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A topological insulator is a novel state of quantum matter, characterized by symmetry-protected Dirac
interfacial states within its bulk gap. Tremendous effort has been invested into the search for topological
insulators. To date, the discovery of topological insulators has been largely limited to natural crystalline
solids. Therefore, it is highly desirable to tailor-make various topological states of matter by design, starting
with but a few accessible materials or elements. Here, we establish that valley-dependent dimerization of
Dirac surface states can be exploited to induce topological quantum phase transitions, in a binary
superlattice bearing symmetry-unrelated interfacial Dirac states. This mechanism leads to a rich phase
diagram and allows for rational design of strong topological insulators, weak topological insulators, and
topological crystalline insulators. Our ab initio simulations further demonstrate this mechanism in [111]
and [110] superlattices of calcium and tin tellurides. While our results reveal a remarkable phase diagram for
the binary superlattice, the mechanism is a general route to design various topological states.

A
topological insulator (TI)1–3 is an insulating material whose electronic Hamiltonian cannot be adiabat-

ically deformed into that of an atomic insulator. Three primary types of TIs are known to occur in
condensed matter materials, namely, strong and weak topological insulators (STI and WTI, respectively)

protected by time-reversal symmetry4,5, as well as topological crystalline insulators (TCI) protected by space
group symmetry6,7. Characteristics of these TIs are gapless Dirac states on their interface with a normal insulator
(e.g., vacuum). For STI and WTI, respectively, there are odd and even numbers of surface/interface Dirac points,
according the Z2 classification scheme4,5. The SnTe material class is a representative TCI based on mirror
symmetry, and is characterized by the existence of even number of surface states on high-symmetry surfaces.
These symmetry-protected Dirac interfacial states give rise to the robust quantum transport, and offer promising
routes to novel devices with potential applications in energy-efficient electronics and topological quantum
computing. Therefore, the conceptual importance and application potential greatly promote the search of TIs1–8.

However, the discovery of various TI phases relies on the natural crystalline solids to a great extent. It is highly
desirable to be able to design various topological phases based on basic principle and available materials growth
techniques. In particular, although one WTI has been experimentally synthesized, its surface states were not
accessible to experimental probes9. Artificially created superlattices provide a natural arena for this endeavour,
which is well provided with chemical, structural, orbital, and spin degrees of freedom. Indeed, the coupling of a TI
surface state with a second material is especially intriguing. Proximity coupling the TI surface state to an s-wave
superconductor breaks U (1) gauge symmetry yielding a Majorana excitation10. A magnetic proximity effect can
break time-reversal symmetry producing a chiral edge state11,12. It has recently been proposed that topological
phases may emerge at the interfaces of oxide materials in two-dimensional quantum-well or thin film hetero-
structures13–15. In the present paper, we analyze the band topology in a three-dimensional binary superlattice with
multiple symmetry-unrelated interfacial Dirac states. We show that various TIs can be rationally designed from
valley-dependent interfacial-state dimerization. Using density-functional theory, we further demonstrate that a
binary superlattice of calcium and tin tellurides can be fashioned into STI, WTI and TCI. In particular, the [110]
superlattices of calcium and tin tellurides can host weak TI phases, which have topological surface states on the
cleavage surface perpendicular to the [110] direction.

We begin with an intuitive picture of the interfacial state dimerization, analogous to the Su-Shrieffer-Heeger
model of polyacetylene16. Consider a STI with a single Dirac point in its surface state per surface or interface. The
idea is to grow a superlattice of alternating layers of the STI and a non-magnetic spacer normal insulator (NI), as
shown in Fig. 1a. When the widths of parent and spacer layers are finite, there are two kinds of interlayer
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hoppings, t and t9, between the Dirac interfacial states. They account
for the covalent interactions between the pair of interfacial states,
respectively, through the parent STI layer and through the spacer
layer. There appears to be a delicate interplay between t and t9. In the
limit of t?t’, the interfacial states dimerize through the parent TI
layers, annihilating the Dirac nodes at finite truncation of the super-
lattice. In the opposite limit of t=t’, interfacial states dimerize
through NI layers, and Dirac surface states are still present on out-
ermost surfaces, leaving the superstructure a three-dimensional STI.

