In healthy homozygous subjects, the 677TT genotype is associated with higher total Hcy and lower folate plasma level. The

				Main types of CHD *	PS, HLHS, CoA, AVS, d-TGA, ASD, VSD, AVSD, TOF, PDA,	DIV, PA, TA, Ebstein's Anomaly. HLV, HRV, CoA, PS, PA, TA, LVA, Atrioventricular Canal, Truncus	Arteriosus, DORA, ASD, VSD. VSD ASD, TOF, PDA, Single	VSD, TOF, DORV, PA, d-TGA, AC Congenital Anomalies Heart VSD, ASD, PDA, TOF, AP Window, ASD, CoA, PS, DILV, DORV, ECD, IAA, IAI, PA,	PDA, RAI, TGA, TOF, VSD. TOF, d-TGA, Truncus Arteriosus,	Nonsyndromic Septal.	sided ObstructiveHeart Defect ASD, PDA Congenital Heart Disease TOF, VSD, Truncus Arteriosus, TGA, AP-Window, TVA, AVSD,	Ps, As, HLHs, CoA, PDA, Congenital Heart Defects	TOF, HLHS, TGA, DORV, VSD, AS, CoA, PS, Anomalies of the	Aomic Arch Congenital Heart Disease TOF, TGA, ASD, VSD, CoA, AS, PS, HIHS.	TOF	TOF, TGA, ASD, VSD, CoA, AS,	Nonsyndromic Septal,	Controlled, or Night of Lear Sided ObstructiveHeart Defect Cyanotic Cardiac Disease, ASD, VSD, PDA, Left-sided Obstruction Defects
				Methods	PCR-RFLP P.	PCR-RFLP H	PCR-RFLP V	PCR-RFLP V. RT-PCR C PCR-RFLP V. PCR-RFLP V. PCR-DHPLC A	ARRAY TO	SEQUENCE N	PCR-RFLP A PCR-RFLP C PCR-RFLP C	PCR-RFLP C	ARRAY TO	PCR-RFLP C PCR-RFLP TG	PCR-RFLP TO	PCR-RFLP TO	SEQUENCE N	PCR-RFLP C
				HWE	I	I	0.068	0.259 0.842 0.320	1	0.841	0.320 0.558 0.881	0196	0.708	0.166	I	1	0.036	ı
			Controls	F	1	I	က	40 1282 25 -	I	4	25 5 23	-	4	38	I	1	37	ı
		_	Ö	b	1	1	15	108 6037 57 -	1	56	57 34 107	15	17	104	I	I	128	ı
		Mother		ម	1	I	2	52 7165 20 -	I	48	20 76 131	10	10	ıΞ	I	I	191	ı
				F	1	I	œ	23	I	30	23 15 18	5	က	22	I	I	9	I
			Cases	Ե	1	1	4	53 12 10	1	118	27 33 68	15	12	117	I	I	203	I
sm	MTHFR C677T			ម	1	1	2	27 12 32 -	1	127	6 72 72	27	16	1 6	I	I	285	I
C677T polymorphism	MTHFR			HWE	0.087	0.006	I	0.259 - 0.320 0.556	0.753	I	0.328	0.286	I	0.829	0.073	1.000	I	0.930
777 po			Controls	F	21	ო	I	40 25 13	52	I	24	9	I	13 25	7	15	I	115
		Ç.	රී	b	78	0	1	108 57 68	202	I	57	7	I	48 107	124	76	I	261
for M7		Children		S	129	104	1	52 - 20 114	180	I	22 - 98	18	I	46 119	113	92	I	151
studies				F	21	-	I	20 7 7 7	16	I	27 20 20	_	I	34	9	6	I	%
eligible			Cases	b	42	∞	I	55 94 89	89	I	22 - 66	21	I	68 103	20	99	I	244
s of all				S	52	17	I	28 32 110	69	I	V 1 %	30	I	30	12	49	I	162
Table 1 The detailed characteristics of all eligible studies for MTHFR			, and a	(Ethnicity **)	Germany (C)	USA(90% C)	China (A)	Italy (C) Norway (C) China (A) China (A)	USA (C)	USA (C)	China (A) China (A) Netherlands (C)	Brazil (M)	Austria (C)	China (A) Netherlands(C)	Portugal (M)	Netherlands (C)	USA (C)	China (A)
ne detail				Year	2001	2001	2002	2003 2004 2005 2005	2005	2006	2006 2006 2006	2007	2007	2007	2009	2010	2010	2010
Table 1 Th				Study	Junker et al	Wenstrom et al	Liu et al	Storti et al Nurk et al Li et al LEE et al	Shaw et al	Hobbs et al	Zhu et al Zhong et al van Beynum et al	Galdieri	eral Wintner etal	Liu et al van Driel et al	Marinho	Obermann-	Hobbs et al	Xu et al

