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Exploring the molecular difference among breast cancer subtypes is of crucial importance in understanding its
heterogeneity and seeking its effective clinical treatment. For this, several layers of information including
immunohistochemical markers and a variety of high-throughput genomics approaches have been intensively
used. Here we have explored the intrinsic differences among breast cancer subgroups defined by
immunohistochemical expression (IHC) of hormone receptors ER and PR as well as human epidermal growth
factor receptor 2 (HER2) using the mRNA and miRNA expression profiles of 115 tumors. A core basal group
was further defined by epidermal growth factor receptor and cytokeratin 5/6 IHC expression and compared to
triple negative group. A set of differentially expressed genes including 1015 mRNAs and 69 miRNAs was
found to distinguish tumor subtypes whose generality was demonstrated using two independent data sets. The
network was explored for each subtype and biomass synthesis signaling was found to play an important role in
the core basal subgroup. This study contributes to elucidating the intrinsic relations among breast cancer
subgroups defined by ER, PR and HER2 expression via integrating mRNA and miRNA expression. The
results can avail functional studies of breast cancer with translational potential for clinical use.

B
reast cancer is a heterogeneous disease where classically, immunohistochemistry (IHC) markers, together
with clinicopathologic variables are used for prognosis prediction and treatment selection1,2. The com-
monly used IHC markers include estrogen receptor (ER), progesterone receptor (PR) and human epi-

dermal growth factor receptor 2 (HER2). ER-positive tumors account for .70% of breast cancer3, respond to
anti-estrogen or aromatase inhibitors and have a more indolent clinical course2. ER-negative tumors are hor-
mone-independent and characterized by a more aggressive behavior4. PR is induced by estrogen and is a favorable
prognostic marker1. HER2 is the most well-known prognostic member of the epidermal growth factor receptor
family, whose amplification or over-expression is predictive of poor survival1. HER2 status can be used to sub-
classify also [ER2/PR2] tumors into distinct subgroups of [ER2/PR2]HER21 (breast tumors with negative ER
and PR status, and positive HER2 status) and [ER2/PR2]HER22 (breast tumors with negative ER, PR and
HER2 status), where [ER2/PR2]HER22, called triple negative phenotypic tumors (TNP) given their negative
status of all the three receptors, forms a clinically challenging group with poor prognosis and difficult to treat5. A
core basal subgroup (CoreBasal) with distinct clinical and immunophenotypic differences has been more recently
distinguished within the triple negative group using the epidermal growth factor receptor (EGFR, also known as
HER1) which is associated with a lack of ER and poor prognosis1 and cytokeratins such as KRT5, KRT6, KRT14,
KRT17 which are over-expressed in core basal tumors6. Particularly, triple negative tumors with positive EGFR or
KRT5/6 staining are referred to as core basal tumors7. The 2012 IMPAKT task force investigated the medical
usefulness of current methods for breast cancer subgroup classification and recommended the use of ER and
HER2 for the identification of clinically relevant breast cancer subgroups8.

Breast cancer subgroup classification based on IHC markers is widely used in both clinical and research settings
due to its reliability and reproducibility9. Several so called intrinsic breast cancer subgroups have been identified
by large-scale gene expression profiling and shown to be associated with differential prognosis of the patients10. In
year 2000, Perou et al. proposed that breast tumors could be classified into at least four intrinsic subgroups, i.e.,
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luminal-like, HER2 positive, basal-like and normal-like tumors11.
These subgroups are similar but not identical to the classification
according to receptor classification using IHC. Particularly, luminal
A and luminal B intrinsic subgroups are often considered to repres-
ent the [ER1/PR1]HER22 (breast tumors with positive ER and PR
status, and negative HER2 status) and [ER1/PR1]HER21 (breast
tumors with positive ER, PR and HER2 status) subgroups, respect-
ively12, and the intrinsic HER2 subgroup refers to [ER2/
PR2]HER21 tumors12. Recently, it was reported that only part of
luminal B tumors are HER2 positive and additional luminal B
tumors can be distinguished from luminal A tumors by the prolif-
eration marker Ki6713. MiRNAs, a category of small (approximately
22-nucleotide) non-coding RNAs with regulatory activity, have
attracted much attention in tumor subgroup characterization due
to their regulatory role in mRNA expression14. A number of differ-
entially expressed miRNAs among breast cancer subgroups have
been identified, and the miRNA patterns distinguish between the
basal-like and luminal tumors (luminal A and luminal B)14.

A number of studies have been conducted to further define tumor
subgroups, indicating also finer-grained subgroups within each major
group15,16. Curtis et al. recently identified 10 intrinsic breast cancer
subgroups by jointly clustering the copy number and gene expression
data of 2000 breast tumors15. The Cancer Genome Atlas (TCGA)
network investigated breast cancer subgroups by incorporating
information from multiple platforms, i.e., genomic DNA copy num-
ber arrays, DNA methylation, exome sequencing, mRNA arrays,
miRNA sequencing and reverse-phase protein arrays. They conclude
that diverse genetic and epigenetic alterations converge phenotypi-
cally into four major expression-only breast tumor subgroups, i.e.,
luminal A, luminal B, HER2 positive and triple negative16.

With the aim of uncovering the intrinsic differences and hetero-
geneity of breast cancer at multiple levels, we integrated mRNA and
miRNA expression and network analysis in characterizing breast
cancer subgroups defined by expression of the major hormonal
and growth factor receptors, i.e., ER, PR and HER2, and additionally
identified the differences between the core basal and triple negative
subgroups at the gene and network levels.

