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Polymorphisms of LIG4 gene may influence DNA repair ability, thus altering the genetic stability and
resulting in carcinogenesis. A growing number of studies have investigated the relevance of LIG4 T9I
(rs1805388) and D501D (rs1805386) polymorphisms with cancer risk, however, the results are conflicting.
To obtain a comprehensive conclusion, we searched relevant literatures from PubMed, Web of Science, Ovid
and Embase databases on May 15, 2014 and performed a meta-analysis. In this meta-analysis, a total of 17
articles were included. Of them, there were 15 studies with 5873 cases and 5771 controls for rs1805388 and 6
studies with 4161 cases and 4881 controls for rs1805386. Overall, our results suggested that there was no
obvious relevance of LIG4 T9I polymorphism with cancer susceptibility. However, in subgroup analysis, we
found the LIG4 T9I was associated with a slightly decreased cancer risk among Caucasians. As to the
rs1805386, the genetic variant had no significant association with cancer risk. In conclusion, despite several
limitations, this meta-analysis suggested that LIG4 T9I genetic variant is associated with a decreased risk of
cancer among Caucasians, however, the rs1805386 gene polymorphism is not a risk factor of cancer.

C
ancer is one of the most common causes of death in the world and results in a serious problem to global
health1,2. Despite advances in treatment for cancer, the prognosis remains unsatisfied3. Thus, exploring the
methods of early detection and prevention are indispensable. Currently, gene-environment interactions

have been thought to be main determinant of individual risk for diseases including cancer4. Genes decide the
susceptibility of individual to environment and environmental factors often damage the DNA in turn. If the host
DNA repair system does not perform their functions well in repairing such destructive DNA, it might alter the
stability of genome and lead to carcinogenesis. Thus, the DNA repair ability plays a critical role in maintaining the
stability of human genome.

LIG4 gene, located on human chromosomes 13q33-34, encodes an ATP-dependent DNA ligase that joins
single-strand breaks in a double-stranded polydeoxynucleotide in an ATP-dependent reaction5. The DNA ligase
IV is the crucial enzyme to for completing the non-homologous end joining (NHEJ) by forming a complex
together with X-ray repair cross complementing protein 4 (XRCC4) for a final ligation of the break in an ATP-
dependent step6,7. Therefore, the loss or variant of LIG4 is supposed to contribute to genomic instability and
tumorigenesis.

According to supposition mentioned above, we reviewed the related studies concerning of LIG4 variants and
susceptibility of tumor. Then, we found that numerous studies investigated this issue, however, the conclusions
are inconsistent. To obtain a comprehensive conclusion, we carried out a meta-analysis to systematically evaluate
the relevance of LIG4 genetic variants with susceptibility of cancer.

Results
Identification of relevant studies. A total of 167 papers were indentified from the databases as we described
above. After deleting the duplications, 111 papers were left. Then we estimated the rest articles and 72 articles were
discarded because of irrelevance with this issue. And one other potential eligible paper was obtained by screening
the references of reviews. Of the remains 40 papers, one article was excluded for animal study8; six papers were
reviews9–14. Following this, two papers were concerned with prognosis15,16, eight articles without detailed data for
further evaluation17–24. Besides, six papers estimated LIG4 polymorphism but not T9I or D501D25–30. Finally, a
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total of 17 studies with case-control design met the inclusion and
exclusion criteria in this meta-analysis31–47. Of these 17 articles (one
article included both rs1805386 and rs1805388), there were five
articles with six studies for rs1805386, 13 articles with 15 studies
for rs1805388. The flow diagram of searching process was shown
in Figure 1.

Characteristics of included studies. Of these included articles, one
article42 with three caner types were separated as three independent
studies and three articles35,39,45 concluded rs1805386 and rs1805388.
Noticeably, in the relevant articles, two articles19,24 did not find the
polymorphism of rs1805386 and another article45 did supply with
insufficient data for rs1805386 but for rs1805388. Thus, in the end,
there were five articles with six studies for rs1805386, 13 articles with
15 studies for rs1805388 polymorphism.

