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The mechanism of the online user preference evolution is of great significance for understanding the online
user behaviors and improving the quality of online services. Since users are allowed to rate on objects in
many online systems, ratings can well reflect the users’ preference. With two benchmark datasets from
online systems, we uncover the memory effect in users’ selecting behavior which is the sequence of qualities
of selected objects and the rating behavior which is the sequence of ratings delivered by each user.
Furthermore, the memory duration is presented to describe the length of a memory, which exhibits the
power-law distribution, i.e., the probability of the occurring of long-duration memory is much higher than
that of the random case which follows the exponential distribution. We present a preference model in which
a Markovian process is utilized to describe the users’ selecting behavior, and the rating behavior depends on
the selecting behavior. With only one parameter for each of the user’s selecting and rating behavior, the
preference model could regenerate any duration distribution ranging from the power-law form (strong
memory) to the exponential form (weak memory).

ollective behaviors have been investigated for decades and have been proved to be regular more than

random. Especially in recent years, thanks to the information technology and the Internet, physicists and

sociologists have uncovered many remarkable statistical properties and patterns of collective behaviors
with massive data. The human mobility has been found following reproducible and predictable patterns' . The
communication pattern shows the bursty nature, exhibiting heavy-tailed distribution for the inter-event time*”.
Many models have been proposed to describe the patterns and fundamental mechanisms of those collective
behaviors, such as the task-based queuing model**® and the interest-driven model'® describing the origin of the
bursty nature, the radiation model"' describing the migration and mobility patterns. Numerous scientists are
going further and deeper on the road of understanding the collective behavior’s mechanism.

Among these collective behaviors, the online user behavior got more and more attention'>'*"* with the rapid
development of Internet. In addition to the bursty nature of inter-event time, efforts also have been paid to
investigate the behavior itself, such as the social influence of the decision making when installing online applica-
tions'>"* and the anchoring bias of online rating'. Although the collective behavior’s inter-event time exhibits
high-burstiness-low-memory property**, evidences of memory effect of the online user behavior itself have been
brought out. The Markovian process is widely used to model the users’ web browsing patterns'>'¢, assuming that,
the user’s next action depends only on his/her current action. Actually, we can consider this kind of Markovian
type patterns having short memories because there are correlations between every two continuous actions of a
user. Furthermore, using the method of detrended fluctuation analysis, Rybski et al.'”'® found the long-term
memory of users’ online communicating frequency.

Nowadays, the Internet does lots of favor for our daily life. The most frequent action of our online behavior is
selecting, which is a reflection of our online preference, such as selecting commodities, music or movies. Thus, the
memory effect representing the predictability of users’ online preference is of great significance for developing the
recommendation systems*>"*” and providing better online service. But the question is, what is the mechanism
governing our online preference? A related work refers to the recent study of the users’ commodity-browsing
behavior'. Zhao et al. found that, when browsing commodities, the intervals of users staying in a single catalog
present a power-law distribution, which indicates the users tend to continuously browse similar commodities. On
the other hand, users may return to historical catalogs after some specific intervals. This kind of online com-
modity-browsing behavior has memory effect and is quite predictable which is similar to the human mobility
behavior®. In addition to the memory effect of transferring from a catalog to another, are there any correlations
between every two continuous actions or how do the users feel like their selections? Our goal here is to uncover
and model the local correlations of the dynamics of online user preference when selecting and evaluating objects.
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As many online systems allow users to deliver ratings on objects
which could largely reflect how the user feels about the objects™,
we adopt another method besides the catalogs to evaluate objects
in a more detailed way.