Results
Differentially expressed genes in each subgroup. Among the 183
samples in the Helsinki Breast Cancer Study (HEBCS) data set, 115

invasive tumors could be determined by our available IHC marker
information (Supplementary Tables 1 and 2). Four subgroups, i.e.,
[ER1/PR1]HER22, [ER1/PR1]HER21, [ER2/PR2]HER21

and triple negative phenotype (TNP) tumors, were defined, with
core basal (CoreBasal) tumors distinguished from the TNP
subgroup as a separate group. As seen from table 1, we identified
the mRNA and miRNA differentially expressed genes (diff-genes) for
each of the five IHC defined subgroups (diff-gene sets are listed in
Supplementary Tables 3 and 4), and the unified diff-gene set is the
union of all the differentially expressed genes containing altogether
1015 mRNAs (the unified mRNA diff-genes) and 69 miRNAs (the
unified miRNA diff-genes). The majority of the genes in the unified
diff-gene set come from TNP (777 mRNAs, 58 miRNAs) and
CoreBasal (535 mRNAs, 64 miRNAs) tumors, which were
analysed using the least number of patients (18 TNP including 12
CoreBasal tumors), suggesting that the different number of genes
among subgroups within the unified diff-gene set is not driven by
the sample size but the intrinsic nature of the subgroups. The Venn
diagrams of the diff-genes of the subgroups are presented in
Figures 1A (mRNAs) and 1B (miRNAs), respectively. The TNP
and [ER1/PR1]HER22 subgroups show the biggest overlap both
for mRNAs and miRNAs. Specifically, 78% of [ER1/PR1]HER22

mRNA diff-genes overlap with TNP mRNA diff-genes and 87% of
[ER1/PR1]HER22 miRNA diff-genes overlap with TNP miRNA
diff-genes. Only one gene, KRT5, is common among the four sets of
mRNA diff-genes, and is down-regulated in [ER1/PR1] tumors and
up-regulated in [ER2/PR2] tumors. On the other hand, 84% of
[ER2/PR2]HER21 mRNA diff-genes are subgroup specific with
only 16% overlap with the other subgroups, and [ER1/PR1]
HER21 miRNA diff-genes are exclusively subgroup specific.

Generality of the differentially expressed genes. The subgroups
could be well differentiated with our diff-genes in the public data
sets, especially for mRNA (Figure 2). MiRNA diff-genes performed
less accurately as compared with mRNA diff-genes. As miRNA and
mRNA data share the same sample set, this difference is probably due
to the complexity of the conversion from miRNA expression to the
phenotypic differences among different breast tumor subgroups,
which is mediated and influenced by many factors such as post-
transcriptional regulations and generally large number of varieties
of miRNA gene targets. Nevertheless, we could not rule out the

Table 1 | Gene number in each diff-gene set. The unified diff-genes includes the unique genes in the diff-gene sets of [ER1/PR1]HER22,
[ER1/PR1]HER21, [ER2/PR2]HER21 and TNP subgroups

[ER1/PR1]HER22 [ER1/PR1]HER21 [ER2/PR2]HER21 TNP CoreBasal Union

mRNA 379 65 152 777 535 1015
miRNA 30 3 5 58 64 69

Figure 1 | Venn diagram of subgroup specific diff-genes, indicating numbers of genes in the different or overlapping groups. (A) mRNA, (B) miRNA.
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possible effects of a small sample size. Numerically, the
computational classifier comprised of our unified diff-genes was
able to correctly predict the subgroup in 75% of the tumors in the
public data sets (table 2), implying that our diff-genes, although
identified from relatively small datasets, have a good generality.

Intrinsic relationship among subtypes revealed by differentially
expressed genes. Most of the genes present in multiple tumor
subgroups are oppositely regulated between [ER1/PR1] and
[ER2/PR2] tumors (Figure 3). We compared mRNA diff-genes

Figure 2 | Tumors from HEBCS and TCGA clustered by four breast cancer subgroups and GSE22220 by two subgroups on the basis of mRNA and
miRNA unified diff-genes. (A) Applying the mRNA unified diff-genes to the HEBCS data set. (B) Applying the mRNA unified diff-genes to the GSE22220

data set. (C) Applying the mRNA unified diff-genes to the TCGA data set. (D) Applying the miRNA unified diff-genes to the HEBCS data set.

(E) Applying the miRNA unified diff-genes to the GSE22220 data set. (F) Applying the miRNA unified diff-genes to the TCGA data set. The mRNA and

miRNA unified diff-genes are listed in supplementary Tables 3 and 4, respectively.

Table 2 | Cross-validation of the diff-gene sets. ‘SVM’ and ‘KNN’
represent support vector machine and k-nearest neighbor classi-
fiers, respectively, where k 5 10 in KNN

Diff-gene
HEBCS TCGA

SVM KNN SVM KNN

mRNA 0.757 0.748 0.735 0.723
miRNA 0.765 0.757 0.549 0.594
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between the two [ER1/PR1] subgroups defined by HER2. Four
genes are down-regulated in all ER positive tumors and eleven
genes are oppositely regulated between [ER1/PR1]HER22 and
[ER1/PR1]HER21 tumors. The [ER2/PR2]HER21 subgroup
presented 20 genes oppositely regulated compared with ER posi-
tive tumors. Among the 20 genes, 19 are differentially expressed
between [ER2/PR2]HER21 and [ER1/PR1]HER22, and two
are differentially expressed between [ER2/PR2]HER21 and
[ER1/PR1]HER21. One gene, AACS, is up-regulated both in

[ER2/PR2]HER21 and [ER1/PR1]HER22 tumors. We found
10 genes altered in the same direction between [ER2/
PR2]HER21 and TNP tumors. The [ER2/PR2]HER21 sub-
group has 10 genes coherently regulated with the TNP sub-
group, and 10 genes over-expressed only in [ER2/PR2]HER21

but not the TNP tumors. The regulatory direction of these genes
was also checked in CoreBasal tumors, where 9 genes were
disrupted in the same direction in TNP and CoreBasal tumors,
including 7 elevated genes and 2 suppressed ones (ESR1, CAP2).

Figure 3 | Genes shared in the mRNA diff-gene sets among breast cancer subgroups. Genes shared in the mRNA diff-gene sets among [ER1/

PR1]HER22, [ER1/PR1]HER21, [ER2/PR2]HER21 and TNP subgroups. The regulation direction of the listed genes are also checked in the

CoreBasal subgroup. The over- and under- expression are colored in red and green, respectively, based on the log2-transformed fold change.
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The gene CD163L1 was found up-regulated only in CoreBasal
tumors but no differential expression was observed among TNP
tumors.