Table 1 Continued	ntinued																	
		1							MTHFR C677T	C677T								
		•				Children	_						Mother					
		1		Cases			Ö	Controls			Cases			ق	Controls			
Study	Year	(Ethnicity **)	ខ	ь	F	ខ	ь	F	HWE	ម	ь	F	ខ	ט	F	HWE	Methods	Main types of CHD *
García- Fragoso	2010	Puerto Rico (M)	6	14	4	84	115	21	0.056	10	Ξ	9	84	115	21	0.056	PCR-RFLP	HLHS, TOF, DORV, TGA, VSD, PS, AS, CoA, ASD, Ebstein's
ā	2010 2012	USA (C) Russia (C)	12	33	5 I	134	124	32	0.688	۱ <u>8</u>	21	۱ م	173	149	7 2 5	0.514	ARRAY RT-PCR	Anomaly. CoA Congenital Anomalies-
et al et al Isoula	2012 2013 2013	China (A) Malaysia (SA) UK(M)	23 63 2759	60 60 2430	53 0 625	88 71 4826	126 54 4114	63 0 1116	0.183 0.001 0.000	336	396	1 1 6	_ _ 4826	 	1116	1 1 0.00	PCR-RFLP PCR-RFLP SEQUENCE	caratovascular System TOF VSD : Congenital Heart Disease
Wang et al Jing et al Sahiner et al	2013 2013 2013	China(A) China (A) Turkey(C)	59 46 69	76 42 53	25 16 14	53 39 47	100 114 39	35 7	0.377 0.164 1.000	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	SEQUENCE PCR-RFLP PCR-RFLP	E. Congenital Heart Disease Congenital Heart Disease Obstruction in LV Output, Left-to- right Shunt, Conofruncal Anomalies, Complex
Zidan et al	2013	Egypt (AR)	18	21	4	32	21	27	0.000	21	30	29	31	25	24	0.001	PCR-RFLP	Anomalies ASD, VSD, PDA, PS, TOF, HLHS,
rra' sedo	2013	Mexico (M)	I	I	I	I	I	I	I	\	12	12	24	31	\	0.595	PCR-RFLP	Complex Congenital Heart Disease
Christensen (2013	USA (C)	89	61	28	35	26	80	0.395	29	88	26	27	29	٥	0.791	PCR-RFLP	VSD, TOF, AS, TGA, AVSD, DORV, PS, CoA, Truncus
Wang et al	2013 2014	China (A) China (A)	33	92 45	111	88	126 72	63 48	0.183	39	00	96	85	129	%	0.279	PCR-RFLP MASS SPECTELIAA	Allendsus VSD, ASD, PDA, TOF, DORV TOF
Chao et al	2014	China (A)	10	5	2	19	12	ო	0.660	I	I	I	I	I	I	I	PCR-RFLP	PDA

** PS: Pulmonary Stenosis; HLHS: Hypoplastic Leif Heart Syndrome; CoA: Coardation of the Aarta; AVS: Aortic Valve Stenosis; TGA: Transposition of Great Arteries; ASD: Articuland Defect; AVSD: Ventricular Septal Defect; AVSD: Ventricular Arteriors; DIV. Double Inlet Ventricle; AC: Aortic Coarctation; AP Articular Arteriors; DIV. Double Inlet Right Ventricle; AC: Aortic Coarctation; AP Articular Arteriors; ASI Articular Articular Arteriors; ASI Articular ASI Articular Arteriors; ASI Articular Arteriors; ASI Articular ASI Articular Asia; ASI ARTICULAR ARTERIOR ARTERI

Children Coatrol Coa	ומסום 7 ווופ מפו		Table 2 The defaned characterishes of an engine stoates for 1911 if A	טוג טוס	S	5		1270))	A 12 10 Polymorphism	=								
Catalog According Accord										MTHFR	A129	38C							
Year County (Ethnicity **) As C As C C HWE As C C HWE As C C As C C HWE As C C As C C HWE As C C As As C C C As C C As C C C C As C C As C C C C C C C <td></td> <td></td> <td>I</td> <td></td> <td></td> <td></td> <td>Childr</td> <td>eu</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Moth</td> <td>ıer</td> <td></td> <td></td> <td></td> <td></td>			I				Childr	eu						Moth	ıer				
Year Country (Ethnicity **) AA AC CC HWE AB AC CC AB AC CC AB AC CC AB AC CC HWE AB AC CC HWE AB AC CC AC CC AF AC			I		,ases			Ō	ıtrols			Gases			Conf	hols			
2003 Italy (C) 45 47 11 101 86 13 0.387 49 46 8 101 86 13 0.387 PCRRFIP 2004 Norway (C) - - - - - 9 13 3 6607 6342 1525 0.955 RTPCR 2004 Norway (C) - - - - - 9 13 3 6607 6342 1525 0.955 RTPCR iorst 2007 Netherlands (C) 112 90 17 129 25 0.075 -	Study	Year	Country (Ethnicity **)						Я	HWE			S	¥	AC	S	HWE	Methods	Main types of CHD *
2004 Norwoy (C)	Storti et al	2003			47	11				0.387	49	46		101	86	13	0.387	PCR-RFLP	VSD,TOF, DORV, PA, d-TGA, AC
2007 Brazil (M) 35 21 1 19 16 3 1.000 26 17 4 15 10 1 1.000 PCRREIP	Nurk et al	2004	Norway (C)	I	I	I	ı		J	I	0	13			6342	1525	0.955	RT-PCR	Congenital Anomalies Heart
2010 Netherlands [C] 112 90 27 97 129 25 0.073 104 102 24 116 104 31 0.319 PCRRFIP Porst 2010 Netherlands [C] 69 57 13 75 90 18 0.256	Galdieri et al	2007	Brazil (M)	35	21	_	19	16	က	1.000	26	17			10	_	1.000	PCR-RFLP	Congenital Heart Defects
corst 2010 Netherlands (C) 69 57 13 75 90 18 0.256 - <	van Driel et al	2008			06	27	•			0.073	104	102		116	104	31	0.319	PCR-RFLP	TOF, TGA, ASD, VSD, CoA, AS, PS,
2010 China (A) 316 168 18 326 185 16 0.110	Obermann-Borst et al	2010								0.256	1	1	I	I	1	I	I	PCR-RFLP	HLHS, TOF, TGA, ASD, VSD, CoA, AS, PS, HLHS
2012 Russia (C) — — — — — — — — — — — — — — — — — — —	Xu etal	2010		316	168					0.110	1	1	1	I	1	1	I	PCR-RFLP	Cyanotic Cardiac Disease, ASD, VSD, PDA, Left-sided Obstruction
2012 Kussid (U) — — — — — — — — — — — — — — — — — — —		0.00	(c	ç		071	1.60	Ç		i C	Defects.
2013 China (A) 115 45 10 133 47 8 0.186	Weiner et al	7107	Kussia (C)	I	I	I	I		ı	I	55	<u>n</u>		80	701	747	0.403	ב ל ל	Congenital Anomalies- cardiovascular System
2013 Turkey (C) 45 68 24 31 54 8 0.029 — — — — — — — — PCR-RFIP 2013 Egypt (AR) 16 27 37 26 24 27 0.001 13 32 25 33 25 22 0.001 PCR-RFIP 2014 China (A) 111 56 3 146 56 6 0.800 — — — — — — — MS	Wang et al	2013						47		0.186	I	I	ı	I	ı	I	ı	SEQUENCE	Congenital Heart Disease
2013 Egypt (AR) 16 27 37 26 24 27 0.001 13 32 25 33 25 22 0.001 PCR.RFLP 2013 USA (C) 78 67 12 38 26 5 0.764 98 71 13 36 22 7 0.220 PCR.RFLP 2014 China (A) 111 56 3 146 56 6 0.800 MS	Sahiner et al	2013								0.029	Ι	I	I	I	I	I	I	PCR-RFLP	Obstruction in LV Output, Left-to-right
2013 Egypt (AR) 16 27 37 26 24 27 0.001 13 32 25 33 25 22 0.001 PCR-RFLP 2013 USA (C) 78 67 12 38 26 5 0.764 98 71 13 36 22 7 0.220 PCR-RFLP 2014 China (A) 111 56 3 146 56 6 0.800 MS																			Shunt, Conorruncal Anomalles, Complex Anomalies
2013 USA (C) 78 67 12 38 26 5 0.764 98 71 13 36 22 7 0.220 PCR-RFLP 2014 China (A) 111 56 3 146 56 6 0.800 MS	Zidan et al	2013								0.001	13		25	33	25	22	0.001	PCR-RFLP	ASD, VSD, PDA, PS, TOF, HLHS,
2014 China (A) 111 56 3 146 56 6 0.800 MS	Christensen	2013						56		0.764	86	7	13	36	22	_	0.220	PCR-RFLP	VSD, TOF, AS, TGA, AVSD, DORV, PS, CoA, Tringlis, Arteriosus
	Huang et al	2014			26					0.800	ı	I	ı	ı	ı	ı	I	WS	TOF