Then, we established a database concerning of the information
extracted from each included paper. Summaries of these studies were
presented in Table 1 which included the first author’s surname,

publication year, ethnicity, country, number and characteristics of
cases and controls, and other relevant information.

Meta-analysis results. rs1805386. We found that there was no
obvious relevance of LIG4 D501D variants with overall cancer risk
(homozygous: OR 5 0.97, 95% CI 5 0.59–1.59, P 5 0.907; recessive:
OR 5 0.96, 95% CI 5 0.88–1.06, P 5 0.434; dominant: OR 5 0.99,
95% CI 5 0.61–1.60, P 5 0.952; allele: OR 5 0.95, 95% CI 5 0.87–
1.03, P 5 0.229) (Table 2). In the subgroup analysis stratified by
cancer types, no statistically significant relations were found for
breast cancer and ovarian cancer (The data were not shown).

rs1805388. As shown in Table 2 and Figure 2, there was no relevance
of LIG4 T9I variants with overall cancer risk (homozygous: OR 5

0.84, 95% CI 5 0.55–1.27, P 5 0.401; recessive: OR 5 0.94, 95% CI 5

0.81–1.09, P 5 0.434; dominant: OR 5 0.85, 95% CI 5 0.58–1.25, P
5 0.410; allele: OR 5 0.93, 95% CI 5 0.80–1.07, P 5 0.306).
However, in the subgroup analysis, a statistically significant asso-

Figure 1 | Flow diagram of included/excluded studies.
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ciation was found among Caucasians (homozygous: OR 5 0.61,
95%CI 5 0.40–0.91, P 5 0.016; recessive: OR 5 0.86, 95% CI 5

0.77–0.97, P 5 0.016; dominant: OR 5 0.63, 95% CI 5 0.42–0.94, P
5 0.023; allele: OR 5 0.84, 95%CI 5 0.74–0.95, P 5 0.004).

Heterogeneity and sensitivity analysis. Heterogeneities were
observed among several studies for LIG4 D501D polymorphism
and overall cancer susceptibility (homozygous: P 5 0.044;
dominant: P 5 0.048;) and T9I (homozygous: P , 0.001; recessive:
P , 0.001; dominant: P , 0.001; allele: P , 0.001). Thus, we selected
the random-effect models to generate pooled ORs and
corresponding 95% CIs for these models. On the other hand, no
heterogeneity was observed among the other two models for
D501D (recessive: P 5 0.520; allele: P 5 0.218) and the fixed-effect
models were performed to generate ORs and 95% CIs for them. The
sensitivity analysis suggested that no obvious changes were observed
for the pooled ORs when single investigation was excluded
respectively (data were not shown).

Publication bias. The shape of the funnel plot showed that no
evidence of asymmetry was observed in the current meta-analysis
by Egger’s test for T9I (homozygous: P 5 0.530; recessive: P 5 0.919;
dominant: P 5 0.482; allele: P 5 0.585) and D501D (homozygous: P
5 0.501; recessive: P 5 0.073; dominant: P 5 0.499; allele: P 5

0.451), which suggested that there were no significant publication
bias among all these studies.

Trial sequential analysis (TSA). Fifteen trials (11180 subjects) were
used to investigate the relevance of rs1805388 gene polymorphism
with cancer susceptibility. Using the TSA (taking the data of
dominant model for example), the required information size is
21516 subjects to demonstrate the issue (Figure 3A). Until now,
the cumulative z-curve has not crossed the trial monitoring
boundary before reaching the required information size, indicating
that the cumulative evidence is insufficient and further trials are
necessary. However, the cumulative z-curve crossed with TSA
monitoring boundary when we performed the sub-analysis based
on the ethnicity, confirming that rs1805388 is associated with a
slightly decreased cancer risk among Caucasians and further
relevant trials are unnecessary (Figure 3B). As for rs1805386, we
chose the data of four models to perform TSA. The cumulative z-
curve have crossed with TSA monitoring boundaries before the
required information size is reached, indicating that the rs1805386
polymorphism is not a risk factor of cancer and no further trials are
necessary (figures were not shown).