Except for hsa-miR-570 that is oppositely regulated between
[ER1/PR1]HER22 and [ER2/PR2]HER21 tumors, all miRNAs
differentially expressed in multiple tumor subgroups are reversely
deregulated in the [ER1/PR1]HER22 and TNP subgroups
(Figure 4). More precisely, there are 7 miRNAs induced in [ER1/
PR1]HER22 tumors and repressed in the TNP subgroup and 19
miRNAs deregulated reversely. According to the miRWalk predic-
tion, two miRNA pairs (miR-135a and miR-135b, miR-519b-5p and
miR-519c-5p) in Figure 4 share the same targets (Supplementary
Tables 5 and 6) and four miRNAs bind to ER related genes (i.e.,
hsa-miR-135a, hsa-miR-135b and hsa-miR-365 target ESRR1, hsa-
miR-7 targets ESRRG and ESR2).

There are 353 and 121 genes uniquely present in TNP and
CoreBasal mRNA diff-genes, respectively (Supplementary Table 7),
and 9 and 16 miRNAs specifically shown in these two subgroups
correspondingly (Supplementary Table 8).

The subgroup clustering pattern generated according to the iden-
tified diff-genes are the same when applied to the HEBCS and TCGA
data sets, illustrating the comparability of the data sets
(Supplementary Figure 1). The grouping of [ER2/PR2]HER21
samples differs when miRNA and mRNA diff-genes are used, sug-
gesting that the mRNA expression pattern of [ER2/PR2]HER21 is
more similar to TNP tumors as compared with its miRNA expression
profile which is more closely grouped with the ER positive tumors.

Statistically, the mRNA data is highly correlated between HEBCS
and TCGA data sets for all the four subgroups, while the miRNA data
is less well correlated between different data sets except for [ER2/
PR2]HER21 tumors (table 3). However, when ER positive ([ER1/

PR1]HER22 and [ER1/PR1]HER21) and ER negative ([ER2/
PR2]HER21 and TNP) tumors are considered, the correlation
across different data sets are significantly improved for both
miRNAs and mRNAs. TNP tumors have the most varied mRNA
expression pattern compared with the other subgroups.

Network and pathway analysis using differentially expressed
genes among subtypes. The most significant networks of each
subtype are shown in Figure 5 (the diff-genes of each subtype
including genes shared among subtypes) and Supplementary
Figure 2 (the diff-genes of each subtype that are mutually exclusive
among subtypes), with information for the top five networks listed in
Supplementary Tables 9 and 10, accordingly.

The most significant network covers 46% ([ER2/PR2]HER21)
to 91% (TNP) of the diff-genes for each subgroup. Each of the net-
works is assigned with functional annotations associated with genes
in a specific network. Genes in the top networks of the [ER1/
PR1]HER22 and TNP subgroups associate with cancer, system
disorder and reproductive system disease (Figures 5A and 5D,
Supplementary Table 9), and genes in the top network of the
HER21 subgroups are related to cellular development (Figures 5B
and 5C, Supplementary Table 9).

The most significant network generated using the subgroup spe-
cific diff-genes includes 26% ([ER1/PR1]HER21) to 80% (TNP)
diff-genes per subgroup. The genes in [ER1/PR1]HER22 and
[ER1/PR1]HER21 associate with cell death and survival and, in
addition, genes in [ER1/PR1]HER21 are also involved in cell cycle,
DNA replication, recombination and repair (Supplementary Figures
2A and 2B, Supplementary Table 10). The genes in the most signifi-
cant networks for HER21 subgroups show also associations with
dermatological diseases and conditions, with [ER2/PR2]HER21

Figure 4 | MicroRNAs shared in the miRNA diff-gene sets among breast cancer subgroups. MiRNAs shared in the miRNA diff-gene sets among [ER1/

PR1]HER22, [ER1/PR1]HER21, [ER2/PR2]HER21 and TNP subgroups. The regulation direction of the listed miRNAs are also checked in the

CoreBasal subgroup. The over- and under- expression are colored in red and green, respectively, based on the log2-transformed fold change.

www.nature.com/scientificreports
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specifically related to tissue and cell morphology (Supplementary
Figure 2C). The diff-genes specific for the TNP subgroup are assoc-
iated with hematological system development and function, tissue
morphology and cancer (Supplementary Figure 2D).

The mRNA diff-genes of the CoreBasal subgroup are largely
involved in pathways controlling biomass synthesis, such as gly-
colysis and steroid biosynthesis (Supplementary Table 11). [ER1/
PR1]HER21 and TNP tumors are enriched with genes commun-
icating with NF-kB (Supplementary Figure 3).

Discussion
We compared our mRNA diff-genes with the gene signature pub-
lished in17, which is the first gene signature reported using mRNA
profiling and has been implemented for tumor subgroup prediction.
There were 81 genes in common (as listed in Supplementary Table
12), among which some are the IHC markers used for tumor sub-
group discrimination including ESR1 and KRT5, some are known
prognostic markers such as GATA3 whose expression level is
strongly associated with the differentiation level of breast cancer18,
and some are shared among any of the four tumor subgroups in our
mRNA diff-genes (as listed in Figure 3). The shared genes are KRT5,
FOXC1, GABRP, LAPTM4B, GRB7, MED24, SLPI and VGLL1,
most of which are generally differentially expressed between ER
positive and ER negative tumors, demonstrating the fundamental
differences between the two tumor classes and the critical role of
ER signaling in driving the phenotypic differences of breast cancer.

Several miRNAs are also consistent with the previous studies.
Blenkiron et al. carried out a study in 2007, where the miRNA fea-
tures were determined for subgroups classified using mRNA data14.
Due to the different subgroup categorization methods used, finding
the direct correspondence between the two studies is difficult.
However, hsa-miR-135b is up-regulated in TNP tumors and down-
regulated in [ER1/PR1]HER22 tumors in this study and is elevated
in basal-like tumors and suppressed in luminal tumors in [14].

