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Nuclear receptor proteins (NRP) are transcription factor that regulate many vital cellular processes in
animal cells. NRPs form a super-family of phylogenetically related proteins and divided into different
sub-families on the basis of ligand characteristics and their functions. In the post-genomic era, when new
proteins are being added to the database in a high-throughput mode, it becomes imperative to identify new
NRPs using information from amino acid sequence alone. In this study we report a SVM based two level
prediction systems, NRfamPred, using dipeptide composition of proteins as input. At the 1st level,
NRfamPred screens whether the query protein is NRP or non-NRP; if the query protein belongs to NRP
class, prediction moves to 2nd level and predicts the sub-family. Using leave-one-out cross-validation, we
were able to achieve an overall accuracy of 97.88% at the 1st level and an overall accuracy of 98.11% at the 2nd
level with dipeptide composition. Benchmarking on independent datasets showed that NRfamPred had
comparable accuracy to other existing methods, developed on the same dataset. Our method predicted the
existence of 76 NRPs in the human proteome, out of which 14 are novel NRPs. NRfamPred also predicted
the sub-families of these 14 NRPs.

N
uclear receptor proteins (NRP) are one of the most abundant type of transcription regulators, which are
present exclusively in animals1. NRPs form an evolutionarily related super-family of proteins, which
function as ligand-activated transcription factors, providing a direct link between signaling molecules

that control these processes and transcriptional responses1. All NRPs share a common five-domain structure with
a highly conserved DNA binding domain. Interaction of cognate ligands, which are mostly small hydrophobic
compounds, such as steroids, retinoids, and thyroid hormones, trigger a conformational change in the receptor
proteins. It enables interaction with specific cofactors and cis-regulatory DNA sequences called hormone res-
ponse elements (HREs) thereby subsequently altering the gene expression.

Members of the NRP super-family has a conserved modular domain architecture: a domain of variable length,
A/B domain having activation function (AF-1), the highly conserved C-region or DNA-binding domain (DBD),
the hinge or the D- region, the E-region containing ligand-binding domain (LBD) and an F-domain that is
present in few NRPs2 (from N to C-terminus). The DBD contains two zinc finger motif in tandem (spanning
nearly 80 amino acid residues in total) and are directly involved in recognition of the cognate HRE3,4. The LBD is
responsible for both ligand recognition and regulation of protein–protein interactions5. The ligand binding in
NRPs occurs through a receptor specific hydrophobic ligand-binding pocket, which is present deep in the core of
LBD. Since DBD and LBD are the two most conserved domains of NRPs, they are regarded as dual signatures of
this protein super-family. Nuclear receptors are ancient proteins that have been found in diverse clades like
sponges, echinoderms, tunicates, arthropods and vertebrates, and are therefore believed to be present throughout
the Metazoa6. Depending on the nature of the ligand, NRP super-family proteins have been sub-divided into six
different sub-families while all unusual receptors that contain only one of the two conserved domains (C or E)
were grouped into a separate sub-family NR07. NRPs having no known ligand are classified as orphans8. Hence,
the function of a NRP is closely related to the sub-family to which it belongs. Due to the vital importance of NRPs
in many physiological and pathological aspects of metazoan life, they are considered as candidates of equal
importance for drug development as are G-protein coupled receptors (GPCR), ion channels and kinases9.
Another factor which makes NRPs a promising pharmacological target is the nature of ligands which are small
lipophilic compounds such as steroids, thyroid hormone, vitamin D3, and retinoids2,10, which regulate crucial
biological functions like metabolism, homeostasis, development and disease11. Since ligands are small molecules,
they can be easily modified by drug designing, making NRPs a promising pharmacological target.
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Considering the pace with which new protein sequences are being
generated in the post-genomic age, it is the need of the hour to
develop automated methods for rapid and accurate identification
of NRPs and their sub-families on the basis of amino acid sequence
information. Bhasin and Raghava12 made a pioneering effort in this
direction by developing a support vector machine (SVM) based
method for predicting four sub-families of NRPs (thyroid hormone-
like, HNF4-like, estrogen-like, Fushi tarazu-F1-like) using amino acid
and dipeptide compositions as the input. Later Gao et al.13 used the
pseudo amino acid composition14 and a new dataset for the same
four NRP sub-families that Bhasin and Raghava had worked upon
and reported a higher prediction accuracy. Though Bhasin and
Raghava’s method is available to the scientific community via web-
server (NRpred), no such provision was made by Gao et al.13. Besides
the limited coverage for four NRP sub-families, one major limitation
of NRpred is that it predicts sub-families without screening whether
the query protein is actually a NRP or not. Thus even if the query
protein doesn’t belong to the NRP super-family, it would be classified
in one of the four NRP sub-families. Recently two different predictors
were proposed which extended the coverage scope of prediction to
seven sub-families and carried the prediction cycle at two levels. At the
1st level they screen NRPs, while 2nd level identify the sub-family.
The first method was named as NR-2L15 while second was called
iNR-PhysChem16.