Now we consolidate the above dimerization picture in an effective
Hamiltonian to describe the low-energy electronic states of the
superlattice. Before introducing the interlayer couplings (t, t9), we
describe a single Dirac interfacial state with a generic Dirac
Hamiltonian, Hv(k) 5 cvqv ? s, where qv 5 (k 2 kv)jj is the crystal
momentum parallel to the cleaved surface, cv is the Fermi velocity,
and s are the Pauli matrices of spin or pseudospin. We include an
index v in Hv(k), in anticipation of multiple Dirac valleys on one
interface. Taking the direction perpendicular to the interfaces of the
superlattice to be the z-direction and using the interfacial states, ju "æ,
ju #æ, jl "æ, and jl #æ as bases, the bulk electronic structure of the
superlattice is determined by

Hv kð Þ~EvztzHvztx tvzt’v cos kzð Þztyt’v sin kz, ð1Þ

where tz 5 6 denote the upper (u) and lower (l) interfaces of a TI
layer, " and # denote the two components of the spin or pseudospin
and Ev reflects the possible particle-hole asymmetry of the TI. We
have assumed that the superlattice possesses an inversion symmetry
for simplicity, i.e., juæ and jlæ are related by a space inversion opera-
tion P̂~tx. Notice that when there is only a single valley, the model
reduces to that of Burkov and Balents, who considered a magnetically
doped superlattice of a STI with a normal insulator spacer for achiev-
ing Weyl semimetallic phases17. The band dispersion of Hamiltonian

(1) reads e~Ev+ c2
vq2

vzt2
v zt’2v z2tvt’v cos kz

� �1=2
, with a band gap

2 tvj{ t’j v

�� ��. This band gap closes at kz 5 0 (p) when t’v~{ zð Þtv ,
which indicates topological quantum phase transitions. The topo-
logical classification depends on the relative strengths of jtvj and t’vj j,
leading to two possible surface-state dimerization schemes, in agree-
ment with the limiting cases shown in Fig. 1b and c. Therefore,
tuning t’v=tvj j represents a continuous pathway to convert a non-
trivial TI into a trivial NI.

When multiple Dirac interfacial states are present, the manifesta-
tion of interlayer coupling becomes more profound. An event of
band inversion corresponds to a topological quantum phase trans-

ition, accompanied by the gap closure. Given that the surface states of
the parent TIs are located at the time-reversal invariant (TRI) points
in the kjj-space of the superlattice, and the Hamiltonian (1) has
inversion symmetry, it follows that for one of Dirac valley, v

dv~jv 0ð Þjv pð Þ~ {1ð ÞH t’vj j{ tvj jð Þ ð2Þ

determines the product of parity eigenvalues of the occupied bands at
kz 5 0 and p. Here, H(x) is the Heaviside step function. When
different surface states are not related by any symmetry, they may
dimerize in distinct manners, as depicted in Fig. 1d. We can further
conclude that the overall Z2 invariant is5

{1ð Þn0~P
v

dv: ð3Þ

Here, the topological classification involves four Z2 numbers, n0;
(n1n2n3). The overall topological index, n0, is the product of parity
eigenvalues of all occupied states at all eight TRI points. When n0 5 1,
the system is a STI. When n0 5 0, the three weak indices, na (a 5 1, 2,
3), are computed, and when any or all of weak indices are non-zero it
is said to be a WTI5.