Data

Two datasets, namely MovieLens and Amazon, are investigated in
this paper. The MovieLens data consists 698054 ratings delivered by
5547 users on 5850 movies during 1686 days. The Amazon data
consists 1406147 ratings of 624271 users rated on 86087 items. We
uniformly call both the movies in the MovieLens data and the items
in the Amazon Data as objects in this paper. Each rating in both
datasets is an integer ranging from 1 to 5 reflecting how the user feels
like the objects’ worth, taste and so on. The higher a rating is, the
better the user evaluates the object. Then, we could also define the
quality of an object as the average value over all ratings the object got
in the whole dataset. Thus, we can get two messages from the user’s
behavior: the quality of the object he/she selects and the value of the
rating. Those two messages can be regarded as the user’s selecting
behavior and rating behavior respectively. Consequently, we invest-
igate the Selecting Series (SS) which is the sequence of the object
qualities of each user’s choice (a typical example is shown in Fig. 1
(d)) and the Rating Series (RS) which is the sequence of each user’s
ratings (a typical example is shown in Fig. 1 (a)). These two series are
sequences of users’ behavior in order of time. We will firstly uncover
and model the self-correlation of users’ SS and RS ignoring the exact
inter-event time, and then discuss the inter-event time’s effect on the

self-correlation. It should be noted that, while the MovieLens data is
ordered by seconds, the Amazon data is ordered by days. Thus, a few
records of Amazon data involved in the situation that, at the same
day, a user selects several objects which cannot be ordered by time
according to the data. Against this kind of situations, we arrange the
records of a specific user occurring on the same day in random order.
Furthermore, the activity level L of each user, i.e. the number of
objects the user has selected, is different. In order to ensure the
accuracy of the results, we only take users with L = 100 into
consideration.

Methods

To evaluate the memory effect of the user’s SS and RS, we use the method of
Correlation Coefficient which is also used by Goh and Barabasi**. The memory M is
defined as

M=L§<ﬁ*ml)(ﬁ+1*mz)’ (1)
L—1 e 010,
where r; is the ith value in the user’s series, and m,(m,) and ¢,(0,) are the mean and
standard deviation of the sample series {ry,r2, - - - ,rg—1 } ({r2,73, - - - .7k }) respectively.
Actually, the correlation coefficient method could measure the correlation between
two continuous values in a single sequence. Thus, the correlation coefficient could
well describe the local memory effect. With this definition, the memory M has a value
in the range (—1, 1) and is positive when a high(low) value in the series tends to be
followed by a high(low) one, and it is negative when a high(low) value in the series
tends to be followed by a low(high) one. Note that, the present paper aims to study the
users’ memory effect on the values of ratings and qualities, not the inter-event times*
and the object catalogs'.

There are also other methods evaluating the memory effect of series, for example,
by using detrended fluctuation analysis'”'®* to detect the Hurst exponent™ of the
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Figure 1| A typical user’s RS, SS and duration distribution p(4) from the MovieLens data. This user’s activity level is L = 464, and his/her memory
effect is Mgs = 0.216 and Mgs = 0.471 for RS and SS respectively. (a), (d) A part of the user’s whole RS and SS respectively. While the values in RS are
integers, SS consists of float values ranging from 1 to 5. Regarding those values which is greater than the mean value as positive bars and those which is less
than the mean value as negative bars, one can get the subplot (b) and (e) for RS and SS respectively. While every user may have many memories, we define
in this paper that, a memory ends only when the bar in his/her series changing from positive (negative) to negative (positive). Then, the memory’s

duration 4 is the length of the series involved in that memory, as typical marks shown in subplot (b) and (e). (¢), (f) The memory duration distribution

p(A) of the typical user for RS and SS respectively.
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Figure 2 | The distributions of memory M for the MovieLens and the Amazon datasets. Subplots (a) and (b) show the distributions of RS and SS for the
MovieLens data respectively, in which, the memory (Mgs) = 0.19 and (Mss) = 0.36. Subplots (c) and (d) show the distributions of RS and SS for the
Amazon data respectively, in which, the memory (Mgs) = 0.18 and (Mss) = 0.17. As to the null model, the memory M distribute in a narrow range
and the mean value (M) = 0. Comparisons between the empirical data and the null model report the existence of the memory effect.

series. However, the length of series should reach 10* to guarantee the estimation of
Hurst exponent™ and furthermore, the Hurst exponent is to describe the long-term
memory. In this paper, the length of series is of scale 10, and we mainly focus on the
local correlation, thus, we didn’t use the method of Hurst exponent.