ESR1, the discriminative factor between ER positive and ER nega-
tive tumors that mediates the biological effects of estrogens through
direct binding to the estrogen response elements (EREs) of the target
genes or via protein-protein interactions with other DNA-binding
transcription factors in the nucleus19, is oppositely regulated in the
presented diff-gene sets (Figure 3). There are four miRNAs targeting
ESR1-related proteins from our miRNA diff-genes, i.e., hsa-miR-
135a, hsa-miR-135b, hsa-miR-365 and hsa-miR-7. Specifically, the
first three miRNAs target ESRRA and hsa-miR-7 is predicted to bind
both ESRRG and ESR2 by miRWalk20. ESRR1 and ESRRG belong to
the ERR subfamily, which is highly similar to the ESR subfamily
regarding its amino acid composition and function21. It has been
reported that ESRRA, ESR2 and ESR1 share 70% amino acid iden-
tity21 and ERRs share common target genes and pathways with ERs22.
Thus, it is reasonable to assume that these four miRNAs are crucial in
distinguishing ER positive and ER negative breast cancer given their

regulatory roles in ESR1-related proteins. Previously, a predictive
signature containing 6 miRNAs, i.e., hsa-miR-135b, hsa-miR-190,
hsa-miR-217, hsa-miR-218, hsa-miR-299, hsa-miR-342, was iden-
tified to be associated with estrogen signaling using artificial neural
networks23. Also, high hsa-miR-135a expression is associated with
good prognosis in ER positive tumors24 and hsa-miR-7 is one of the
four miRNAs (hsa-miR-7, hsa-miR-128a, hsa-miR-210 and hsa-
miR-516-3p) that are linked with ER positive and lymph node nega-
tive breast cancer25. Thus, this study confirmed three miRNAs from
the previous reports and identified a new miRNA (hsa-miR-365) that
plays critical roles in differentiating tumors by ER status. In addition,
hsa-miR-365 has been reported to be cooperatively regulated by SP1
and NF-kB26, where NF-kB is a known mechanism or target in ER-
or basal like breast cancer27, further confirming its differentiating
roles. The miRNAs diff-genes targeting non-ESR1 related mRNA
diff-genes and differentially expressed by the ER status are also
found. For instance, hsa-miR-224 is suppressed in the [ER1/
PR1]HER22 subgroup and elevated in TNP tumors (including
the CoreBasal subgroup) according to our results. By checking its
targets using miRWalk20 and the identified diff-genes, the DNA
repair gene, MBD428, was found to be up-regulated in [ER1/
PR1]HER22 mRNA diff-genes, and the tumor suppressor whose
loss is characteristic of basal-like tumors, INPP4B29, was found
down-regulated in TNP mRNA diff-genes. Also reversely regulated
between [ER1/PR1]HER22 and TNP (including CoreBasal)
tumors are hsa-miR-135a and hsa-miR-135b, which share the same
targets, indicating that these miRNAs, although closely related and
targeting the same genes, function in different tumor subgroups and
have different or even opposite regulatory roles in tumor progres-
sion. However, this reasoning highly depends on the accuracy of the
computational prediction, and needs to be tested in vivo.

HER2 is a critical gene in ligand-activated signalling pathways that
regulate cell proliferation and cell death30. Several genes are oppo-
sitely regulated by HER2 status (Figure 3), and have been indicated
for potential roles in controlling cell growth. For example, CDC45L is
known to be associated with proliferation31, and ASCL2 is involved in
Wnt signalling and is a putative regulator of cell growth32. Several
genes up-regulated in [ER2/PR2]HER21 tumors are closely
located with the HER2 gene at chromosome region 17q12 whose
amplification is a common mechanism for HER2 activation33, e.g.
PNMT is mapped onto the same chromosome with 17439 bp away
from and co-expressed with HER234. Genes whose deregulation is
associated with HER2 status and cell growth are also found from the
network analysis. For instance, AGTR1 is a central node in the [ER1/
PR1]HER22 subgroup (Supplementary Figure 2A) and specifically
over-expressed in such tumors as well as involved in cell growth35. No
obvious difference is observed between genes differentially expressed
in [ER2/PR2]HER21 and TNP tumors, indicating the more critical
roles of ER compared with HER2 in tumor subgroup classification.

Table 3 | Correlation between HEBCS and TCGA data

Subtypes Cora1 (mRNA) Pb1 (mRNA) LMc1 (mRNA) Pd1 (mRNA) Cora2 (miRNA) Pb2 (miRNA) LMc2 (miRNA) Pd2 (miRNA)

[ER1/PR1]HER22 0.378 ,0.001 0.34 ,0.001 0.367 0.112 0.094 0.181
[ER1/PR1]HER21 0.358 ,0.001 0.323 ,0.001 0.266 0.256 0.069 0.325
[ER2/PR2]HER21 0.171 0.012 0.123 0.05 0.469 0.038 0.11 0.085
TNP 0.133 0.03 0.137 0.035 0.391 0.089 0.056 0.37
ER1 0.37 ,0.001 0.332 ,0.001 0.315 0.048 0.081 0.093
ER2 0.15 0.002 0.133 0.003 0.439 0.005 0.084 0.053
a1Spearman correlation score between HEBCS and TCGA data sets for each mRNA diff-gene set.
b1p-value of a1.
c1Coefficient of the linear model between HEBCS and TCGA data sets for each mRNA diff-gene set.
d1p-value of c1.
a2Spearman correlation score between HEBCS and TCGA data sets for each miRNA diff-gene set.
b2p-value of a2.
c2Coefficient of the linear model between HEBCS and TCGA data sets for each miRNA diff-gene set.
d2p-value of c2.
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Figure 5 | Schematic representations of the most significant networks generated by IPA. (A) [ER1/PR1]HER22, (B) Triple negative, (C) [ER1/

PR1]HER21 and (D) [ER2/PR2]HER21. Molecules shown in red (increased expression) and green (decreased expression) identified in our set of

genes. Molecules with no coloring represent genes not present in our data set but relevant to biological pathways and incorporated to generate networks