Based on the criteria in Eqs. (2) and (3), the opportunity to design
various TI phases is immediately evident. If t1j jw t’1j j and t2j jv t’2j j,
the superlattice becomes a STI with n0 5 1, as depicted in Fig. 1e. If
t’v=tvj jw1 for both interfacial states, a pair of Dirac nodes still persist

on each outermost surface with n0 5 0, as shown in Fig. 1f. The
superlattice is either a WTI or a TCI. Here, WTI can be further
characterized with three weak topological indices. Taking a 5 3 to
be the z-direction, n1 is determined by values of d’s at kjj5 (p, 0) and
kjj 5 (p, p); that is, {1ð Þn1~d p,0ð Þd p,pð Þ. Similarly,
{1ð Þn2~d 0,pð Þd p,pð Þ. Whereas n1 and n2 only depend on the rela-

tive magnitudes of jtvj and t’vj j, {1ð Þn3~Pv jv pð Þ depends on both
magnitudes and signs of tv and t’v . Evidently, then, if Dirac valleys are
present at these kjj, the superlattice valley engineering (c.f. Eq. (1))
will be a powerful mechanism for creating WTIs. It may be noted that
for a TCI, the topological numbers of time-reversal symmetry na 5 0
for a 5 0, 1, 2, 3. The topological number (e.g., mirror Chern num-
ber) that characterizes the TCI materials is defined with respect to
crystal’s geometric symmetry6,7. The above analysis suggests a uni-
fying pathway to tailor-make three different classes of TIs through
valley-dependent interfacial state dimerization. Note that this mech-
anism is established in the binary superlattice bearing multiple sym-
metry-unrelated interfacial Dirac states, in contrast to the
superlattice with single interfacial state or multiple symmetry-equi-
valent interfacial states17,18.

Having established ‘‘superlattice valley engineering’’ as a mech-
anism for creating various topological phases, in what follows, we
present a concrete demonstration using the unique interfacial states
of tin telluride (SnTe). SnTe class of TCI has been successfully pre-
pared experimentally19–21, and very importantly, its superlattices is
readily achievable22,23. SnTe has the sodium chloride structure and
(110)-like mirror symmetries. Band inversions occur near the four
inequivalent L points, as shown in Fig. 2a, giving rise to multiple non-
zero mirror Chern numbers7. Consequently, an even number of
Dirac surface states appear on any surface19–21 or interface that pre-
serves a (110)-like mirror symmetry. We will focus on the [111] and
[110] superlattices that harbor symmetry-distinct valleys. Without
introducing strain, a [001] superlattice will not have the valley-con-
trasting physics, as the two Dirac interfacial states of [001] super-
lattice are related by mirror symmetry18.

The [111] superlattice of SnTe with a normal insulator is particu-
larly interesting, because in this case all the TRI points of the super-
lattice are derived from the interfacial Dirac valleys, as explained in
Fig. 2a. The parity analysis at three Mj points are identical, and
likewise at three M’j points, as long as the Ĉ3 symmetry along the
[111] direction is unbroken. The topological class of the [111] super-
lattice of SnTe follows readily from our arguments below Eq. (3). The

Figure 1 | Schematic depiction of surface-state dimerization. (a). A

superlattice composed of the parent STI layers (yellow) and the spacer

normal insulator layers (light grey). (b). Dimerization through the parent

layers. (c). Dimerization through the spacer layers. (d). A superlattice with

two independent Dirac interfacial states. (e). and (f). show two different

schemes of dimerization. The black and gray circles represent isolated

Dirac interfacial states while the white states are gapped because of

dimerization, as indicated by the green blobs.
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phase diagram is plotted in Fig. 2b and c. As we can see in the t�C-t �M
parameter space, three topological phases — the strong, the weak,
and the crystalline — can all be created in such superlattices.

As anticipated, when d�Cd �M~{1, the resulting superlattice is a
STI. When jt9/tj , 1 or jt9/tj . 1 for both �C and �M valleys, the
superlattice has an overall n0 5 0. Specifically, the band topology
depends on the relative signs of t�C and t �M for jt9/tj, 1 in both valleys,
where the superlattice can be either WTI with n0; (n1n2n3) 5 0; (001)
(t�Ct �Mv0) or a trivial insulator (t�Ct �Mw0). When jt9/tj . 1 in both
valleys, the classification depends on the signs of t’�C and t’�M , where the
superlattice can be either WTI with n0; (n1n2n3) 5 0; (001) (t’�Ct’�Mv0)
or congener TCI (t’�Ct’�Mw0) (Fig. 2c). It is worth remarking that the
points where jt9/tj5 1 for both �C and �M (the red circles in Fig. 2b),
are topological tetracritical points24, which reflect the simultaneous
presence of topological order of two distinct valleys. It may also be
deduced that a finite neighbourhood of the phase boundaries is
metallic via electron-hole compensation between valleys.