Discussion
Genomic instability is an outstanding characteristic of cancer48.
Numerous studies have demonstrated that tumor suppressor genes
play a significant role in DNA double-strand break (DSB) repair and
in maintenance of genomic stability; correspondingly, loss or muta-
tion of such repair genes results in a shifty susceptibility for
malignancies.

In eukaryotes, homologous recombination and NHEJ are two
major pathways for DNA DSB repair and the latter is predominantly
way in mammalian cells49. In the NHEJ process, LIG4, as a major
functional protein, forms a complex with XRCC4 to perform the final
rejoining step of NHEJ. Thus, the genetic variant of LIG4 might alter
the repair capacity of DSB.

Previous investigation had demonstrated that polymorphisms in
DNA repair genes might alter DNA repair capacity and thus con-
tribute to cancer risk50. In 2002, Kuschel et al.40 found that LIG4
D501D polymorphism was associated with a decrease in breast can-
cer risk and Roddam et al.42 found that LIG4 T9I polymorphism may
modulate predisposition to multiple myeloma. After these discov-
eries, a mass of investigations were performed to estimate the asso-
ciation between LIG4 T9I and D501D polymorphisms and theTa
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susceptibility of various cancers. To our puzzled, the results are con-
flicting. Thus, we performed a meta-analysis to obtain a compre-
hensive conclusion.

To our knowledge, this is the first time to systematically estimate
the associations between LIG4 T9I and D501D polymorphisms and
susceptibility of overall cancer. In this study, we found that
rs1805386 and rs1805388 genetic variants had no relevance with
overall cancer risk in homozygous, recessive, dominant and allele
models. To further investigate the associations, we performed the
subgroups analysis based on ethnicity and cancer types and found
that rs1805388 variant is a decreased risk of cancers among
Caucasians.

In order to make the conclusion more credible, we performed the
publication bias analysis and sensitivity analysis according to
Cochrane protocol. Funnel plots suggested that no obvious publica-
tion bias was observed. The sensitivity analysis indicated that the
results are robust and no single study yield to obvious effects on
the pooled ORs and the corresponding CIs. Besides, we performed
the TSA and the results of TSA showed that the conclusions in this
meta-analysis are robust.

However, several limitations in this meta-analysis should be
noticed. Firstly, several studies had small sample sizes which
might lessen the statistical power. Secondly, the heterogeneity
was existed and thus we performed the random-effects model to
obtain the wider CIs, which might weaken the reliability of con-
clusions. Thirdly, our results were based on unadjusted assessment
of ORs, which might influence the results. Fourthly, we did not
search the unpublished studies, which might miss the relevant
studies. Besides, all data included in this study were from pub-
lished investigations which were based on the current marker
identification method of the ‘one-step-clustering’. This approach
might tend to be ‘passenger signals’ instead of ‘drivers’ and bury
the ‘real’ cancer gene, which made the results less robust and
accurate51,52. Based on the limitations mentioned above, the results
should be considered with caution.

Overall, in spite of these limitations, this analysis reached a precise
conclusion that LIG4 D501D polymorphism has no obvious rel-
evance with cancer risk and individual with LIG4 T9I genetic variant
has a decrease cancer risk among Caucasians. With the development
of research methods, future studies focusing on a combinatorial use

Figure 2 | Forest plot for overall cancer risk associated with LIG4 T9I polymorphism ((A): homozygous model; (B): recessive model; (C): dominant
model; (D): allele model. subgroup analysis by ethnicity).
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of the polygene markers and integrative network modules analysis,
are necessary to make the conclusions more comprehensive.