*: PS: Pulmonary Stensis; HLHS: Hypoplastic Left Heart Syndrome; CoA: Coardation of the Aorta; TGA: Transposition of Great Arteries; ASD: Atrial Septal Defect; VSD: Ventricular Septal Defect; AVSD: Atrial Septal Defect; TOF: Tetralogy of Fallict; PDA: Patent Ductus
Arteriosus; PA: Pulmonary Atresia; DORV: Double-outler Right Ventricle; AC: Aortic Coardation; AS: Aortic Stensis.
*** C: Caucasians; A: South Asians; M: Mixed; AR: Arabian.
*** The data was respectively provided by author of Dr. Karen E. Christensen (see Acknowledgements).

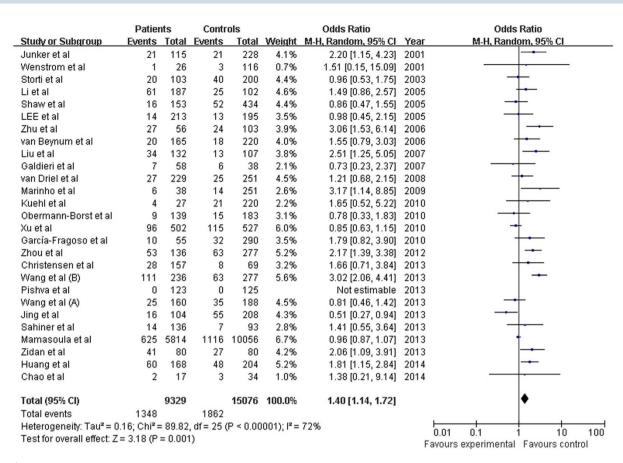


Figure 2 \mid Pooled OR (recessive model) and 95% CI for individual studies and pooled data for the association between the polymorphism C677TT and congenital heart disease (CHD) in the overall paediatric population.

other polymorphism (A1298C) is in exon 7 within the presumptive regulatory domain and results in a glutamate-to-alanine change. Heterozygosity and homozygosity are associated neither with higher

total Hcy nor lower folate plasma concentration. The MTHFR gene polymorphisms are directly linked with many diseases^{20,74}. Our recent meta-analysis demonstrated that the MTHFR C677T poly-

	Patie	nts	Contr	ols		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
Liu et al	8	27	3	20	1.9%	2.39 [0.54, 10.48]	2002	
Storti et al	23	103	40	200	7.0%	1.15 [0.64, 2.05]	2003	
Nurk et al	1	25	1282	14484	1.1%	0.43 [0.06, 3.17]	2004	
Lietal	61	183	25	102	7.4%	1.54 [0.89, 2.66]	2005	 •
Zhu et al	23	56	25	102	5.7%	2.15 [1.07, 4.31]	2008	-
Zhong et al	18	158	23	261	6.2%	1.33 [0.69, 2.55]	2008	
Hobbs et al (A)	30	275	14	118	6.0%	0.91 [0.46, 1.79]	2008	
van Beynum et al	15	115	5	115	3.3%	3.30 [1.16, 9.41]	2008	
Galdieri et al	5	47	1	26	0.9%	2.98 [0.33, 26.95]	2007	
Wintner et al	3	31	4	31	1.7%	0.72 [0.15, 3.54]	2007	
van Driel et al	22	230	36	251	7.1%	0.63 [0.36, 1.11]	2008	
Hobbs et al (B)	65	553	37	356	8.9%	1.15 [0.75, 1.76]	2010	-
García-Fragoso et al	6	27	21	220	3.5%	2.71 [0.98, 7.45]	2010	•
Weiner et al	6	45	26	348	3.9%	1.91 [0.74, 4.92]	2012	· ·
Balderra'bano-Saucedo	12	31	7	62	3.2%	4.96 [1.71, 14.44]	2013	
Mamasoula et al	97	829	1116	10056	11.7%	1.06 [0.85, 1.32]	2013	+
Christensen et al	26	182	9	65	4.7%	1.04 [0.46, 2.35]	2013	· -
Zidan et al	29	80	24	80	6.1%	1.33 [0.69, 2.57]	2013	+-
Wang et al (B)	96	235	66	277	9.6%	2.21 [1.51, 3.23]	2013	-
Total (95% CI)		3232		27174	100.0%	1.41 [1.13, 1.76]		♦
Total events	546		2764					
Heterogeneity: Tau ² = 0.10		5.86. d		= 0.007)	: I² = 50%			
Test for overall effect: Z = 3	•			5.5517				0.01 0.1 1 10 100
		/						Favours experimental Favours control

Figure $3 \mid$ Pooled OR (recessive model) and 95% CI for individual studies and pooled data for the association between the polymorphism C677TT and congenital heart disease (CHD) in the overall maternal population.