Using the correlation coefficient method, the user shown in Fig. 1 has memory
effect Mrs = 0.216 and Mgs = 0.471 for RS and SS respectively. The positive value of
this user’s memory effect Mgs and Mgs means that, when the user selected a
high(low)-quality object, he/she would continuously select high(low)-quality objects,
and further, when he/she delivered a high(low) rating, he/she would continuously
deliver high(low) ratings. In other words, a memory of this user’s preference may last
for several rounds of actions. But the question is, how long this kind of memory could
last? We define in this paper that, when the value in a user’s series changing from
less(greater)-than-mean to greater(less)-than mean, the user’s current memory ends
and his/her next memory begins. Thus, a user may has many memories, and we
further define the memory duration 4 as each memory’s length, i.e., the number of
continuous qualities or ratings which are greater(less) than the mean value of the
user’s SS or RS, as shown in the Fig. 1 (b) and (e). To give an example, for a specific
user, one of his/her memory’s duration is 2 = 4 for RS means that, he/she continu-
ously delivered 4 ratings which are all greater than the mean value of his/her RS. Note
that, the summation of the memory durations over all of a user’s memory equals to the

L 5. . e
length of the behavior sequence E ., 4 =L, where ;is the duration of the user’s ith
i=

memory and k, is the number of user #’s memories. Counting every memory
duration, we can calculate the probability p(1) of a memory with duration 4, and the
duration distributions for RS and SS of the typical user are reported in

Fig. 1 (c) and (f).

Empirical Results

For each user, we calculate the memory M of his/her SS and RS
respectively according to Eq. (1). The distribution of memory M is
shown in Fig. 2 together with that of the null model. The null model is
the case in which we shuffle each user’s series into random order to
remove the temporal behavior, so that the users’ selecting and rating
patterns no longer exist. The mean value of the memory M of RS and
SSis0.19 and 0.36 respectively for the MovieLens data and is 0.18 and

0.17 respectively for the Amazon data. This result indicates the exist-
ence of the memory effect of users’ both rating and selecting beha-
vior. On the other hand, the memory M of the null model has a mean
value of 0. We can conclude from the comparisons between the null
model and the empirical data that, the memory effect of users’ select-
ing and rating behavior comes from their own temporal behavior
patterns not the random mechanism.

As shown in Fig. 1 (c) and (f), the duration distributions p(4)
approximately exhibit power-law decays on the individual level.
That is to say, there are probabilities occurring memories with very
long duration. For the typical user in Fig. 1, whose activity is L = 464,
the memories may last for about 30 rounds of actions for both rating
and selecting behavior. Actually, on the individual level, users with
different activity levels L all approximately have the power-law dura-
tion distribution (Fig. S1). On the collective level, the duration dis-
tribution p(A) also exhibits the power-law form, as shown in Fig. 3.
Thinking of the totally random case, the probability of a user select-
ing a high(low)-quality object at each time is 0.5. Thus, the theor-
etical duration ditribution should be p(1) = 0.5* which is the
exponential form. As shown in Fig. 3, the duration distributions of
the shuffled series for both the MovieLens and the Amazon data are
similar to that of the totally random case, following the exponential
form. That is to say, once the temporal pattern is removed, users’
online behaviors would perform high randomness. On the other
hand, the empirical results are very different with the totally random
case, with power-law form duration distribution which suggests that,
the sequence of users’ selecting and rating behavior is self-correlated
rather than random. Note that, although the probability of the mem-
ory having a long duration is small (for example, p(4 > 10) = 0.042
for MovieLens’ SS), the amount of user’s actions involved in a long
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Figure 3 | Memory duration distributions p(/) of the empirical data, the
null model, and the totally random case for the MovieLens data (above)
and the Amazon data (bottom). While duration A of the empirical data
follows the power-law distribution, that of the null model approximately
follows the exponential distribution, which is very similar with the totally
random case in which p(1) = 0.5% Note that, the shuffled RS partly
deviates from the totally random case in both datasets. The reason lies in
the fact that, the values in RS are integers ranging from 1 to 5, with only 5
options, and some users tend to deliver the same ratings to whatever he/she
selected without consideration. Thus, some users’ RS may consist of large
amount of same values which would lead to the continuous same values for
the shuffled RS.

duration memory is apparent. About 28.3% of the users’ actions
involved in memories with duration larger than 10, which are quite
long memories (Fig. S2).