The valley engineering proposed above can only be established
with judicious materials design. We employ density-functional the-
ory simulations to study the superlattices of SnTe25,26. Computational
details can be found in the section Methods. We choose the isostruc-
tural calcium telluride (CaTe) for the spacer layer, instead of the
obvious choice of isovalent IV-VI semiconductors, PbTe and
GeTe, for two reasons. First, the lattice mismatch between SnTe
and CaTe is less than 1%, a feature conducive to experimental growth
of heterostructures. Besides, the lattice matching avoids strain-
induced topological phase transitions of SnTe and the spacer layer
(e.g. PbTe)7. Second, GeTe is known to undergo ferroelectric distor-
tion27, which, albeit interesting in itself in the context valley engin-
eering, unduly complicates a first analysis. CaTe is a normal insulator
with a computed gap of 1.3 eV. SnTe has 107 meV direct gaps at L,
agreeing with previous work7. A [111] superlattices composed of m
SnTe bilayers and n CaTe bilayers is denoted (m, n)[111] for brevity. A
representative structure of (m, 2)[111] superlattice is shown in Fig. 3a.
Inversion symmetry is present in all superlattices considered after
structural optimization.

Our calculations examine (m, n)[111] with a single, double and
triple bilayer of the normal insulator CaTe (n 5 1, 2, 3), with total
number of bilayers up to m 1 n 5 27. A representative band struc-
ture for (17, 1)[111] superlattice is shown in Fig. 3b, with direct band
gaps at C, C9, M and M9. Based on the direct gaps of the Kohn-Sham

states at the TRI points in relation to Hamiltonian (1), we estimate
the jtj and jt9j at �C and �M. We take 4jtj5 jD(0) 1 D(p)j and 4jt9j5
jD(0) 2 D(p)j. Here, D is the band gap, which can be negative after
band inversion, at kz 5 0, p of a given valley.

The crucial observation is that for n 5 1, jt9j surpasses jtj at �C
valley for m $ 14. When n 5 2, similar switch of hopping strengths
occurs for m $ 22. In contrast, for the superlattice series considered,
the thickness of SnTe layer is insufficient to cause switch at �M. We
then expect that the [111] superlattice becomes a STI from NI when
m $ 14 (m $ 22) for n 5 1 (n 5 2). Indeed, this expectation is
confirmed by computing Z2 invariant n0 from the parities of Kohn-
Sham wavefunctions, as shown in Supplementary Information (S.I.
hereafter). The value of n0 becomes 1 from 0, as the thickness of SnTe
layer is beyond the thresholds. Complementarily, Fig. 3d shows the
energy dispersion of surface states located at the top surface of the
semi-infinite (17, 1)[111] superlattice, which is directly accessible
experimentally (e.g. by ARPES). Consistent with the result that bulk
n0 5 1, there is only one Dirac cone around �C within the bulk gap.
Moreover, because Fig. 2b remains unchanged when the signs of t�C

and t �M are switched simultaneously, their overall signs can not be
determined. However, according to the aforementioned topological
quantum phase transition from a NI to a STI, we can conclude that t�C

and t �M have the same sign. For superlattices with triple CaTe bilayer
(n 5 3, m # 24), Z2 indices show that they stay topologically trivial,

Figure 2 | Valley-dependent interfacial Dirac state dimerization in [111]
superlattice of SnTe TCI. (a). Brillouin zone projection in [111] direction.

(b). Topological phase diagram of the superlattice. For a [111] interface of

SnTe with a NI, the Dirac nodes are located at �C and �Mj j~1,2,3ð Þ on the

surface Brillouin zone. Extending to the superlattice, each valley branches

out into a doublet at kz 5 0 and p, namely, C, C9 and Mj, M’j . (c). The v0

square in the center of b.