Table 3 Main results of association between MTHFR C677T polymorphism and CHD	of association betw	een MTHFR C	677T polymo	rphism and (HO							
		Sample size	size	Test	Test of heterogeneity	≽		Test of association	ion		Test of pub	Test of publication bias
Subgroup	Genetic model	Patients	Controls	Ø	Ь	12 (%)	S S	95% CI	Z	Ь	z	Ь
Children Overall	T vs. C	9,329	15,076	146.67	0.000	82.3	1.248	1.093-1.426	3.27	0.001	1.13	0.260
	∏ vs. CC			118.35	0.000	78.9	1.485	1.140-1.935	2.93	0.003	0.48	0.628
	∏ vs. CT			53.62	0.001	53.4	1.312	1.100-1.565	3.02	0.003	99.0	0.508
	Dominant model			102.79	0.000	74.4	1.240		2.58	0.010	1.54	0.123
	Recessive model			89.82	0.000	72.2	1.401	1.139-1.724	3.19	0.001	0.18	0.860
Maternal Overall	T vs. C	3,232	2,7174	34.32	0.011	47.6	1.215	1.085-1.361	3.38	0.001	0.35	0.726
				32.94	0.017	45.4	1.488		3.23	0.001	33 0.00	0.174
	Dominant model			35.13 25.69	0.009	48.8 29.9	1.258	1.144-1.383	2.3 4.74	0.021 2.14e-6	0.98	0.327
	Recessive model			35.86	0.007	49.8	1.408		3.03	0.002	0.91	0.363
Caucasian Children	T vs. C	7,092	12,150	26.94	0.003	62.9	1.163	1.008-1.342	2.06	0.039	2.18	0.029
	∏ vs. CC			18.09	0.073	44.7	1.273	0.978-1.658	1.79	0.073	0.93	0.350
	∏ vs. CT			9.29	0.505	0.0	986.0	0.892-1.090	0.28	0.781	0.62	0.533
	Dominant model			24.13	0.007	58.6	1.182	0.982-1.422	1.77	0.077	2.34	0.020
				13.12	0.217	23.8	1.012	0.921-1.113	0.26	0.798	0.47	0.640
Caucasian Maternal		2,431	26,170	9.22	0.417	2.4	1.125	1.043-1.214	3.04	0.002	0.89	0.371
	□ vs. CC			7.25	0.611	0.0	1.157	0.977-1.370	1.69	0.690	0.72	0.474
	∏ vs. CT			6.95	0.643	0.0	0.945	0.800-1.116	0.67	0.504	0.00	00.1
	Dominant model			11.03	0.274	18.4	1.216	1.096-1.348	3.69	2.24e-4	0.54	0.592
	Recessive model			6.58	0.681	0.0	1.074	0.894-1.227	0.57	0.566	0.54	0.592
Asian Children	T vs. C	1,911	2,222	74.39	0.000	86.6	1.449	1.117-1.880	2.79	0.005	0.16	0.876
	1			62.4	0.000	83.9	1.960	1.203-3.192	5.70	0.007	0.19	0.876
				31.57	0.000	08.7	.049	1.209-2.248	ري 100	0.002	0.47	0.640
	Dominant model			43.94	0.000	77.2	1.441	1.049-1.978	2.26	0.024	9.0	0.876
	Recessive model	!		49.87	0.000	6.6/	1.761	1.227-2.526	3.07	0.002	0.62	0.533
Asian Maternal	T vs. C	467	616	3.96	0.412	0.0	1.595	1.348-1.886	5.45	5.04e-8	ı	ı
	□ vs. CC			3.49	0.479	0.0	2.548	1.788-3.631	5.18	2.22e-7	ı	ı
	∏ vs. CT			1.51	0.825	0.0	1.884	1.415-2.509	4.34	1.42e-5	I	ı
	Dominant model			4.93	0.295	18.9	1.605	1.215-2.121	3.33	0.00	I	ı
	Recessive model			2.05	0.727	0.0	2.073	1.583-2.716	5.29	1.22e-7	ı	ı

Table 4 Main results of association between MTHFR A1298C polymorphism and CHD	of association betv	ween MTHFR	A1298C poly	morphism	and CHD							
		Sample size	e size	•	Test of heterogeneity	eity		Test of association	io		Test of publ	Test of publication bias
Subgroup	Genetic model	Patients	Controls	Ø	А	12 (%)	8 8	D %56	Z	Ь	z	Ь
Children Overall	C VS. A	1,834	1,744	14.21	0.077	43.7	1.044	0.890-1.225	0.53	0.595	0.31	0.754
	CC vs. AA			9.05	0.338	11.6	1.260	0.950-1.671	1.60	0.109	0.10	0.917
	CC vs. AC			4.56	0.804	00.0	1.354	1.022-1.793	2.11	0.034	1.56	0.118
	Dominant model			14.34	0.073	44.2	0.978	0.792-1.206	0.21	0.832	0.36	0.175
	Recessive model			5.83	0.666	0.0	1.322	1.015-1.732	2.07	0.038	0.52	0.602
Maternal Overall	C VS. A	705	15,458	16.60	0.011	63.9	1.041	0.781-1.386	0.27	0.785	09.0	0.548
	CC vs. AA			11.15	0.084	46.2	1.085	0.631-1.864	0.29	0.769	00.0	1.000
	CC vs.AC			2.07	0.913	0.0	0.841	0.587-1.205	0.94	0.346	09.0	0.548
	Dominant model			17.61	0.007	62.9	1.107	0.748-1.639	0.51	0.612	09.0	0.548
	Recessive model			5.39	0.495	00.0	996.0	0.690-1.352	0.20	0.839	0.30	0.764
Caucasian Children	C VS. A	765	296	9.79	0.149	40.8	0.989	0.848 - 1.154	0.14	0.891	ı	ı
	CC vs. AA			4.15	0.386	3.60	1.177	0.819-1.691	0.88	0.378	ı	I
	CC vs. AC			2.22	0.695	00.0	1.484	1.035-2.128	2.15	0.032	ı	I
	Dominant model			7.83	0.098	48.9	0.916	0.681-1.231	0.58	0.559	ı	I
	Recessive model			2.92	0.571	00.0	1.332	0.944-1.878	1.63	0.103	I	I
Caucasian Maternal	C VS. A	588	15,352	9.17	0.057	56.4	0.920	0.693-1.223	0.57	0.567	ı	ı
	CC vs. AA			4.43	0.364	7.4	0.850	0.565-1.278	0.78	0.434	ı	ı
	CC vs. AC			1.25	0.870	00.0	0.802	0.531-1.212	1.05	0.295	I	ı
	Dominant model			9.22	0.056	56.6	0.943	0.652-1.363	0.31	0.753	ı	ı
	Recessive model			2.77	0.597	0.00	0.824	0.557-1.217	0.97	0.330	Ī	I