In the present study, we have described a method developed by us
named NRfamPred, which identifies NRPs from primary amino acid
sequence. NRfamPred is SVM based two level method for prediction
of NRPs and their seven sub-families, which uses dipeptide composi-
tions as input vector. We tested our method on an independent
dataset and found that our method was better than other existing
methods. The proposed method can also be used to annotate pro-
teome. In this work we annotated human proteome and fetched 76
NRPs out of which 14 are novel.

Results
1st Level Prediction. We used the 1st level classifier to screen if the
query protein belonged to the NRP super-family. Only those protein,
which were predicted as NRPs using the 1st level classifier could
proceed to the 2nd level for prediction of its sub-family. The SVM
model used for 1st level prediction was generated using a non-
redundant dataset of 500 non-NRPs and 159 NRPs (Supple-
mentary Table S1) (described in methods). When the amino acid
composition was used as the input, 93.32% accuracy with Matthew’s
correlation coefficient (MCC) 0.84 was achieved. The accuracy rose
to 97.88% with MCC 0.94 when dipeptide composition was used as
the input (Table 1). This showed that dipeptide composition
encapsulated the sequence information better than that by amino
acid composition.

2nd Level Prediction. To generate SVM model at the 2nd level we
used only those NRPs (159 in total), which were labeled as positive
class examples in 1st level prediction. At 2nd level, proteins
belonging to a particular sub-family were considered as positive
class while the remaining one as negative. For example, in order to
predict proteins of NRP0 sub-family, all 12 NRP0 sub-family

proteins (Supplementary Table S1) were used as positive class
example, while remaining 147 proteins (belonging to NRP1-6 sub-
families) were considered as negative class example.

It is evident from Table 2 that similar to the 1st level, dipeptide
composition based SVM models performed better than amino acid
composition based models. For each sub-family, we were able to
achieve nearly $ 95% prediction accuracy. It is also pertinent to
mention that except NRP0 and NRP2 sub-families, we achieved
nearly 100% prediction specificity with dipeptide composition based
models (Table 2). This showed that the SVM models developed for
sub-family prediction not only predicted the proteins belonging to
the same sub-family with high sensitivity but also with a very high
specificity.

The developed dipeptide composition based SVM models (both
1st and 2nd levels) were collectively called as NRfamPred.

Receiver Operating Characteristics (ROC) Plot and Area Under
ROC Curve (AUC) Analysis. When a classifier has to do the multi-
class classification, especially on an imbalanced dataset like the
present work, overall accuracy might be an unrealistic assessment
of classifier’s performance due to the correct classification of
majority class. Hence, to avoid the influence of majority classes in
performance estimation, the prediction capability of SVM model was
assessed by both sensitivity and specificity, also taking into account
that values of both were nearly equal. This also helped in eradicating
an inequity in the accuracy value, which might have occurred due to
incorporation of unequal number of positive and negative examples.
Another way of unbiased estimation of classifier’s accuracy is by
using the receiver operating characteristic (ROC) plot17,18, which is
a very popular way of analyzing the overall performance of a classifier
system. It shows the tradeoff between sensitivity and specificity at
various thresholds and is created by plotting ‘sensitivity’ (True
positive rate) vs. ‘100-specificity’ (False positive rate). The area
under the ROC curve (AUC)19 is commonly used as a summary
measure of diagnostic accuracy. The ROC plots (Supplementary
Fig. S1) and corresponding AUC values (Table 1 and Table 2) also
support the conclusion that dipeptide composition based SVM
modules can predict NRPs at very high accuracy and were better
than amino acid composition based SVM modules.

