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This paper uses Moderate Resolution Imaging Spectroradiometer (MODIS) data to investigate the spatial
and temporal variations of aerosol optical thickness (AOT) over Guangdong, the most developed province
in China, during 2010–2012. Linear regression and self-organizing maps (SOM) are used to investigate the
relationship between AOT and its affecting factors, including Normalized Difference Vegetation Index
(NDVI), elevation, urbanized land fraction, and several socio-economic variables. Results show that the
highest values of t0.55 mainly occur over the rapidly-developing Pearl River Delta (PRD) region and the
eastern coast. Seasonal averaged AOT is highest in summer (0.416), followed by spring (0.351), winter
(0.292), and autumn (0.254). From unary linear regression and SOM analysis, AOT is shown to be strongly
negatively correlated to NDVI (R250.782) and elevation (R250.731), and positively correlated with
socio-economic factors, especially GDP, industry and vehicle density (R2 above 0.73), but not primary
industry. Multiple linear regression between AOT and the contributing factors shows much higher R2 values
(.0.8), indicative of the clear relationships between AOT and variables. This study illustrates that human
activities have strong impacts on aerosols distribution in Guangdong Province. Economic and industrial
developments, as well as vehicle density, are the main controlling factors on aerosol distribution.

A
erosols are fine particles suspended in air either in liquid or solid form. They are often observed as dust,
smoke or haze, and play a crucial role in global climatic fluctuations and regional environments1. Aerosols
not only have direct and indirect radiative forcing effects on climate systems2,3, but also influence air

quality and human health4. In recent years, aerosols have been measured and quantified by ground-based and
satellite-borne instrumentation to improve the characterization of their physical-chemical behaviors and effects
on radiative transfer and climate change5–8. Aerosol optical thickness (AOT or t), defined as the integrated
extinction coefficient over a vertical column of unit cross section, is an important physical parameter for
characterizing aerosols and evaluating aerosol-inducing atmospheric pollution and climatic effects9. Spatio-
temporal variations of AOT have attracted worldwide attention. Meij et al.10 analyzed global and regional
AOT changing trends from 2000 to 2009 by using AOT data from MODIS and MISR (Multi-angle Imaging
SpectroRadiometer). They showed a decrease in AOT over Europe and North America and an increase over
South and East Asia. Koukouli et al.11 showed a decrease in AOT over the Southern Balkan/Eastern
Mediterranean region, the highest rate of decrease recorded as 4.09% in summer and the lowest as 2.55% in
winter. In China, Luo et al.12 used AOT values retrieved from direct solar radiation data of 47 stations over China
from 1961 to 1990. They discovered that AOT increased over most regions with particularly rapid increases
in the southwest, middle, and lower reaches of the Yangtze River. Slight decreases were observed in the
western region of Xinjiang and parts of Yunnan. Jiang et al.13 analyzed the spatio-temporal distribution of
AOT in the Pearl River Delta (PRD) from 2007 to 2009 by using MODIS AOT data and the derived fine-
mode aerosol, and indicated that over the PRD region AOT was largest in spring, followed by autumn and
summer and smallest in winter.

Atmospheric aerosols arise from natural sources as well as anthropogenic activities14. Natural sources include
soil dust, sea spray, volcanic dust and biomass burning, while human activities primarily are fuel combustion,
industrial emission, transportation and nonindustrial fugitive sources (e.g. construction work). Anthropogenic
sources always produce fine particles that remain suspended for many days and play significant roles in aerosol
formation. It has been discovered that rapid urbanization has caused heavy urban traffic and increased industrial
emissions, and consequently an increase in the organic component of aerosols15,16. Kaufman et al.17 argued that
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spatial and temporal distributions of aerosols are closely related to
terrain, climate, population density, and socio-economic activities.
Vegetation also affects aerosol distribution, positively by biomass
burning or negatively by absorption and deposition. In fact,
aerosols are always caused by the interaction between natural and
anthropogenic sources. Topography, vegetation coverage, industrial
development, construction and population growth could be the pos-
sible contributors to aerosol distribution.

As the most developed province in China, Guangdong experiences
unprecedented rapid economic growth and population explosion in
the past three decades, with concomitant severe air pollution.
Increasing haze days and deteriorating air quality, greatly impairing
the health of the population and the visibility over the region, have
drawn widespread attention from the government and the pub-
lic18–21. What determines the aerosol distribution in Guangdong?
Are there natural and/or anthropogenic factors? These questions
are still under debate. For exploring the driving factors of aerosols
in Guangdong, this paper analyzes the spatio-temporal variation of
AOT over Guangdong Province using MODIS-retrieved aerosol data
from 2010 to 2012. It simulates the correlation between AOT and
elevation, normalized difference vegetation index (NDVI), and sev-
eral typical socio-economic index by using Self-organizing Maps
(SOM) and linear regression methods, aiming to demonstrate the
spatial distribution and temporal evolution of AOT in Guangdong,
as well as the natural and socio-economic factors that influence
atmospheric aerosols.