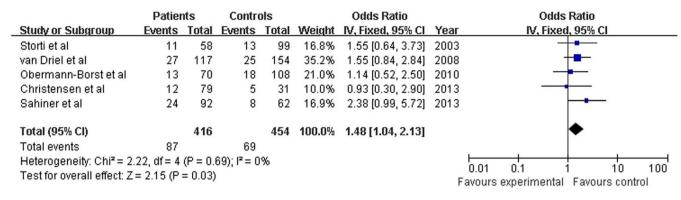
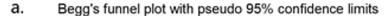


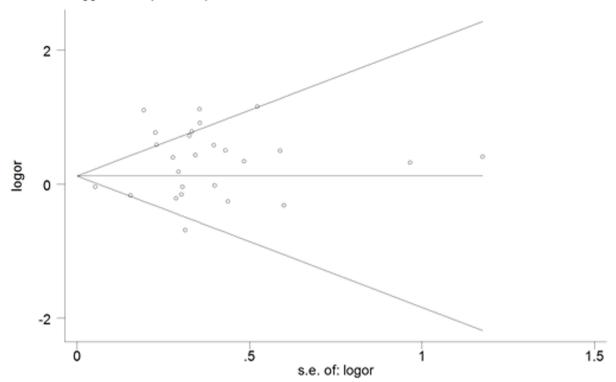
Figure 4 | Pooled OR (CC vs. AC) and 95% CI of individual studies and pooled data for the association between the polymorphism A1298C and congenital heart disease (CHD) in the Caucasian paediatric population.

morphism is associated with the risk of myocardial infarction in young/middle-aged Caucasians and is associated with susceptibility to preeclampsia^{20,74}.

A number of studies have investigated the association between MTHFR genotype and the risk of CHD. In fact, in the last few years, several case-control studies were performed on this topic. However, the results are inconclusive. The two most recent meta-analyses for associations between polymorphism and CHD also led to conflicting conclusions. By reviewing all studies published before April, 2011, Yin and co-workers suggested that the foetal and paternal MTHFR C667T gene may be associated with an increased occurrence of CHD³². By contrast, after analysis of 7,698 cases and 13,159 controls by reviewing studies published before 2010, Mamasoula and coworkers indicated that the same polymorphism, which directly influences plasma folate levels, is not associated with CHD risk¹⁷. Others also conducted meta-analysis to evaluate the association between MTHFR polymorphism and CHD²⁹⁻³¹. It is possible that the relatively small sample size of these studies affected the accuracy of the results. Therefore, it is essential to re-perform a meta-analysis to evaluate the association. In our present study, we enlarged the sample size to 24,405 participants (9,329 CHD children and 15,076 normal controls), and performed sensitivity analysis to evaluate the stability of the results. In addition, we are the first to evaluate the association between the MTHFR A1298C polymorphism and CHD by meta-analysis. We are indebted to Dr. Christensen from McGill University for kindly allowing us access to his previously unpublished data for this meta-analysis.

Our results indicate that the frequency of the putative risk allele -677T was 28.99% in Caucasian children and 31.76% in the Caucasian maternal population, whereas the frequency of -677T was 42.28% in Asian paediatric and 41.51% in the Asian maternal population. In


addition, the pooled –1298C allele frequency was 33.12% in Caucasian children and 31.09% in the Caucasian maternal population. The meta-analysis results showed that associations exist between the MTHFR C677T polymorphism and susceptibility to CHD for all genetic models in all paediatric and maternal populations, especially in the Asian population. We also detected a significant association in the genetic model for T vs. C in the Caucasian paediatric population and in T vs. C and TT vs. CT for the Caucasian maternal population (Table 3). In our analysis of the A1298C polymorphism, we detected an association in the genetic model for TT vs. CT in the Caucasian paediatric population (Table 4). The results showing significant association for all genetic models in the overall maternal population and the Asian maternal population, and for the TT vs. CT and recessive models in the overall paediatric population were found to be stable and reliable by sensitivity analyses (Table 5).


Some limitations of this meta-analysis should be discussed. First, significant heterogeneity was observed in some genetic models when we pooled ORs. Under this condition, we used the random-effects model to pool the data. Sensitivity analysis was performed to evaluate the stability of the crude results. Second, publication biases appear to substantially contaminate the literature with regard to some genetic associations. The results of the trim and fill method demonstrated that the publication biases may affect the stability of positive results.

In conclusion, our results support the *MTHFR* –677T allele as a susceptibility factor for CHD in the Asian maternal population and the -1298C allele as a risk factor in the Caucasian paediatric population. Because of the heterogeneity and publication bias, we believe that other positive results may not be stable in our meta-analysis. A large number of homogeneous studies should be performed to evaluate these crude results in the future.