Performance of NRfamPred on Independent Dataset. The
performance of NRfamPred was further evaluated on an
independent dataset having 568 NRPs and 500 non-NRPs
compiled by Wang et al.15 (see methods for detail). As shown in
Supplementary Table S2, the relative prediction rates for both
positive and negative classes are consistent across both levels and
all sub-families. This indicates that the NRfamPred not only
identifies NRPs but it is also able to classify them very accurately.

Comparison with Existing Methods. A few methods have already
been published for predicting NRP and/or their sub-families12,15,16,20.
It is not practically possible to compare the performance with all
existing methods due to difference in number of sub-families or
training datasets. As NRfamPred was developed using the dataset

Table 1 | Performance of amino acid and dipeptide composition based SVM models during LOOCV at 1st level. All values except MCC and
AUC are in percentage. Sens, Spec, Acc, MCC and AUC stand for sensitivity, specificity, accuracy, Matthew’s correlation coefficient and
area under ROC curve respectively

Amino Acid Dipeptide

Sens Spec Acc MCC AUC Sens Spec Acc MCC AUC

96.86 92.20 93.32 0.84 0.98 96.23 98.40 97.88 0.94 1.00
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on which NR-2L and iNR-PhysChem was based, a direct one to one
comparison with them will be more appropriate.

Leave-One-Out Cross-Validation (LOOCV) Performance. A
comparative performance of NRfamPred vis-à-vis iNR-PhysChem
and NR-2L is shown in Table 3 and Table 4. NRfamPred achieved
96.23% sensitivity and 98.40% specificity at the 1st level. With the
same set of proteins, iNR-PhysChem sensitivity and specificity were
96.23% and 98.80% respectively. It clearly shows that NRfamPred
has comparable prediction accuracies during LOOCV with iNR-
PhysChem. For NR-2L the sensitivity and specificity was 98.11%
and 90.80% respectively. At a preliminary glance it appeared that
the sensitivity achieved by NRfamPred (96.23%) was lesser than NR-
2L, thus we analyzed the different sensitivity and specificity values
attained by NRfamPred during LOOCV in detail (Supplementary
Table S3). NRfamPred was found to achieve a specificity of 96.40%
at the corresponding sensitivity 98.11%, which was much higher than
the specificity obtained by NR-2L (Table 3 and Supplementary Table
S3). At 2nd level the sensitivity of NRfamPred was more than iNR-
PhysChem for all sub-families (except for NRP2) while it had higher
or equivalent prediction accuracy for all sub-families when
compared to NR-2L (Table 4).

Performance on Independent Dataset. In their study Xiao et al.16

had not benchmarked the performance of iNR-PhysChem on
independent dataset, hence in this paper comparison on
independent dataset (PIND) was carried out only with NR-2L. As
shown in Table 3 and Table 5, the overall performance of
NRfamPred is better than NR-2L at both 1st and 2nd levels. It
clearly shows that NRfamPred is better and more accurate than
NR-2L for practical applications also.