Guangdong province (109u459 to 117u209 E longitude and 20u099

to 25u319 N latitude) (Figure 1) is located in the southernmost part
of China. Its surface area is approximately 179,800 km2, about 2% of
China’s land area. As the province with the largest economy and
fastest development in China, Guangdong’s Gross Domestic Pro-

duct (GDP) has reached 11% of China’s total in 201222. The
Guangdong topography consists of highlands in the eastern, west-
ern and northern border, hills and terraces in the middle and plains
in the southern estuarine region. It has a humid subtropical climate
with ample sunlight, high temperature, and abundant precipitation.
Such climate tends to increase the likelihood of photochemical reac-
tions, and thus the formation of photochemical smog, further
aggravating haze conditions. The air quality in the province has
sharply deteriorated, due to its complex topography and climate,
rapid industrial development, population explosion, and heavy traf-
fic pressure. Situated in south-central Guangdong is the world-
famous urban agglomeration-Pearl River Delta (PRD), comprising
11 mega-cities with Guangzhou, Hong Kong, and Macau at its core.
The PRD region boasts the fastest economic growth and population
increase in the world. It is also one of the areas facing the severest air
pollution. Industrial emission, complicated traffic network, and
basin topography, are the reasons for haze lingering over the
region23.

Five data sources have been used for this paper: 1) MODIS-
retrieved aerosol level-2 C051 data with 10 km spatial resolution at
550 nm wavelength (t0.55) from 2010 to 2012 and Level 1
Atmosphere Archive and Distribution System (LAADS) (at URL
http://lpdaac.usgs.gov/lpdaac/get_data). The derived aerosol optical
thickness (AOT) has been validated against ground measurements,
with an accuracy of 0.05 6 0.2 AOT over land and 0.03 6 0.05AOT
over oceans24,25. 2) MODIS Normalized Difference Vegetation Index
(NDVI) level-3 monthly data at 1 km spatial resolution in the
Sinusoidal projection, an indicator of vegetation canopy greenness
and composite properties of leaf area; 3) 500m-resolution MODIS
land cover type data classified by the IGBP global vegetation clas-
sification scheme; 4) the Shuttle Radar Topography Mission (SRTM)

Figure 1 | Map showing the location of the 21 administrative divisions (cities) in Guangdong province, China. The map was produced by Li using

SuperMap 6.0.
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data set (90 3 90 m) provided by the CGIAR Consortium for Spatial
Information (http://srtm.csi.cgiar.org/); 5) several socioeconomic
index of each city in Guangdong obtained from the Guangdong
Statistical Yearbook22.

Results
Aerosol spatio-temporal variation. The geographical distribution
of the 3-year averaged AOT over the Guangdong province is shown
in Figure 2(a). The highest values of AOT (t0.55 . 0.7) occur over
the Pearl River Delta region and eastern Guangdong, whereas the
lowest values (t0.55 , 0.4) mainly occur over the north and northeast.
The maximum AOT occurs in Foshan, Zhongshan, Jiangmen,
Guangzhou, Dongguan, and Shenzhen. It is closely related to fine-
particle aerosols and attributed to large emissions from industrial
pollution, urban traffic, and secondary aerosol generated by strong
photochemical reactions18,26. According to 2012 statistics from the
PRD air quality monitoring network (http://www.gdep.gov.cn/hjjce/
kqjc/), most of the highest hourly PM10 observation in these cities
greatly exceeded the mean daily-critical value of the national
standard (150 mg/m3). A localized pocket including the two impor-
tant transportation harbors for import and export, Chaozhou and
Shantou in the eastern part of the province, also has a high value of
t0.55. Their high GDP growth (second to cities in PRD) and industrial
development might be one reason, next to violent transport activity.

The spatial distribution of AOT in different seasons over the
Guangdong province is displayed in Figure 3. It is similar to the
yearly average AOT, thus the PRD region as the highest values and
the north and northeast the lowest. Due to the coarse spatial resolu-
tion of AOT data and cloudy weather, some null values occur, espe-
cially in summer when the common occurrence of clouds makes
AOT rarely observable. The seasonal averaged AOT is 0.351 in
spring, 0.416 in summer, 0.254 in autumn, and 0.292 in winter.
The maximum AOT appeared in summer in Foshan and the western
PRD region, with t0.55 value over 1.5. It is related to peak precipita-
tion (Table 1) and corresponding abundant atmospheric water vapor
in that season. Droplet growth in aerosols increases its scattering
coefficient and the total extinction coefficient, as well as the aerosol
optical thickness of the whole atmospheric layer. In addition, photo-
chemical reactions are more active in summer, producing more part-
icles in the atmosphere. The second maximum AOT occurred in
spring due to peak biomass burning activity during spring in
Southeast Asia27. Values of AOT in winter and autumn are relatively
low presumably due to the northeast monsoon, controlled by warm
and moist air.