		Tes	t of heteroge	neity		Test of associ	iation	
Subgroup	Genetic model	Q	Р	l² (%)	OR	95% CI	Z	Р
Children Overall	TT vs. CT	32.42	0.020	44.5	1.303	1.064-1.596	2.56	0.010
	Recessive model	61.61	0.000	70.8	1.335	1.028-1.735	2.16	0.030
Maternal Overall	T vs. C	32.48	0.006	53.8	1.215	1.042-1.425	2.48	0.013
	TT vs. CC	29.99	0.012	50.0	1.570	1.125-2.192	2.65	0.008
	TT vs. CT	26.09	0.037	42.5	1.462	1.104-1.93 <i>7</i>	2.65	0.008
	Dominant model	22.10	0.105	32.1	1.198	1.035-1.386	2.43	0.015
	Recessive model	29.49	0.014	49.1	1.527	1.149-2.030	2.92	0.004
Asian Maternal	T vs. C	3.96	0.412	0.0	1.595	1.348-1.886	5.45	5.04e-8
	TT vs. CC	3.49	0.479	0.0	2.548	1.788-3.631	5.18	2.22e-7
	TT vs. CT	1.51	0.825	0.0	1.884	1.415-2.509	4.34	1.42e-
	Dominant model	4.93	0.295	18.9	1.605	1.215-2.121	3.33	0.001
	Recessive model	2.05	0.727	0.0	2.073	1.583-2.716	5.29	1.22e-7

b. Begg's funnel plot with pseudo 95% confidence limits

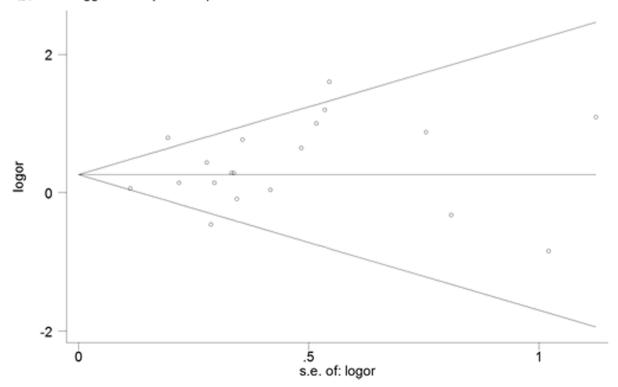


Figure 5 | Funnel plot of the C1858T polymorphism and susceptibility to CHD (recessive model) in (a) the overall paediatric population (z = 0.18, P = 0.860) and (b) the overall maternal population (z = 0.91, P = 0.363).

- Kappagoda, C. T. & Macartney, F. J. Effect of environmental temperatures on oxygen consumption in infants with congenital disease of the heart. *Br Heart J* 38, 1–4 (1976).
- Lage, K. et al. Genetic and environmental risk factors in congenital heart disease functionally converge in protein networks driving heart development. Proc Natl Acad Sci USA 109, 14035–14040 (2012).
- 3. Bosi, G. *et al.* The Italian Multicentric Study on Epidemiology of Congenital Heart Disease: first step of the analysis. Working Party of the Italian Society of Pediatric Cardiology. *Cardiol Young* **9**, 291–299 (1999).
- Caputo, S. et al. Congenital heart disease in a population of dizygotic twins: an echocardiographic study. Int J Cardiol 102, 293–296 (2005).
- Seliem, M. A., Bou-Holaigah, I. H. & Al-Sannaa, N. Influence of consanguinity on the pattern of familial aggregation of congenital cardiovascular anomalies in an outpatient population: studies from the eastern province of Saudi Arabia. Community Genet 10, 27–31 (2007).
- Cordell, H. J. et al. Genome-wide association study of multiple congenital heart disease phenotypes identifies a susceptibility locus for atrial septal defect at chromosome 4p16. Nat Genet 45, 822–824 (2003).
- Xu, J. et al. Genetic variants at 10p11 confer risk of tetralogy of fallot in chinese of nanjing. PLoS One 9, e89636 (2014).
- Xuan, C. et al. A novel variation of PLAGL1 in Chinese patients with isolated ventricular septal defect. Genet Test Mol Biomarkers 16, 984–987 (2012).
- Xuan, C. et al. Identification of two novel mutations of the HOMEZ gene in Chinese patients with isolated ventricular septal defect. Genet Test Mol Biomarkers 17, 390–394 (2013).
- 10. Xuan, C. et al. Proteomic study reveals plasma protein changes in congenital heart diseases. Ann Thorac Surg 97, 1414–1419 (2014).
- Biselli, P. M. et al. Genetic polymorphisms involved in folate metabolism and concentrations of methylmalonic acid and folate on plasma homocysteine and risk of coronary artery disease. J Thromb Thrombolysis 29, 32–40 (2010).
- 12. Hernandez-Diaz, S. et al. Folic acid antagonists during pregnancy and the risk of birth defects. N Engl J Med 343, 1608–1614 (2000).
- Christensen, B. et al. Genetic polymorphisms in methylenetetrahydrofolate reductase and methionine synthase, folate levels in red blood cells, and risk of neural tube defects. Am J Med Genet 84, 151–157 (1999).
- Ueland, P. M. et al. Biological and clinical implications of the MTHFR C677T polymorphism. Trends Pharmacol Sci 22, 195–201(2001).
- Wenstrom, K. D. et al. Association of the C677T methylenetetrahydrofolate reductase mutation and elevated homocysteine levels with congenital cardiac malformations. Am J Obstet Gynecol 184, 806–817 (2001).
- Wang, W. et al. MTHFR C677T polymorphism and risk of congenital heart defects: evidence from 29 case-control and TDT studies. PLoS One 8, e58041 (2013)
- Mamasoula, C. et al. Association between C677T polymorphism of methylene tetrahydrofolate reductase and congenital heart disease: meta-analysis of 7697 cases and 13,125 controls. Circ Cardiovasc Genet 6, 347–353 (2013).
- Klug, W. S. Population and evolutionary genetics. Concepts of genetics. Wilbur, B.(ed.). 700–702 (Pearson Benjamin Cummings, CA, 2011).
- Xuan, C. et al. No association between APOE epsilon 4 allele and multiple sclerosis susceptibility: a meta-analysis from 5472 cases and 4727 controls. J Neurol Sci 308, 110–116 (2011).
- Xuan, C. & Lun, L. M. Association between the methylenetetrahydrofolate reductase C677T polymorphism and susceptibility to preeclampsia: the need for data clarification in a recent meta-analysis. *Hypertens Res* 36, 463–464 (2013).
- Chakraborty, R. Hardy-Weinberg Equilibrium. Encyclopedia of Biostatistics 4, 1–2 (2005).
- Higgins, J. P. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis. Stat Med 21, 1539–1558 (2002).
- Bowden, J. et al. Quantifying, displaying and accounting for heterogeneity in the meta-analysis of RCTs using standard and generalised Q statistics. BMC Med Res Methodol 11, 41(2011).
- Xuan, C. et al. Association between OCTN1/2 gene polymorphisms (1672C-T, 207G-C) and susceptibility of Crohn's disease: a meta-analysis. *Int J Colorectal Dis* 27, 11–9 (2012).
- 25. Xuan, C. et al. PTPN22 gene polymorphism (C1858T) is associated with susceptibility to type 1 diabetes: a meta-analysis of 19,495 cases and 25,341 controls. Ann Hum Genet 77, 191–203 (2013).
- 26. Zhang, B. B. et al. Genetic 135G/C polymorphism of RAD51 gene and risk of cancer: a meta-analysis of 28,956 cases and 28,372 controls. Fam Cancer DOI:10.1007/s10689-014-9729-0 (2014). [Epub ahead of print]
- Begg, C. B. & Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. *Biometrics* 50, 1088–1101 (1994).
- Tian, Q. W. et al. Diagnostic accuracy of glycosylated hemoglobin in chinese patients with gestational diabetes mellitus: a meta-analysis based on 2,812 patients and 5,918 controls. Genet Test Mol Biomarkers 17, 687–695 (2013).
- van Beynum, I. M. et al. The MTHFR 677C->T polymorphism and the risk of congenital heart defects: a literature review and meta-analysis. QJM 100, 743–753 (2007).
- Verkleij-Hagoort, A. et al. Hyperhomocysteinemia and MTHFR polymorphisms in association with orofacial clefts and congenital heart defects: a meta-analysis. Am J Med Genet A 143A, 952–960 (2007).