NRfamPred Web-Server Performance. In real life, nature of proteins
presented to NRfamPred for prediction will not be known in advance.
Hence one-vs-rest approach of prediction will not work in the actual

situation. In the NRfamPred web-server/standalone the first prediction
would decide whether the query protein is a NRP or not? This is a
threshold dependent prediction so that the user can select desired level
of sensitivity and specificity. If the query protein is predicted to be a
NRP, it will be forwarded for the sub-family prediction and will be
classified into the sub-family corresponding to the highest SVM score.
In order to compare the prediction capability of NRfamPred vis-à-vis
iNR-PhysChem and NR-2L web-servers, all of the 1068 proteins of
PIND were submitted to the NRfamPred, iNR-PhysChem and NR-2L
web-servers and prediction was done at default parameters. As shown
in the Table 6, NRfamPred web-server predicted all 568 NRPs correctly
as NRP and also their sub-families. On the other hand iNR-PhysChem
and NR-2L were able to correctly predict and classify only 562 and 565
NRPs respectively. In case of non-NRP, out of 500 NRfamPred falsely
predicted 12 proteins as NRPs. The performance of NRfamPred was
better than NR-2L at this level also, which falsely predicted 19 proteins
as NRPs. 11 proteins were wrongly predicted as NRPs by the iNR-
PhysChem. It clearly shows that NRfamPred web-server can do
prediction with higher accuracy in comparison of iNR-PhysChem
and NR-2L even in blind condition.

Comparison with Other Prediction Approaches. Almost all
nuclear receptors share a highly conserved zinc-finger DBD and a
less conserved LBD21. The DBD and LBD are regarded as dual
signatures of this protein super-family22. Hence, one of the most
intuitive ways of filtering NRPs from non-NRPs is to build a
profile Hidden Markov model (HMM) using NRP sequences and
then perform searching against the query protein. Similarly sub-
family prediction can be done using HMM build for individual
sub-family. If an unknown sequence shows very high conservation
with the NRP profile, it can be predicted to belong to NRP. Similarly a
sequence showing high similarity to a particular sub-family profile
can belong to the corresponding sub-family. In order to verify this
approach, we built HMM profiles of total NRPs as well as each sub-

Table 3 | Comparative performance of NRfamPred vis-à-vis INR-PhysChem and NR-2L at 1st level. At LOOCV, comparison is made at the
point where sensitivities of NR-2L and iNR-PhysChem were equal to NRfamPred. iNR-PhysChem was not evaluated using independent
dataset in Ref. no. [16]. Hence, corresponding values of iNR-PhysChem is not shown. All values except MCC are in percentage. (#Ref. no.
[16], "Ref. no. [15])

LOOCV

Predictor Sensitivity Specificity Accuracy MCC

NRfamPred/iNR-PhysChem# 96.23/96.23 98.40/98.80 97.88/98.18 0.94/0.96
NRfamPred/NR-2L" 98.11/98.11 96.40/90.80 96.81/92.56 0.92/0.83

DATAIND

NRfamPred 100.00 98.40 99.25 0.99
NR-2L" 99.65 96.20 98.03 0.96

Table 2 | Performance of amino acid and dipeptide composition based SVM models during LOOCV at 2nd level. All values except MCC and
AUC are in percentage. Sens, Spec, Acc, MCC and AUC represent sensitivity, specificity, accuracy, Matthew’s correlation coefficient and
area under ROC curve respectively

Sub-family

Amino Acid Dipeptide

Sens Spec Acc MCC AUC Sens Spec Acc MCC AUC

NRP0 50.00 97.96 94.34 0.55 0.79 83.33 95.92 94.97 0.70 0.95
NRP1 80.00 82.57 81.76 0.60 0.86 98.00 99.08 98.74 0.97 0.99
NRP2 83.33 78.86 79.87 0.54 0.84 91.67 96.75 95.60 0.88 0.97
NRP3 78.38 98.36 93.71 0.82 0.98 100.00 99.18 99.37 0.98 1.00
NRP4 85.71 90.79 90.57 0.47 0.92 100.00 99.34 99.37 0.93 1.00
NRP5 58.33 97.96 94.97 0.61 0.84 83.33 100.00 98.74 0.91 0.98
NRP6 80.00 100.00 99.37 0.89 1.00 100.00 100.00 100.00 1.00 1.00
Overall 76.73 92.98 90.66 0.63 -- 94.97 98.63 98.11 0.92 --
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family using the sequences of main dataset (PMAIN) and searched
proteins of PIND. At 1st level total 564 NRPs were correctly
predicted without any false positive (meaning no non-NRP was
predicted as NRP). But at 2nd level we observed a long hit list with
high score and very low E-values showing similarity to same as well
as different sub-families. This made it difficult to differentiate the
probable sub-family to which the query protein might belong, only
on the basis of alignment score and E-values. In homology based
clustering algorithms generally an E-values between 1028 to 102100