(description and fold change associated with differentially expressed genes are described in Supplementary Tables 3 and 4).
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Overall, proliferation is an important character in differentiating
breast cancer subgroups, with poor prognosis associated with high
tumor cell proliferation36. Several proliferation markers were found
significant the diff-gene sets. For example, topoisomerase IIa
(TOP2A), a proliferation maker whose over-expression is reported
to be associated with shorter survival and HER2 amplification (or
over-expression) in breast cancer37, is a diff-gene of [ER1/
PR1]HER21 tumors in this study. Since TOP2A is the target enzyme
for top IIa inhibitors such as anthracycline, our results are consistent
with the efficacy of anthracycline treatment in [ER1/PR1]HER21

breast cancer. Indeed, cells co-amplifying TOP2A and HER2 are
reported to be highly sensitive to anthracyclines38. Similarly, other
proliferation markers such as thymidine kinase (TK)39 and mini-chro-
mosome maintenance protein 2 (MCM2)40 were found to be char-
acteristic of [ER1/PR1]HER22 and TNP tumors, respectively.
Several genes associated with cellular proliferation were found oppo-
sitely regulated between ER positive and ER negative tumors in this
study. For example, KRT5, which has a role in maintaining cell pro-
liferation potential in the basal layer of stratified epithelia and modu-
lating PI3K/Akt-mediated cell proliferation41, is down-regulated in ER
positive and up-regulated in ER negative tumors. In addition, there
are 8 diff-genes associated with cell division and 8 related to
cyclin dependent kinases or their inhibitors, most of which are over-
expressed in TNP tumors and down-regulated in [ER1/PR1]HER22

tumors (Supplementary Table 13), consistent with the positive asso-
ciation of proliferation with TNP tumor aggressiveness.

The [ER1/PR1]HER22 and [ER1/PR1]HER21 subgroups are
always grouped together regardless of the data set (HEBCS, TCGA)
used or the type of the genes (mRNA or miRNA) applied
(Supplementary Figure 1), indicating their close relationships at both
the mRNA and miRNA levels. However, the grouping of ER negative
tumors does depend on the type of the genes, i.e., looser grouping
between [ER2/PR2]HER21 and TNP tumors is observed at the
miRNA level than mRNA level. These results are consistent with
the fact that ER positive and ER negative tumors are two major
classes in breast cancer9, which could be well distinguished from each
other at both the miRNA and mRNA levels. However, fine-grained
classification within each major group may not be as clear as such
especially at the miRNA level within the ER positive tumors.
Similarly, [ER2/PR2]HER21 tumors are shown to be more closely
related to the TNP subgroup regarding their mRNA expression com-
pared with the miRNA profiling. Overall, it is not surprising that the
consistency scores within the major groups of ER positive or ER
negative tumors are higher than those within each finer-grained
subgroup, since more associations and less clear boundaries exist
among subgroups than the two major branches.

Due to the more aggressive features and lack of therapeutic targets,
triple negative and especially core basal tumors have become a key
topic that has gained particular clinical and research interest7. We
identified the core basal tumors within the TNP subgroup using
EGFR and KRT5/6 to study the properties differentiating the core
basal subgroup from TNP tumors with more aggressiveness. There
are 111 mRNAs and 16 miRNAs whose expression is aberrant only in
CoreBasal tumors (Supplementary Tables 7 and 8). Among these
mRNAs, EIF4EBP1, LRRC6, RBM34, CKS1B, ADAM15, ZBP1,
GGPS1, RCOR3, LOC149134 are amplified in 11%, 10%, 6%, 5%,
5%, 5%, 5%, 5%, 5% of the 825 breast invasive carcinomas in TCGA16,
respectively, as queried using cBio Cancer Genomics Portal (cbio-
portal.org). Network analysis shows that CoreBasal specific mRNAs
and miRNAs diff-genes are mostly related to infectious diseases,
inflammation and cell signaling as compared to TNP tumors
(Supplementary Table 10, Supplementary Figure 3), indicating the
importance of tumor-promoting inflammation in facilitating neo-
plasias to acquire core cancer hallmarks42 in this subgroup.

Signalings controlling the biomass synthesis process such as gly-
colysis or gluconeogenesis and steroid biosynthesis are associated

with the 111 mRNAs (Supplementary Table 7) differentially
expressed in CoreBasal tumors (Supplementary Table 11), suggest-
ing the crucial importance of another emerging cancer hallmark, i.e.,
reprogramming of energy metabolism, in this subgroup. NF-kB
pathway was revealed as an important signaling in two clinically
challenging subgroups27, i.e., [ER1/PR1]HER21 and TNP, as
represented by its central roles played in these networks
(Supplementary Figures 2B and 2D). NF-kB aberration has been
mostly reported in basal like breast cancer27. NF-kB is a critical
transcription factor in regulating inflammation, whose crosstalk with
glucocorticoid receptor has been proposed as the potential target for
breast cancer treatment27.

Conclusion
We study the intrinsic differences of five breast cancer subgroups
defined using the major receptor IHC markers, by analysing the
differentially expressed genes among them and the pathways and
networks within each subtype. Network analysis revealed high level
relationships and interactions among the mRNA and miRNA diff-
genes within the tumor subgroups. Further intrinsic relationships
among the four tumor subgroups were revealed at the mRNA and
miRNA levels. A novel miRNA differentiating breast tumors with
different ER status, hsa-miR-365, was identified and worth testing in
vivo. Energy metabolism reprogramming was found to play import-
ant roles in forming the aggressive nature of the CoreBasal subgroup.

Due to the limited sample size in our study, we did not aim to
define fine-grained subgroups or detect subtle differences between
breast tumors. Instead, we studied the differences among subtypes
revealed by our dataset and explored their generality using two inde-
pendent publically available datasets. On the other hand, we focused
on the major characteristics of the four subgroups defined by the
receptor immunohistochemistry markers as well as the differences
between TNP and CoreBasal tumors here, where other markers such
as those for proliferation could also be explored given data.
Altogether, our results complement other relevant investigations,
and avail functional studies of breast cancer with further trans-
lational potential for clinical use.