Preference Model

Results from the empirical data reported the memory effect of users’
selecting and rating behaviors. Modelling the mechanism is cru-
cial for understanding the dynamic of users’ online preference.
However, the classical models of human dynamics in the literatures
mainly focused on the mechanism of the heavy-tailed inter-event
time distribution. One of the most well-known models is the task-
based queuing model*. While the model well explained the origin of
the heavy tails of the inter-event time distribution, it cannot gen-
erate the memory effect observed in the present paper (See
Supplementary Information for detail). It is reasonable that, the
queuing model aims to describe the time distribution and the
human behavior’s time distribution in general has no memory
effect®. Thus, to gain insights to the memory effect and the
power-law duration distribution of online users’ preference, we
develop a preference model in which the users’ selecting and rating
behaviors are modeled in two steps.

1) Selecting behavior. Suppose a user’s next selection depends on
the current selection, which results in the memory effect of the user’s
SS. Thus, we use the Markovian process to model the selecting beha-
vior mechanism. The Markovian process in users’ selecting behavior
is the process in which the users’ current selection with quality g;
transfers to the next selection with quality g;+;. The empirical stat-
istics of the bias dss = g;+1 — g; are shown to follow Gaussian forms
with expectations ygs = 0 (Fig. S3). Furthermore, the standard devia-
tions are ogg’’ =0.563 and g5 =0.701 for the MovieLens and the
Amazon data respectively. Thus, the transition probability distri-
bution of the Markovian process should be a Gaussian distribution
with expectation ¢t = g; and standard deviation ogs. Then, the quality
of the user’s next selection g;+; comes from this Gaussian distri-
bution, i.e. the probability of the next object’s quality being g;+; is

given by
_ (qurI;qi)z)‘ (2)
205

1

f(ql+1) Uss\/ﬁexp(

2) Rating behavior. We assume that, while the selecting behavior is
self-correlated between current and next actions, the memory effect
of the rating behavior origins in the selecting behavior. The value of
rating r; only depends on the quality g; of the selected object. Similar
with the selecting bias, the rating bias dgg = r; — ¢; also exhibit
Gaussian distributions for both the MovieLens and the Amazon data
(Fig. S3). The expectations are fipg" =0 and g =0.056 and the
standard deviations are ogs’ =0.961 and oyg" =0.964 for the
MovieLens and the Amazon data respectively. Thus, we can also give
the probability of the rating the user deliver on a object with quality g;
being r; as

firn= L ewp (- 0. 6)

The quality of an object could be a float value ranging from 1 to 5,
and the rating r; is an integer. In those two stochastic processes, we
continuously get random values until the value locates in the range [1,
5]. In addition, for the RS, we round the value into integer. When
generating series, with respect to the empirical data, we generate series
with length L; for each of the user i, i.e. we remain the number of users
and the activity levels of each of them. As to the initial condition g,
we give a mid-value of the range of quality [1, 5], i.e.,, go = 3.