were considered as threshold to define homology between protein
sequences23. At both levels the hits of HMM based search were within
this range.

Other than HMM, a number of network-based unsupervised clas-
sification approaches are also available24–26. These methods use
homology based clustering to group proteins of same class in same
cluster. Similar to the HMM based prediction, this approach can also
be very successful at 1st level but fail at 2nd level due to high sequence
conservation among proteins of different sub-families. It shows that
although HMM based searching and homology based clustering
methods are intuitively a logical and most obvious step to find a
novel NRP, but as shown in this work, inherent conservation of
sequences across the super-family makes these approaches difficult
to use in real life. In contrast to this, our method provides a clear-cut
unambiguous answer of ‘the sub-family to which the query protein
may belongs’.

Proteome-scale Prediction of Nuclear Receptor Proteins. In order
to show the efficiency of our method, we used two phylogenetically
widely separated organisms Arabidopsis thaliana and Homo sapiens.

We opted to choose Human proteome due to its complex human
hormone signaling pathways. Previous reports suggested 48 nuclear-
receptor genes found in human22,27. The idea behind annotating
Arabidopsis genome was to show the specificity of genome wide
prediction of NRPs since nuclear hormone receptor homologs do
not exist in plants28.

NRfamPred predicted 76 NRPs out of total 30,046 human proteins
(0.25% of total proteome). Our estimate is very near to the estimate of
75 nuclear receptors in the mammalian proteome21. We compared
NRfamPred prediction with Human Protein Reference Database
(HPRD)29 and Uniprot annotations and observed that all three
placed 27 proteins in the same sub-family. 29 proteins were predicted
as the similar sub-families as annotated in Uniprot, however HPRD
did not annotate them. Similarly, 6 proteins that are annotated in
HPRD but not in Uniprot had similar results with NRfamPred.
NRfamPred predicted 14 proteins as NRPs that were either anno-
tated as non-NRP or had no information in Uniprot and HPRD
(Supplementary Table S4).

Since plants doesn’t have NRPs28, we tested NRfamPred on nega-
tive control to see how many NRPs were predicted in plants pro-
teome. For that we use Arabidopsis thaliana proteome, which
contains 27,416 sequences. Our method predicts only three NRPs
(AT1G12860.1, AT2G43945.1 and AT3G59870.1) in total proteome,
which showed that NRfamPred could do proteome wide searching of
NRPs with very high specificity.

Web-Server and Standalone Software. In order to make our
prediction method available to the scientific community, a web-
server has been established at http://14.139.227.92/mkumar/
nrfampred, where user can submit up to 25 protein sequences at a
time for prediction. The overall schema of prediction methodology
used in the web-sever is described in Supplementary Fig. S2. We also
developed standalone version of NRfamPred to automate the task of
proteome wide prediction, which can be downloaded from http://14.
139.227.92/mkumar/nrfampred/download.html.