Methods
Tumor samples. The mRNA and miRNA HEBCS data were used for determining
differentially expressed genes. There are 183 primary breast tumor samples, among
which 151 were collected as a part of the unselected series at the department of
Oncology of the Helsinki University Central Hospital (HUCH) in 1997, 1998 and
200043 and at the department of Surgery from 2001 to 200444. The remaining 32
patients belong to an ongoing collection of additional familial breast cancer series
from the department of Clinical Genetics at HUCH. Out of the 183 samples, 115
tumors have unambiguous IHC marker information, which have been used for
subgroup determination and further analysis.

Immunohistochemical marker status determination. The information on ER and
PR status was collected from the pathology reports (positive when .10% of cells were
stained)45. HER2 status was determined by gene amplification with chromogenic in
situ hybridization (CISH) and immunohistochemical staining. In particular, samples
with #5 replications from CISH or less than 10% of the cells stained were considered
negative, those with $6 replications or over 90% cells stained were defined as positive,
with CISH data preferred46. The EGFR and CK5/6 expression were analyzed using
immunohistochemistry with more than 10% of the cells stained taken as positive and
otherwise negative9,45.

Gene expression profiling. For mRNA data, total RNA was extracted from the 183
primary breast tumors, and the samples were processed and hybridized to Illumina
HumanHT-12_V3 Expression BeadChips, containing 24660 Entrez Gene entities,
according to the manufacturer recommendations (http://www.illumina.com).
Similarly, for the miRNA profiling, the processed samples (183 patients) were
hybridized onto the Illumina HumanMI_V2 BeadChips, containing 1104 known and
predicted miRNAs. Both mRNA (GSE24450 at the Gene Expression Omnibus (GEO)
database47) and miRNA (GSE43040) expression profilings were carried out at
SCIBLU Genomics Centre, Lund University, Sweden.

Public data sets. To explore the generality of the differences identified among breast
cancer subtypes, public data sets were used to distinguish subtypes by the identified
differentially expressed genes. They are the breast cancer data set from TCGA (http://
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cancergenome.nih.gov) retrieved on 21th November 2011, and the GSE22220 data
set24 from GEO database47. We took the primary solid tumor data from the TCGA
data set (available from TCGA portal at http://tcga.cancer.gov/dataportal), which
included mRNA data on 451 samples and 17814 genes and miRNA data on 315
patients and 1046 genes. Samples with unambiguous IHC marker subgroup
classification were used in the analysis, including 433 and 311 samples from the
mRNA and miRNA data sets, respectively. The mRNA data has been produced using
Agilent 244 K Custom Gene Expression G4502A-07-3 platform, and the miRNA data
has been generated by miRNA sequencing technique using IlluminaGA_miRNASeq.
The level 3 data was used for both mRNA and miRNA data sets, i.e., the mRNA data
was lowess normalized followed by log2-transformation of the ratio between two
channels, and miRNA was normalized using appropriate method. To make the
distribution of miRNA data comparable with the mRNA data, the logarithm 2
transformation was taken before usage.

The GSE22220 data set is composed of the mRNA data (GSE22219) where the
samples from 216 patients were hybridized onto Illumina HumanRef-8_V1
expression BeadChips containing 24332 probes, and miRNA data (GSE22216) which
was generated using Illumina HumanMI_V1 BeadChips containing 734 probes for
207 patients. Both GSE22219 and GSE22216 are quantile normalized.

Identification of subgroups and their differentially expressed genes. Defining
tumor subgroups using immunohistochemical markers. Three IHC markers, i.e., ER,
PR and HER2, were used to define the breast tumors into four subgroups, i.e., [ER1/
PR1]HER22, [ER1/PR1]HER21, [ER2/PR2]HER21 and TNP tumors. Within
the TNP subgroup, we also identified the CoreBasal tumors using information on
EGFR and KRT5/6. In particular, [ER1/PR1]HER22 tumors are defined as ER
positive or PR positive tumors with negative HER2 status, [ER1/PR1]HER21

tumors are ER positive or PR positive tumors with positive HER2 status, [ER2/
PR2]HER21 tumors are those that have negative ER and PR statuses but are HER2
positive, tumors with negative ER, PR and HER2 status are defined as TNP subgroup,
among which those that are EGFR or KRT5/6 positive are defined as Core Basal
tumors. Collectively, [ER1/PR1]HER22 and [ER1/PR1]HER21 tumors are
similar to the luminal, and [ER2/PR2]HER21 and TNP are close to the non-
luminal tumors as categorized using the expression profiles.

Gene expression data preprocessing. HEBCS data was used to identify the differentially
expressed genes for each breast tumor subgroup. Microarray raw data was imported
into R48 and processed by the methods included in the BioConductor facilities. Briefly,
after quality control, the data was normalized using the quantile method49 and the
gene expression matrix was obtained by averaging the probes mapping to the same
Entrez Gene IDs. For the miRNA data, the gene expression matrix was obtained by
averaging the probes mapped to the same miRNA ID.

Identification of the differentially expressed genes. Differentially expressed miRNAs
and mRNAs between the breast cancer subgroups, as defined by IHC markers, were
retrieved using linear models followed by moderated t-test. Genes with p-value ,

0.05 after Benjamini and Hochberg post hoc correction were considered differentially
expressed. The miRNAs differentially expressed in [ER1/PR1]HER21 subgroup
were selected to have nominal p-value , 0.05. Using the average expression of the
other subtypes as the reference cohort, the genes (including both mRNA and miRNA)
with base-2 logarithmic fold change larger than 0.58 or smaller than 20.58 were
defined as differentially expressed genes (named ‘diff-genes’) for each tumor
subgroup.

The union of the differentially expressed genes for each subgroup was considered
the unified diff-genes.

Generality exploration using public datasets. The subtypes were grouped using the
unified diff-genes by two classes of machine learning methods, i.e., unsupervised
clustering and supervised classification, using two public data sets, i.e., TCGA (http://
cancergenome.nih.gov) and GSE2222024 from GEO database47. Both methods assign
objects into proper groups, which differ in that classification requires prior
information on the ground-truth categories and involves a training process for the
classifier while clustering does not.