Methods
Search strategy. We searched the PubMed, Web of Science, Ovid and Embase
databases without language limitations for all related papers using the following
searching strategies: 1) LIG4 or LIG 4 or ligase IV, 2) polymorphism or variant or
variation or allele or genotype, and 3) cancer or carcinoma or tumor or neoplasm.
And the last research was updated on May 15, 2014. All searched studies were
screened and their references were retrieved to obtain other related articles. Then we
downloaded the relevant papers and further screened to identify potentially eligible
studies.

Inclusion/exclusion criteria. Studies included in this studies had to meet the
following inclusion criteria: (1) estimating the relevance of LIG4 polymorphisms
(rs1805386 and rs1805388) and cancer susceptibility; (2) case-control design; (3)
sufficient data provided to assess odds ratios (ORs) and the corresponding confidence
intervals (CIs); (4) when multiple publication from a particular research group

reported data from overlapping samples, the study reporting the largest or latest
dataset was included. Exclusion criteria: (1) review articles; (2) case reports, or case-
only studies; (3) studies that estimated the risk of prognosis.

Data extraction. All data were independently reviewed and extracted from the
included papers by two authors (S.X. and J.H.). Disagreements were solved by full
discussion until a consensus was reached. The following characteristics were collected
from each study: first author’s surname, year of publication, ethnicity, country, cancer
type, sample size, control source, matching contents, the Hardy-Weinberg
equilibrium, genotype methods and genetic distribution of cases and controls. The
subgroup analysis was performed by cancer type and ethnicity.

Statistical analysis. All the data management and analysis for this meta-analysis were
performed with STATA 11.0 software (Stata corporation, College Station, TX). The
strength of association between rs1805386 and rs1805388 polymorphisms and cancer
susceptibility was estimated by calculating OR with the corresponding 95% CI. In
order to calculate heterogeneity of studies, the Chi-Square test was used and
significance was set at P value less than 0.05 level53. If the study was found to be
heterogeneous (P . 0.10 for the Q-test), the fixed-effects model (the Mantel-Haenszel

Figure 3 | (A): The required information size to demonstrate the relevance of rs1805388 gene polymorphisms with cancer susceptibility; (B): The

required information size to demonstrate the relevance of rs1805388 gene polymorphisms with risk of cancer among Caucasians. The solid blue line is the

cumulative Z-curve. The dashed inward-sloping line to the left represents the trial sequential monitoring boundaries.
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method) was performed to calculate the combined OR54. Otherwise, a random effect
model (the DerSimonian and Laird method) was used to estimate the pooled OR55. In
addition, the heterogeneity was also quantified with I2 statistics. The I2 value ranges
from 0 to 100% and a larger I2 value indicating a greater heterogeneity56. The funnel
plot was used to test the potential publication bias, and the funnel plot asymmetry was
estimated by Egger’s linear regression57. Sensitivity analyses were performed to
identify the influence of the each study on the combined ORs and 95% CI.

Trial sequential analysis (TSA). According to Cochrane Handbook for systematic
reviews of interventions, meta-analyses and systematic reviews are considered to be
the best available evidence if all available trials are included. However, ‘the best
available evidence’ might not be equal to ‘strong evidence’ or ‘sufficient evidence’. It is
well-known that meta-analysis may cause random errors in the series of sparse data
and reduplicative testing on accumulating data. Based on these problems mentioned
above, we applied the TSA to minimize the random errors and increase the robustness
of conclusions58,59. In our study, we planned to calculate the required information size
and estimate how many patients would be necessary to make a robust conclusion58.
The required information size was based on the assumption of a plausible relative risk
of 10% with low risk bias, and we adopted the risks for a type I error (a) of 5%, a type II
error (b) of 20%58. Based on required information size and risk for type I and type II
errors TSA monitoring boundaries were built. If a TSA monitoring boundary is
crossed with Z-curve before the required information size is reached, robust evidence
might have been confirmed and further trials are unnecessary. Otherwise, it is
necessary to continue doing trials.
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