Discussion
The aim of this study was to develop a reliable method, named as
NRfamPred, to identify nuclear receptor proteins in proteome and
group them into appropriate sub-families. The whole prediction
approach was divided into two steps. First step discriminated
between NRP and non-NRP while second step predicted the sub-
family. We used earlier compiled datasets and two different forms of
sequence information (amino acid and dipeptide compositions) as
input to the SVM to develop the proposed method. Between the two
input modes, dipeptide based SVM model performed better than the
amino acid composition based model (Table 1 and Table 2).
Performance on independent dataset (Supplementary Table S2)
and the comparative study between NRfamPred and other available
methods (Tables 3–6, Supplementary Table S2) also proved

Table 6 | Comparative performance of NRfamPred, iNR-
PhysChem and NR-2L web-servers on PIND. NRP6 was not evaluated
since PIND doesn’t have sub-family NR6 data

Sub-
family

Number of
proteins in PIND NRfamPred iNR-PhysChem NR-2L

NRP0 6 6 5 6
NRP1 231 231 229 228
NRP2 127 127 126 127
NRP3 148 148 147 148
NRP4 23 23 22 23
NRP5 33 33 33 33
NRP6 NA NA NA NA
Total 568 568 562 565
Non-NRP 500 488 489 481

Table 5 | Comparison of performance of NRfamPred and NR-2L
on PIND at 2nd level of prediction using PIND. iNR-PhysChem was not
evaluated on PIND in Ref. no. [16]. Hence, corresponding values of
iNR-PhysChem is not shown. All values except MCC are in percent-
age. "Sensitivity of NR-2L was reported as accuracy in Ref. no. [15]

Sub-family

NRfamPred NR-2L

Sensitivity MCC Sensitivity" MCC

NRP0 100.00 0.77 100.00 1.00
NRP1 100.00 1.00 99.13 0.99
NRP2 99.21 0.99 100.00 1.00
NRP3 100.00 0.97 100.00 1.00
NRP4 100.00 1.00 100.00 0.98
NRP5 100.00 1.00 100.00 0.98
NRP6 -- -- -- --
Overall 99.82 0.98 99.65 --

Table 4 | Comparison of LOOCV performance of NRfamPred,
iNR-PhysChem and NR-2L at 2nd level of prediction. All values
except MCC are in percentage. Sensitivities of iNR-PhysChem
and NR-2L was reported as accuracy in #Ref. no. [16] and "Ref.
no. [15] respectively

Sub-family

NRfamPred iNR-PhysChem NR-2L

Sensitivity MCC Sensitivity# MCC# Sensitivity" MCC"

NRP0 83.33 0.70 66.67 0.81 75.00 0.86
NRP1 98.00 0.97 94.00 0.87 86.00 0.88
NRP2 91.67 0.88 97.22 0.93 86.11 0.85
NRP3 100.00 0.98 100.00 0.95 100.00 0.86
NRP4 100.00 0.93 71.43 0.84 85.71 0.70
NRP5 83.33 0.91 83.33 0.91 83.33 0.86
NRP6 100.00 1.00 100.00 1.00 100.00 1.00
Overall 94.97 0.92 92.45 0.91 88.68 0.87
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NRfamPred as a better predictor. Performance of iNR-PhysChem
(not available for independent dataset) prima facie seems compar-
able on the basis of LOOCV result but when we used its web-server
for prediction of dataset PIND, it failed to achieve the level of
NRfamPred (Table 6).

We also used NRfamPred to predict NRPs, which are present in the
human proteome and identified 14 novel NRPs, which have not been
reported till date. NRfamPred also assigned sub-families to these novels
NRPs. NRPs play a crucial role in diverse biological processes, including
lipid and glucose homeostasis, detoxification, cellular differentiation and
embryonic development, and mutations in nuclear receptors associated
to many common and lethal disorders, including cancer, diabetes and
heart disease30,31. Hence a proper investigation and experimental valid-
ation of these predicted NRPs might be useful for the scientific com-
munity. Another interesting finding was observed that NR0 sub-family
proteins were not predicted in human proteome. There might be two
possibilities behind this. Either NRfamPred failed to predict the mem-
bers of sub-family NR0 or dataset on which annotation pipeline was
executed, didn’t had these proteins. The former probability was ruled
out by submitting a compilation of NRPs of human, mouse and rat
(compiled by Zhang et al.22) to the NRfamPred web-server. The result
(Supplementary Table S4) showed that this assumption was not correct
as NRfamPred rightly predicted the proteins of sub-family NR0, which
were present in human, mouse and rate genomes (Supplementary Table
S5).