The expression patterns of the unified diff-genes were used to cluster the samples in
the two public data sets (TCGA and GSE22220), respectively. The TCGA samples are
composed of four groups, i.e., [ER1/PR1]HER22, [ER1/PR1]HER21, [ER2/
PR2]HER21 and TNP subgroups, where the sample categories were determined
based on the four IHC markers. The GSE22220 samples can only be classified into
ER1 and ER2 tumors based on ER status given its limited IHC marker information.
Hierarchical clustering method was used here, where the distance matrix and
agglomeration method used were optimized to produce the optimal heatmaps. In
particular, the ward agglomeration method was used to generate the HEBCS mRNA
and GSE22220 miRNA clusterings, and the complete agglomeration method was
used to generate HEBCS miRNA, GSE22220 mRNA, TCGA mRNA, and miRNA
clusterings. The Euclidean distance matrix was used in all clusterings, except for the
TCGA miRNA clustering where the manhattan distance matrix was used.

To assess the generality of our diff-gene sets numerically, the predictive power of
the miRNA and mRNA unified diff-genes was evaluated by two classification
methods, i.e., support vector machine (SVM) and k-nearest neighbor (KNN). Both
SVM and KNN are supervised machine learning methods widely applied in clas-
sification. SVM constructs a set of hyperplanes in a high-dimensional space, and the
classification is achieved by the hyperplane that has the largest distance to the nearest

training data point of any class. KNN classifies an object by taking a vote of its ‘k’
nearest neighbors, and the object is assigned to the class that is voted by the majority
of the ‘k’ neighbor. In this study, k 5 10. Both methods are coupled with leave-one-
out cross validation. We use HEBCS and TCGA data sets in the classification given
that they have all the four subgroup grouping information available.

Network and pathway analysis. In order to understand the biological interactions
among the subtypes as defined, we performed network analyses of the diff-gene sets
using the Ingenuity Pathway Analysis (IPA) tool, (Ingenuity Systems, www.ingenuity.
com). We used two sets of input for IPA, i.e., the combined mRNA and miRNA diff-
genes for each subgroup and, in a separate analysis, the subgroup specific diff-genes
(including both mRNAs and miRNAs). The number of molecules shown in the
network was set to a default limit of 35, i.e., only the most important genes with the
maximum connectivity were included. The resulting networks were scored through
Fisher’s exact test, with the most significant (highest IPA scoring) networks selected.

In addition, we used DAVID50 to predict the enrichment of biological themes by
the mRNA diff-genes, which performs an enrichment analysis for a given gene list
and compares them to the KEGG pathways.
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19. Björnström, L. & Sjöberg, M. Mechanisms of estrogen receptor signaling:
convergence of genomic and nongenomic actions on target genes. Mol Endocrinol
19, 833–842, doi:10.1210/me.2004-0486 (2005).

20. Dweep, H., Sticht, C., Pandey, P. & Gretz, N. miRWalk - database: prediction of
possible miRNA binding sites by ‘walking’ the genes of 3 genomes. J Biomed
Inform 44, 839–847 (2011).

21. Chisamore, M. J., Cunningham, M. E., Flores, O., Wilkinson, H. A. & Chen, J. D.
Characterization of a Novel Small Molecule Subtype Specific Estrogen-Related
Receptor a Antagonist in MCF-7 Breast Cancer Cells. PLoS One 4, e5624 (2009).

22. Lu, D., Kiriyama, Y., Lee, K. Y. & Giguère, V. Transcriptional regulation of the
estrogen-inducible pS2 breast cancer marker gene by the ERR family of orphan
nuclear receptors. Cancer Res 61, 6755–6761 (2001).

23. Lowery, A. J. et al. MicroRNA signatures predict oestrogen receptor, progesterone
receptor and HER2/neu receptor status in breast cancer. Breast Cancer Res 11, R27
(2009).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 6566 | DOI: 10.1038/srep06566 9

http://cancergenome.nih.gov
http://tcga.cancer.gov/dataportal
http://cancergenome.nih.gov
http://cancergenome.nih.gov
www.ingenuity.com
www.ingenuity.com


24. Buffa, F. M. et al. MicroRNA associated progression pathways and potential
therapeutic targets identified by integrated mRNA and microRNA expression
profiling in breast cancer. Cancer Res 71, 5635–5645 (2011).

25. Foekens, J. A. et al. Four miRNAs associated with aggressiveness of lymph node-
negative, estrogen receptor-positive human breast cancer. PNAS 105,
13021–13026 (2008).

26. Teng, D. H. et al. MMAC1/PTEN mutations in primary tumor specimens and
tumor cell lines. Cancer Res 57, 5221–5225 (1997).

27. Ling, J. & Kumar, R. Crosstalk between NFkB and glucocorticoid signaling: A
potential target of breast cancer therapy. Cancer Lett 322, 119–126, doi:DOI
10.1016/j.canlet.2012.02.033 (2012).

28. Petronzelli, F. et al. Biphasic kinetics of the human DNA repair protein MED1
(MBD4), a mismatch-specific DNA N-glycosylase. J Biol Chem 275, 32422–32429
(2000).

29. Fedele, C. G. et al. Inositol polyphosphate 4-phosphatase II regulates PI3K/Akt
signaling and is lost in human basal-like breast cancers. PNAS 107, 22231–22236
(2010).

30. Olayioye, M. A. Update on HER-2 as a target for cancer therapy: intracellular
signaling pathways of ErbB2/HER-2 and family members. Breast Cancer Res 3,
385–389 (2001).

31. Pollok, S., Bauerschmidt, C., Sänger, J., Nasheuer, H. P. & Grosse, F. Human
Cdc45 is a proliferation-associated antigen. FEBS J 274, 3669–3684 (2007).

32. Jubb, A. M. et al. Achaete-scute like 2 (ascl2) is a target of Wnt signalling and is
upregulated in intestinal neoplasia. Oncogene 25, 3445–3457 (2006).