There are two free parameters left in the preference model, that is
the standard deviations of the two Gaussian distributions ogs and
ars. Despite that the statistics have shown the empirical value of the
standard deviation g5 and o g for the MovieLens and Amazon data
(Fig. S3), those two parameters could control the strength of the
memory effect and the distributions of the memory duration p(4).
We simulate with different values of g and ogg for the MovieLens
system, and the distributions of the memory duration p(4) is shown
in Fig. 4. When those two parameters are small, the memory duration
of both SS and RS exhibit a well power-law distribution which is
similar to the empirical pattern. As the parameters increase, the
distributions gradually change from the power-law form to the expo-
nential form and become more and more similar with the totally
random case. The reason lies in the fact that, when the standard
deviation is small, a burst jump of the values has little chance to
occur, i.e. the memory effect is stronger. On the other hand, if the
standard deviation is large enough, the Gaussian distribution could
be approximately considered as the uniform distribution which leads
to the totally random case in which p(1) = 0.5%. Results of Fig. 4
indicate that, the standard deviations of the SS’s and RS’s bias indeed
could control the distribution of the memory duration. When simu-
lating with the empirical values of 6gs and oys for the MovieLens and
Amazon data respectively, the memory duration distributions of the
simulation consist with that of the empirical data (Fig. S4). It means
that, the preference model can well describe the emergence of heavy-
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Figure 4 | Memory duration distributions p(4) of SS and RS from the
simulations of preference model with different values of parameter o
and ogs respectively. When simulate the preference model for the RS, we
arrange the standard deviation of SS’s bias as g g5 = 0.5. As the results show,
for both SS and RS, the smaller the standard deviation is, the heavier the
distribution’s tail would be. On the other hand, as the standard deviation
increases, the distribution gradually changes from the power-law form to
the exponential form, and is more and more similar to the distribution of
the totally random case.

tailed distribution in the memory duration. But on the other hand,
the preference model has deviation from the empirical data in the
distributions of memory M for users’ both SS and RS. The compar-
ison between the empirical data and the preference model indicates
that, users’ selecting behavior is approximately a Markovian process
and that the rating behavior mainly depends on the selecting beha-
vior. Briefly speaking, when a user selects an object with quality g; at
this time, the quality of the next object g, ; is probably around g;, and
the user further tend to deliver a rating which is also around the
quality of the object. In addition, the memory effect of users’ rating
behavior origins in the selecting behavior.

We can reproduce any duration distributions from power-law to
exponential form with just one parameter for each of the selecting
and rating behavior. The standard deviation could largely explain the
users’ memory effect and the power-law decay of duration distri-
bution. However, as users with different activity levels have in general
different properties®>*>~**, the parameter may be various from users
to users. Actually, the activity level indeed affects the memory effect
(Fig. S5). In the MovieLens system, high-activity users generally have
stronger memory effect and lower deviation parameter g5 and ogs.
But in the Amazon system, the activity level is uncorrelated with the
users selecting behavior. For the rating behavior, high activity level
would approximately leads to strong memory effect and small devi-
ation parameter org. Overall, we just need to fit different parameters

0ss and ogs to describe and reproduce different users’ selecting and
rating behavior.

Effect of the Inter-event Time

Numerous investigations proved that, the heavy-tailed distribution
of inter-event time was one of the most important properties of
collective behavior*'**. As the present paper aims to study the cor-
relations between online users’ current and next actions, the inter-
event time between those two actions may has important influence.
As Fig. 5 (a) and (d) show, the distributions of inter-event time for
both MovieLens and Amazon system exhibit power-law forms which
have been observed in many classical researches. For a user whose
activity level is L, there would be L — 1 inter-event times 7. After
averaging each user’s inter-event times, we show the correlation
between user’s average inter-event time (7) and their memory M as
shown in subplot (b) and (e). In MovieLens dataset, users who have
long average inter-event time generally have weak memory effect and
those whose average inter-event times are short have strong memory
effect. It is easy to understand that, while there would be a strong
correlation between two actions, if one occurred immediately after
another, the correlation would be very weak if two actions have very
long inter-event time. However, for Amazon system, the users’ mem-
ory effect is approximately uncorrelated with their average inter-
event time. To uncover the time effect on the preference model, we
calculate the conditional standard deviation ogs(7). Each pair of
selecting behaviors with inter-event time t has bias dgs(t), and
ass(7) is the standard deviation of dgs(t). Figure 5 (c) and (f) shows
the correlation between ogs(7) and 7. It is surprising to find that, the
MovieLens and Amazon system has different reactions toward the
inter-event time in the parameter o45(7). As we reported, as5(7) could
reflect the strength of the memory effect. Subplot (c) shows that, the
longer the inter-event time is, the weaker the memory effect would be
in the MovieLens system. But for the Amazon system which is shown
in subplot (f), the situation is totally different that, the longer the
inter-event time is, the stronger the memory effect would be. The
difference of the inter-event time’s effect between those two datasets
may lies in the fact that, MovieLens is a system in which users watch
and rate movies, but Amazon is a system in which users buy items. In
the Amazon dataset, we observed the phenomenon that users might
select many same objects. Those repeated objects could be consum-
ables that, users may buy a new one after a specific time interval.
Furthermore, the evaluation of a user to a very object is in general
similar. This may be the reason that, long inter-event time brings
strong memory effect.