- Nie, Y. et al. Methylenetetrahydrofolate reductase C677T polymorphism and congenital heart disease: a meta-analysis. Clin Chem Lab Med 49, 2101–2108 (2011).
- 32. Yin, M. *et al.* Meta analysis of the association between MTHFR C677T polymorphism and the risk of congenital heart defects. *Ann Hum Genet* **76**, 9–16 (2012).
- Chen, K. H. et al. Maternal MTHFR C677T polymorphism and congenital heart defect risk in the Chinese Han population: a meta-analysis. Genet Mol Res 12, 6212–6219 (2013).
- 34. McBride, K. L. et al. A family-based association study of congenital left-sided heart malformations and 5,10 methylenetetrahydrofolate reductase. Birth Defects Res A Clin Mol Teratol 70, 825–830 (2004).
- Pereira, A. C. et al. Lack of evidence of association between MTHFR C677T polymorphism and congenital heart disease in a TDT study design. *Int J Cardiol* 105, 15–8 (2005).
- Hobbs, C. A. et al. Congenital heart defects and abnormal maternal biomarkers of methionine and homocysteine metabolism. Am J Clin Nutr 81, 147–153 (2005).
- Goldmuntz, E. et al. Variants of folate metabolism genes and the risk of conotruncal cardiac defects. Circ Cardiovasc Genet 1, 126–132 (2008).
- Shaw, G. M. et al. 118 SNPs of folate-related genes and risks of spina bifida and conotruncal heart defects. BMC Med Genet 10, 49 (2009).
- 39. Junker, R. *et al.* Infant methylenetetrahydrofolate reductase 677TT genotype is a risk factor for congenital heart disease. *Cardiovasc Res* **51**, 251–254 (2001).
- Liu, H. et al. Maternal homocysteine folic acid, MTHFR gene polymorphism and congenital heart defects in offspring. Chin J Perinatal Med 5, 102–105 (2002).
- Storti, S. et al. Association between 5,10-methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and conotruncal heart defects. Clin Chem Lab Med 41, 276–280 (2003).
- 42. Nurk, E. *et al.* Associations between maternal methylenetetrahydrofolate reductase polymorphisms and adverse outcomes of pregnancy: the Hordaland Homocysteine Study. *Am J Med* **117**, 26–31 (2004).
- 43. Li, Y. et al. Study of serum Hcy and polymorphisms of Hcy metabolic enzymes in 192families affected by congenital heart disease. J Peking Univ (Health Sci) 37, 75–80 (2005).
- Lee, C. N. et al. Association of the C677T methylenetetrahydrofolate reductase mutation with congenital heart diseases. Acta Obstet Gynecol Scand 84, 1134–1140 (2005).
- Shaw, G. M. et al. Risks of human conotruncal heart defects associated with 32 single nucleotide polymorphisms of selected cardiovascular disease-related genes. Am J Med Genet A 138, 21–26 (2005).
- Hobbs, C. A. et al. Congenital heart defects and genetic variants in the methylenetetrahydroflate reductase gene. J Med Genet 43, 162–166 (2006).
- Zhu, W. L. et al. Maternal and offspring MTHFR gene C677T polymorphism as predictors of congenital atrial septal defect and patent ductus arteriosus. Mol Hum Reprod 12, 51–54 (2006).
- 48. Zhong, Q. A. et al. Association of congenital heart diseases with MTHFR gene and CBS gene. Guangxi Med J 28, 1140–1142 (2006).
- van Beynum, I. M. et al. Maternal MTHFR 677C>T is a risk factor for congenital heart defects: effect modification by periconceptional folate supplementation. Eur Heart J 27, 981–987 (2006).
- Galdieri, L. C. et al. Homocysteine concentrations and molecular analysis in patients with congenital heart defects. Arch Med Res 38, 212–218 (2007).
- Wintner, S. et al. Association of congenital cardiac defects and the C677T methylenetetrahydrofolate reductase polymorphism. Prenat Diagn 27, 704–708 (2007).
- Liu, Y. S. et al. Relation ship between genetic polymorphism of homocysteine metabolism enzyme and congenital heart disease. Chin J Cardio Rev 15, 210–213 (2007)
- 53. van Driel, L. M. et al. Two MTHFR polymorphisms, maternal B-vitamin intake, and CHDs. Birth Defects Res A Clin Mol Teratol 82, 474–481 (2008).
- 54. Marinho, C. et al. The methylenetetrahydrofolate reductase gene variant (C677T) as a susceptibility gene for tetralogy of Fallot. Rev Port Cardiol 28, 809–812 (2009).
- Kuehl, K. et al. Association of congenital cardiovascular malformations with 33 single nucleotide polymorphisms of selected cardiovascular disease-related genes. Birth Defects Res A Clin Mol Teratol 88, 101–110 (2010).
- Hobbs, C. A., Cleves, M. A., Karim, M. A., Zhao, W. & MacLeod, S. L. Maternal folate-related gene environment interactions and congenital heart defects. *Obstet Gynecol* 116, 316–232 (2010).
- 57. Xu, J. et al. MTHFR c.1793G>A polymorphism is associated with congenital cardiac disease in a Chinese population. Cardiol Young 20, 318–326 (2010).
- Garcia-Fragoso, L. et al. MTHFR polymorphisms in Puerto Rican children with isolated congenital heart disease and their mothers. Int J Genet Mol Biol 2, 43–47 (2010).
- Obermann-Borst, S. A. et al. Congenital heart defects and biomarkers of methylation in children: a case-control study. Eur J Clin Invest 41, 143–150 (2011).
- 60. Weiner, A. S. et al. Polymorphisms in folate-metabolizing genes and risk of having an offspring with congenital anomalies in the West Siberian region of Russia: a case-control study. Prenat Diagn 32, 1041–1048 (2012).
- 61. Zhou, S. Y. *et al.* Study on the association between MTHFR gene polymorphism and tetralogy of fallot. *Shandong Med J* **52**, 1–3 (2012).