Figure 3 | Geometric and electronic structure of [111] superlattice. (a). A

representative structure of (m, 2)[111] superlattice. Only a section of the

superlattice near the interface is shown. The blue, red and yellow balls

correspond to Sn, Ca and Te, respectively. (b). The band structure near the

band gap of (17, 1)[111] superlattice. The chemical potential is set to zero

energy. (c). The values of | t9/t | as a function of the thickness of superlattice,

at �C and �M valleys. Blue, red and black curves correspond to n 5 1, 2 and 3,

respectively. (d). The energy dispersion at the top surface of the semi-

infinite (17, 1)[111] superlattice, computed as the imaginary part of the

surface Green’s function (see Methods). The darkness of the color

corresponds to magnitude of spectral density of states N(E, k | | ). The

energy level of Dirac point at �C is set to zero.

www.nature.com/scientificreports
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agreeing with the observation from Fig. 3c that there is no band
inversion with the thickness of SnTe layers considered.

We next consider a series of [110] superlattices with a single,
double and triple layer of CaTe (Fig. 4a). In the projected Brillouin
zone along [110] direction, there are two symmetry-distinct Dirac
valleys at �X p,0ð Þ and �R p,pð Þ, respectively. Therefore, the [110]
superlattices show direct band gaps at X, X9, R, R9 (Fig. 4b). In
contrast with [111] supelattices, not all TRI points of [110] super-
lattices can be derived from interfacial Dirac valleys. However, it is
still possible to design various topological insulators by tuning t and
t9 at �X and �R valleys of [110] superlattices. As shown in Fig. 4c, for
n 5 1, band inversion occurs at both �X and �R valleys when m $ 7.
Based on the calculation of the Z2 invariant, the (m, 1)[110] super-
lattices become a WTI (see S.I.). When m 1 n 5 8, 12 and 16, theZ2

indices are n0; (n1n2n3) 5 0; (0, 1, 0). When m 1 n 5 10 and 14, the
indices are 0;(0, 1, 1). The energy dispersion at the top surface of the
semi-infinite (15, 1)[110] superlattice shows that two symmetry-unre-
lated Dirac cones appear around both �X and �R within the bulk gap,
agreeing with itsZ2 indices (Fig. 4d). In contrast, in the superlattices
with n 5 2 and 3, no phase transition is seen in the models calculated.
It is noteworthy that the WTI phase of the [110] superlattice will have
two symmetry-unrelated valleys (the topological surface states) on its
top surface, which is very important for direct experimental mea-
surement and device making. This is to be compared with the WTIs
based on layered stacking of quantum spin Hall insulators9,28,29 and
the ones in [111] superlattices of SnTe TCI with n0; (n1n2n3) 5 0; (0, 0,
1), of which the topological surface states are located on side
surfaces5.

The SnTe/CaTe models have only uncovered a small region of the
rich phase diagrams, such as Figs. 2b–c. The identification of possible

topological phases beyond the current system may be sought prof-
itably in the spacer material, which plays the critical role as a medi-
ator and modulator in valley-dependent couplings. The tunability of
coupling through the spacer can be elucidated based on a perturba-
tion theory,

t’v<{
1
2

X
k

1
Evk{Evz

z
1

Evk{Ev{

� �
t�zkt�k{, ð4Þ

to second order, where Evk{Evtz is the energy difference between the
kth state of the spacer layer and the Dirac valley (v, tz), and t�kv is the
corresponding hopping amplitude. A pair of Dirac states (tz 5 6)
may now be non-degenerate with a ferroelectric spacer27. Evidently,
variation of the band gap of spacer layer and its energy level align-
ment with the Dirac points will enable high tunability of both the
magnitude and sign of t’v . This can be achieved through material
choice. More interestingly, the level alignment can be changed
through in situ external gating, which may become an efficient
experimental knob to tune the phase transitions in Figs. 2b–c.