Discussion
Considering the significance of the online user preference for the
understanding of collective behavior pattern and the developing of
online systems, we investigated the memory effect of users’ selecting
and rating behavior with the method of Correlation Coefficient. The
mean value of memories M for SS and RS of the empirical data is 0.36
and 0.19 for the MovieLens dataset and 0.17 and 0.18 for the Amazon
dataset respectively, indicating that, the complex online user pref-
erence dynamics have memory effect. Furthermore, we found the
distribution of the memory duration, which was used to describe the
memory’s length, exhibiting scaling law with heavy-tailed power-law
form. To model the pattern and the fundamental mechanism of the
online user preference, we utilized a Morckovian process to model
the selecting behavior and supposed the rating behavior totally
depending on the selecting behavior. The distribution of the memory
duration of the preference model coincided with the empirical data.
Just one parameter for each of the RS and SS is needed to reproduce
any duration distribution ranging from the power-law to exponential
form.

Results in this paper indicated that, the Markovian process could
largely explain the memory effect of users’ online selecting behavior,
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Figure 5 | Inter-event time distribution p(z) and its effects on the memory effect M for the MovieLens and the Amazon data. Subplots (a) and (d)
report the inter-event time distributions on the collective level. As has also been reported in many classical researches, the inter-event time exhibits heavy-
tailed power-law distributions. Subplots (b) and (e) show the correlation between memory effect M and the user’s average inter-event time (t). Subplots
(c) and (f) show the correlation between the deviation parameter o and inter-event time 7.

and the memory effect of the rating behavior origins in the selecting
behavior. In a recent study', Yang ef al. found a correlation between
the quality of the former selection g;; and the current rating r;, that,
when g;_ is very high(low), r; would also be high(low). This anchor-
ing bias phenomena can be explained by the present paper. Actually,
when ¢, is high(low), the quality of the current selection g; would
also be high(low) according to the memory effect. Furthermore, as
the rating behavior largely depends on the selecting behavior, the
current rating r; would consequently also be high(low).

However, we cannot ensure the effect of inter-event time and the
activity level. As active users have in general shorter inter-event
times, we could not know whether the activity level or the inter-event
time or both of them lead to the heterogenous memory effect M
shown in Fig. 5 (b) and (e) and Fig. S5 (a) and (d). In addition, the
MovieLens and the Amazon datasets exhibit differences in some
results such as the activity’s and inter-event time’s effect on the
memory and the preference model. What caused the different pat-
terns for those two systems is an important question. As we have
introduced that, the MovieLens is a system in which users watch and
rate movies, but the Amazon is a system in which users buy items.
While watching movies is an entertainment behavior, buying items
would cost money. Users’ selecting and rating behaviors are based on
different purposes and considerations in these two systems. Thus, the
question is, do the patterns vary for different types of behaviors? Are
there several universal classes of systems for the users’ online
preference?

Absolutely, our effort is still far from totally understanding the
online user behavior patterns. When modeling the users’ selecting
behavior, we utilized the Morckovian process in which the user’s

next selection depends only on his/her current selection. We
didn’t consider the possibility that, the next selection might be
correlated with not only the current one but also former several
ones. This is a kind of very short and local correlation, but
whether there is a long-term correlation and whether it is possible
for a user to repeat some selecting behavior fragments are still
open questions. In addition, many other factors could affect user’s
selecting and rating behavior, such as the social influence'>" or
the recommendation list. Another problem is, the quality (average
rating) is still not enough to describe all the aspects of an object.
It's reasonable to consider other aspects seriously such as the
popularity.
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