33. Kauraniemi, P. & Kallioniemi, A. Activation of multiple cancer-associated genes
at the ERBB2 amplicon in breast cancer. Endocr Relat Cancer 13, 39–49 (2006).

34. Dressman, M. A. et al. Gene expression profiling detects gene amplification and
differentiates tumor types in breast cancer. Cancer Res 63, 2194–2199 (2003).

35. Atkinson, J. M. et al. An integrated in vitro and in vivo high-throughput screen
identifies treatment leads for ependymoma. Cancer cell 20, 384–399, doi:10.1016/
j.ccr.2011.08.013 (2011).

36. Jarzabek, K., Laudanski, P., Dzieciol, J., Dabrowska, M. & Wolczynski, S. Protein
kinase C involvement in proliferation and survival of breast cancer cells. Folia
Histochem Cytobiol 40, 193–194 (2002).

37. Depowski, P. L. et al. Topoisomerase II alpha expression in breast cancer:
Correlation with outcome variables. Modern Pathol 13, 542–547, doi:DOI
10.1038/modpathol.3880094 (2000).

38. Jarvinen, T. A. et al. Amplification and deletion of topoisomerase IIalpha associate
with ErbB-2 amplification and affect sensitivity to topoisomerase II inhibitor
doxorubicin in breast cancer. Am J Pathol 156, 839–847 (2000).

39. Colozza, M. et al. Proliferative markers as prognostic and predictive tools in early
breast cancer: where are we now? Ann Oncol 16, 1723–1739, doi:10.1093/annonc/
mdi352 (2005).

40. Rosenwald, A. et al. The proliferation gene expression signature is a quantitative
integrator of oncogenic events that predicts survival in mantle cell lymphoma.
Cancer cell 3, 185–197 (2003).

41. Alam, H., Sehgal, L., Kundu, S. T., Dalal, S. N. & Vaidya, M. M. Novel function of
keratins 5 and 14 in proliferation and differentiation of stratified epithelial cells.
Mol Biol Cell 22, 4068–4078 (2011).

42. Hanahan, D. & Weinberg, R. A. Hallmarks of Cancer: The Next Generation. Cell
144, 646–674, doi:DOI 10.1016/j.cell.2011.02.013 (2011).

43. Syrjakoski, K. et al. Population-based study of BRCA1 and BRCA2 mutations in
1035 unselected Finnish breast cancer patients. J Natl Cancer Inst 92, 1529–1531,
doi:DOI 10.1093/jnci/92.18.1529 (2000).

44. Fagerholm, R. et al. NAD(P)H:quinone oxidoreductase 1 NQO1*2 genotype
(P187S) is a strong prognostic and predictive factor in breast cancer. Nat Genet 40,
844–853 (2008).

45. Eerola, H. et al. Histopathological features of breast tumours in BRCA1, BRCA2
and mutation-negative breast cancer families. Breast Cancer Res: BCR 7, R93–100
(2005).

46. Tommiska, J. et al. The DNA damage signalling kinase ATM is aberrantly reduced
or lost in BRCA1/BRCA2-deficient and ER/PR/ERBB2-triple-negative breast
cancer. Oncogene 27, 2501–2506, doi:DOI 10.1038/sj.onc.1210885 (2008).

47. Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene
expression and hybridization array data repository. Nucleic Acids Res 30, 207–210
(2002).

48. Team, R. D. C. R: A language and environment for statistical computing. (R
Foundation for Statistical Computing, 2009).

49. Bolstad, B. M., Irizarry, R. A., Astrand, M. & Speed, T. P. A comparison of
normalization methods for high density oligonucleotide array data based on
variance and bias. Bioinformatics 19, 185–193, doi:DOI 10.1093/bioinformatics/
19.2.185 (2003).

50. Huang da, W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools:
paths toward the comprehensive functional analysis of large gene lists. Nucleic
Acids Res 37, 1–13, doi:10.1093/nar/gkn923 (2009).

Acknowledgments
We thank Tuomas Heikkinen, Päivi Heikkilä, Kristiina Aittomäki, Carl Blomgvist, Dario
Greco and Heli Nevanlinna for providing HEBCS data and their comments. This work was
supported by the National Natural Science Foundation of China (Grant number 31471251),
Academy of Finland (132473), Helsinki University Central Hospital Research Fund, the
Sigrid Juselius Foundation, and the Finnish Cancer Society and the European Community’s
Seventh Framework Programme under grant agreement 223175
(HEALTH-F2-2009-223175).

Author contributions
X.D. designed, implemented the study, and prepared the draft. A.C. helped in formatting.
A.C. and Z.B. are involved in finalizing the manuscript. All authors have read and approved
the final manuscript.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/
scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Dai, X., Chen, A. & Bai, Z. Integrative investigation on breast cancer
in ER, PR and HER2-defined subgroups using mRNA and miRNA expression profiling. Sci.
Rep. 4, 6566; DOI:10.1038/srep06566 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated
otherwise in the credit line; if the material is not included under the Creative
Commons license, users will need to obtain permission from the license holder
in order to reproduce the material. To view a copy of this license, visit http://
creativecommons.org/licenses/by-nc-sa/4.0/

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 6566 | DOI: 10.1038/srep06566 10

http://www.nature.com/scientificreports
http://www.nature.com/scientificreports
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

	Integrative investigation on breast cancer in ER, PR and HER2-defined subgroups using mRNA and miRNA expression profiling
	Introduction
	Results
	Differentially expressed genes in each subgroup
	Generality of the differentially expressed genes
	Intrinsic relationship among subtypes revealed by differentially expressed genes
	Network and pathway analysis using differentially expressed genes among subtypes

	Discussion
	Conclusion
	Methods
	Tumor samples
	Immunohistochemical marker status determination
	Gene expression profiling
	Public data sets
	Identification of subgroups and their differentially expressed genes
	Defining tumor subgroups using immunohistochemical markers
	Gene expression data preprocessing
	Identification of the differentially expressed genes
	Generality exploration using public datasets

	Network and pathway analysis

	Acknowledgements
	References