Methods
Prediction Schema. In the present work we have tried to solve two different problems
simultaneously. The 1st problem is to identify the proteins belonging to the family
NRPs and the 2nd is to predict the sub-family to which a particular NRP belongs. It
means 1st level is a binary classification problem, which can be addressed by a classifier
that can classify the query protein into NRP or non-NRP. But the prediction of NRP
sub-family was a typical example of multi-class classification. Here the objective was
to identify the correct sub-family of a protein, predicted as NRP, in the previous step.
A simple strategy to handle this type of problem is to divide multi-class classification
into a series of binary classifications, popularly known as one-vs-rest approach. It
involves development of a number of classifiers using one class as positive while
remaining classes as negative. An SVM trained to predict proteins of a particular sub-
family was trained on all samples of that sub-family with positive label and proteins of
remaining sub-families with negative label. The same approach has been used in a
number of earlier studies like prediction of sub-cellular localization32–34, G-protein
coupled receptors35,36, NRP protein sub-family prediction12,15,16,20.

In multi-class classification, it is an underlying assumption that the input/query
sequence belongs to the family whose class we are going to predict. During training
the assumption might be correct as it is being done on manually curated data. But in
this post-genomic era when, annotation pipelines use prediction methods in assembly
mode, therefore probability of getting a sequence, which doesn’t belong to the same
family, is fairly high. Hence in absence of a filter a non-family member might be
predicted to belongs to the class to which it is unrelated. Further, one of the main aims
of our work is to provide a tool that can be used to annotate uncharacterized proteins.
If the input sequence doesn’t belong to NRP super-family, the sub-family classifica-
tion is actually meaningless. In order to reduce the likelihood of wrong classification,
we have adopted the two level prediction approach. The 1st level is to screen NRPs,
while the 2nd level identifies the sub-family to which it belongs (Supplementary Fig.
S2). In summary the overall prediction works in following 3 steps: (a) The query
protein is presented to the prediction algorithm. (b) If it is a non-NRP, the prediction
stops after 1st level (c) If the query protein predicted as a NRP at the 1st level, it is
forwarded to the 2nd level for sub-family prediction.

Main Dataset (PMAIN). In the present work we have used the earlier published dataset,
which was used for the development of NR-2L and iNR-PhysChem. It has 159 NRPs
and 500 non-NRPs (Supplementary Table S1). NRPs were collected from nuclear
receptor database (NucleaRDB release 5.0; http://www.receptors.org/NR/)37. The 500
non-NRP sequences were randomly collected from the UniProt (http://www.uniprot.
org/) according to their annotations in the ‘‘Keyword’’ field. To remove redundancy,
sequences having more than 60% pair-wise sequence identity to any other proteins in
same sub-family were removed using CD-HIT38.

Blind or Independent Dataset (PIND). This data was used as an independent bench-
marking dataset to evaluate real life performance of predictor developed using PMAIN.
Similar to PMAIN, this was also originally compiled and used for benchmarking earlier
method NR-2L. It has 568 NRPs and 500 non-NRPs (Supplementary Table S1).

Genome-scale Prediction of Nuclear Receptor Proteins. In order to show the real
life usage and efficacy of our method, we annotated two proteomes namely, Homo
sapiens as positive control, and Arabidopsis thaliana as negative control. The human

proteome was downloaded from HPRD29, which is a very high quality manually
curated human protein database. It had 30,046 human protein sequences. The
Arabidopsis proteome was downloaded from TAIR39. It contains 27,416 proteins of
representative gene models.

Cross-Validation and Performance Evaluation. Cross-validation is a way to
estimate the performance of a prediction model on a dataset, which is not used for
generating it. It involves partitioning of data into complementary sub-sets,
performing the analysis on one sub-set (called training set), and validating the
analysis on other sub-set (called testing set). To reduce variability due to sample
partition, multiple rounds of cross-validations are performed using different data
partitions and results are averaged over all partitions.