- Pishva, S. R. et al. Analysis of MTHFR and MTRR Gene Polymorphisms in Iranian Ventricular Septal Defect Subjects. Int J Mol Sci 14, 2739–2752 (2013).
- 63. Wang, B. et al. Association of SNPs in genes involved in folate metabolism with the risk of congenital heart disease. J Matern Fetal Neonatal Med 26, 1768–1777 (2013).
- 64. Jing, X. A. *et al.* Associations of MTHFR gene polymorphism and environmental factors with congenital heart disease. *Chin J Public Health* **3**,347–349 (2013).
- Balderrabano-Saucedo, N. A. et al. Polymorphism 677C > T MTHFR gene in Mexican mothers of children with complex congenital heart disease. Pediatr Cardiol 34, 46–51 (2013).
- Christensen, K. E. et al. Risk of congenital heart defects is influenced by genetic variation in folate metabolism. Cardiol Young 23, 89–98 (2013).
- Wang, L. N. et al. Relationship between 5,10-methylenetetrahydrofolate gene polymorphism and congenital heart disease in nuclear family. Chin J Appl Clin Pediatr 1, 32–35 (2013).
- Zidan, H. E., Rezk, N. A. & Mohammed, D. MTHFR C677T and A1298C gene polymorphisms and their relation to homocysteine level in Egyptian children with congenital heart diseases. *Gene* 529, 119–124 (2013).
- 69. Huang, J. et al. rs1801133 C>T polymorphism is associated with an increased risk of tetralogy of Fallot. Biomed Rep 2, 172–176 (2014).
- Chao, C. S. et al. Correlation Between Methyltetrahydrofolate Reductase (MTHFR) Polymorphisms and Isolated Patent Ductus Arteriosus in Taiwan. Heart Lung Circ 23, 655–660 (2014).
- 71. Sahiner, U. M. *et al.* Methylene tetrahydrofolate reductase polymorphisms and homocysteine level in heart defects. *Pediatr Int* **56**, 167–172 (2014).
- Hu, Z. et al. A genome-wide association study identifies two risk loci for congenital heart malformations in Han Chinese populations. Nat Genet 45, 818–821 (2013).
- Kapusta, L. et al. Congenital heart defects and maternal derangement of homocysteine metabolism. J Pediatr 135, 773–774 (1999).

 Xuan, C. et al. Association between polymorphism of methylenetetrahydrofolate reductase (MTHFR) C677T and risk of myocardial infarction: a meta-analysis for 8,140 cases and 10,522 controls. Arch Med Res 42, 677–685 (2011).

Acknowledgments

We thank Karen E. Christensen (Departments of Pediatrics and Human Genetics, McGill University-Montreal Children's Hospital Research Institute, Quebec, Canada) for providing data from her group's study. The work was fully supported by grants from the National Natural Science Foundation of China (No. 81301485 & 81170148) and the Shangdong Young Scientists Award Foundation (No. BS2013YY036)

Author contributions

Conception and design of the study: C.X. and L.M.L. Acquisition of data: H.L., J.X.Z. and H.W.W. Analysis and interpretation of the data: C.X., H.L., J.X.Z., Y.W., C.P.N., Z.L. and B.B.Z. Writing and revision of the manuscript: C.X., L.M.L. G.W.H. All authors reviewed the manuscript.

Additional information

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Xuan, C. *et al.* Association Between *MTHFR* Polymorphisms and Congenital Heart Disease: A Meta-analysis based on 9,329 cases and 15,076 controls. *Sci. Rep.* **4**, 7311; DOI:10.1038/srep07311 (2014).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/