It is clear that valley-dependent dimerization of Dirac interfacial
states can be a powerful mechanism to design topological phases, out
of a binary superlattice. This mechanism is rather generic, and
applies to any system with multiple band inversions and Dirac inter-
facial states, such as TCI, WTI and, quite possibly, elemental bis-
muth4–7. This strategy can also be made useful in valleytronics30–32.
Yang et al recently predicted that a WTI could be fabricated from the
[001] superlattice of SnTe and PbTe, which has two symmetry-equi-
valent surface Dirac points18. In comparison, the two surface valleys
of the [110]-superlattice WTI proposed here are unrelated by any
symmetry, a crucial observation that entails rich possibilities for
novel valley-based devices, such as valley valve and filter33, by jux-
taposition of heterostructures with massless and massive valleys tai-
lored with the proposed mechanism. Elastic strain engineering will
also find important applications here, where deformation can revers-
ibly break the symmetry that relates a subset of valleys34. Finally, the
ability to tune the number of Dirac surface states is especially attract-
ive in the pursuit of exotic quantum anomalous Hall effects15,35, Weyl
semimetals17,36, and topological superconductors10.

Methods
We use first-principle density functional theory calculations to investigate the atomic
and electronic structure of [111] and [110] superlattice of SnTe/CaTe. The Perdew-
Burke-Ernzerhof exchange-correlation functional and the projector-augmented wave
potentials are used, as implemented in the Vienna ab initio Simulation Package
(VASP)25,26. A plane-wave cutoff of 350 eV is adopted. We use a k-mesh of 7 3 7 3 2
for [111] superlattices, and a k-mesh of 5 3 7 3 l (l $ 3) for [110] superlattices, where
l depends on the thickness of [110] superlattices. The valence includes 4 electrons for
Sn (5s25p2), 10 for Ca (3s23p64s2) and 6 for Te (5s25p4). Structure optimizations are
performed with a convergence threshold of 0.01 eV/Å on the interatomic forces. To
obtain the surface states of topological superlattices, we construct the surface Greens
function of the semi-infinite superlattice, using Wannier functions and corres-
ponding hopping parameters from the ab initio calculation. And then, the spectral
density of states N(E, kjj) at the surface can be obtained from the imaginary part of the
surface Green’s function, which shows the energy dispersion of surface states37–39.
Here, the spectral density of states is the function of the energy E and the parallel
momentum kjj.

1. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys.
82, 3045–3067 (2010).

2. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod.
Phys. 83, 1057–1110 (2011).

3. Moore, J. E. The birth of topological insulators. Nature 464, 194–198 (2010).
4. Fu, L. & Kane, C. L. Time reversal polarization and a Z2 adiabatic spin pump. Phys.

Rev. B 74, 195312 (2006).
5. Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B

76, 045302 (2007).
6. Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).
7. Hsieh, T. H. et al. Topological crystalline insulators in the SnTe material class. Nat.

Commun. 3, 982 (2012).
8. Kargarian, M. & Fiete, G. A. Topological crystalline insulators in transition metal

oxides. Phys. Rev. Lett. 110, 156403 (2013).

Figure 4 | Geometric and electronic structure of [110] superlattice. (a). A

representative structure of (m, 2)[110] superlattice. (b). A representative

band structure near the band gap of (15, 1)[110] superlattice. The inset

shows the Brillouin zone. (c). The values of | t9/t | as a function of the

thickness of superlattice, at �X and �R. Blue, red and black curves correspond

to n 5 1, 2 and 3. (d). The energy dispersion at the top surface of the semi-

infinite (15, 1)[110] superlattice. The energy level of Dirac point at �X is set to

zero.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 6397 | DOI: 10.1038/srep06397 4



9. Rasche, B. et al. Stacked topological insulator built from bismuth-based graphene
sheet analogues. Nat. Mater. 12, 422–425 (2013).

10. Fu, L. & Kane, C. L. Superconducting proximity effect and majorana fermions at
the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

11. Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators.
Science 329, 61–64 (2010).

12. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall
effect in a magnetic topological insulator. Science 340, 167–170 (2013).

13. Xiao, D., Zhu, W., Ran, Y., Nagaosa, N. & Okamoto, S. Interface engineering of
quantum Hall effects in digital transition metal oxide heterostructures. Nat.
Commun. 2, 596 (2011).
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