In statistical prediction, the following three cross-validation methods are com-
monly used to examine a predictor for its effectiveness in practical application:
independent dataset test, sub-sampling test and jackknife test. However, of the three
test methods, the jackknife or leave-one-out test is considered least arbitrary and can
yield a unique result for a given benchmark dataset whereas the other two test
methods bear considerable arbitrariness, as elaborated by Chou40. For example a
predictor achieving a higher success rate than other predictors for a given blind or
independent testing dataset might fail to repeat the performance when tested by
another blind or independent testing dataset. Accordingly, the jackknife test has been
increasingly and widely used by investigators to examine the quality of various
predictors41,42.

In the present study, we have used leave-one-out cross-validation approach. It par-
titions entire data into N (5number of sequences in dataset) number of training and
test set pairs. In each pair, training set contains all except one sequence, while testing set
contains the sequence absent in training set. At a selected parameter, model is gener-
ated using the training set and prediction performance was evaluated on corresponding
test set. During training for 1st level predictor, NRPs were considered as positive while
non-NRPs were considered as negative. During 2nd level i.e. sub-family prediction,
only NRPs were used during both training and testing. Proteins belonging to same sub-
family were labeled as positive while remaining all proteins as negative.

For performance evaluation we used standard parameters regularly used in other
similar classification and prediction works34,43–47 viz. sensitivity, specificity, accuracy
and MCC. These parameters defined by:

Sensitivity~
TP

TPzFN
|100 ð1Þ

Specificity~
TN

TNzFN
|100 ð2Þ

Accuracy~
TPzTN

TPzFPzTNzFN
|100 ð3Þ

MCC~
TP|TNð Þ{ FP|FNð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPzFPð Þ TPzFNð Þ TNzFPð Þ TNzFNð Þ

p ð4Þ

Where, TP represents true positive, TN represents true negative, FP represents false
positive, FN represents false negative and MCC represents Matthew’s correlation
coefficient.

The schema of categorizing a prediction into different categories can be sum-
marized as follows: At 1st level (Figure 1), TP represents the number of proteins,
which are actually NRPs and also predicted as NRPs. TN represents the number of
proteins which are actually non-NRPs and also predicted as non-NRPs. FP is number
of non-NRPs, predicted as NRPs while FN is number of proteins which are actually
NRPs predicted as non-NRPs. At 2nd level (Figure 1) since the classification was done
to predict the sub-family, the meaning of TP, TN, FP and FN has also changed
accordingly. For a hypothetical sub-family X, TP is the number of sequences correctly
predicted to belong to sub-family X; TN is the number of non-family sequences
predicted as non member of sub-family X; FP is the number of sequences wrongly
predicted to belong to sub-family X while FN is the number of sequences which
actually belong to sub-family X but predicted as non-family protein.

Support Vector Machine. In this study, we implemented SVM using SVM_light
package48, which allows us to choose a number of parameters and kernels (e.g. linear,
polynomial, radial basis function, sigmoid or any user-defined kernel). SVM models
were generated using different parameters and kernels. SVM model, which had best
performance during LOOCV, was selected as the optimal model.

Amino Acid Composition. It is the fraction of each amino acid present in a protein,
encapsulated in a vector of 20 dimensions. In the earlier studies also amino acid
composition had been used for annotating different features of proteins46,47. It was
calculated using the expression:

Comp(i)~
Ri
N

X100 ð5Þ

Where, Comp(i) is the amino acid composition of residue type Ri and N is the total
number of amino acids.
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Dipeptide Composition. One of the main drawbacks of amino acid composition is
that it only emphasizes on overall sequence information but ignores the local order
information. In order to incorporate the local sequence order information along with
amino acid composition, dipeptide composition was also used as input34,49. It was
calculated using the expression:

Dipep(i)~
Total number of Dipep(i)

Total number of all possible dipeptides
X100 ð6Þ

Where, Dipep(i) 5 i-th dipeptide; i 5 1 to 400.
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