Model analysis on factors influencing AOT. Unary linear regres-
sion. To seek the factors that contribute to aerosol optical thickness,
we collected a set of data of 21 cities in Guangdong between 2010 and
2011. These data included elevation, vegetation index, the fraction of
urbanized land, and several socio-economic parameters, such as
population, Gross Domestic Product (GDP), industrial and agricul-
tural outputs, vehicle density and so on. All the socio-economic
parameters of the cities are firstly divided by the corresponding
area and then processed by natural logarithm to standardize the
statistical analysis. We analyzed their correlation with AOT by
using unary linear regression. As the results in Figure 4 show, the
annual mean AOT in Guangdong correlates negatively with ln(eleva-
tion) and NDVI. It correlates positively with percentage of urbanized
land, population density, GDP, Secondary Industrial (SI) output,
Tertiary Industrial (TI) output, industrial output, construction
output, civil vehicle (CV) density, and private vehicle (PV) density.
It is not relevant, however, to Primary Industrial (PI) output, i.e.
agricultural activity.

The R2 values for NDVI and elevation with t0.55 are 0.782 and
0.731. The annual mean AOT rises with decreasing elevation and
NDVI. High terrain prevents horizontal diffusion of air pollutants,

thus Shaoguan (at 417 m) has a t0.55 of 0.26, Foshan (26 m) 0.8, and
Zhongshan (23 m) 0.77. In addition, areas with denser vegetation are
less influenced by human activities and absorb more atmospheric
particles, thus suffering less severe air pollution.

We also calculate the relationship between the percentage of urba-
nized land in the 21 cities and t0.55, the resulting coefficient R2 being
0.43. This low correlation is caused by the two cities-Jiangmen and
Zhuhai, which have small urbanized land areas but high values of
AOT. Located close to the sea, these two cities have a warm, wet
climate which facilitates droplet formation. Intensive temperature
inversion caused by increased energy consumption and change of
underlying type, as well as decreasing wind speed owing to the
increased urbanized area and density, hinders the dilution and dis-
persion of air pollutants among the city group28.

Correlations between socio-economic factors and AOT proved to
be high, except for primary industrial output (R2 5 0.06). Such
positive correlations suggest a significant influence from anthro-
pogenic emission on aerosols in Guangdong. R2 between AOT and
population density is 0.588, while GDP and secondary industrial
output are strongly related to AOT, the correlation coefficients being
0.732 and 0.738, respectively. Fast economic development, especially
the development of metallurgy, manufacturing, and energy sectors
(R2 between industrial output and t0.55 0.74) and construction (R2 5
0.616), leads to heavy emission of industrial gases, such as sulfur
oxide, nitrogen oxide, and smoke dust. The tertiary industry, invol-
ving transportation, post, hotels and catering services, is another
important factor impacting aerosols with R2 being 0.682. Vehicle
density is highly related to t0.55, as R2 for civil and private vehicles
density is 0.732 and 0.735, respectively.

SOM Analysis. A self-organizing map is used to intuitively describe
the relationship between AOT and its contributing factors. NDVI,
elevation, fraction of urbanized land and socio-economic variables
were chosen to make the component planes in Figure 5, with aerosol
optical thickness included as one plane. The input is a 13*42 matrix
(42 samples of 13 elements), which is classified into 13 component
planes, each with 10*10 neurons. The learning rate, neighborhood
function, and neighborhood radius were set at default values in the
training process.

Figure 5 shows the weight plane for each variable and visualizes the
weights that connect each input to each of the neurons, darker colors
representing higher values of the variables. Similarity in connection
patterns of the inputs suggests a high correlation. At the bottom right
is the U-matrix, indicating the distances between neighboring neu-
rons and identifying the cluster structures of the map. The darker
colors represent larger distances, and the lighter colors represent
smaller ones. Low AOT values (, 0.53) in the top left corner of
the plane are linked to low values of ln(population density) (,6.8),
ln(GDP/area) (,6), ln(SI/area) (,5.4), ln(TI/area) (,6), ln(indus-
try/area) (,5.2), ln(construction/area) (,2.6), ln(civil vehicle den-
sity) (, 4.13) and ln(private vehicle density) (,4), but high NDVI
(.0.58) and ln(elevation) (.4.59). In addition, high AOT in the
bottom right are apparently associated with low NDVI and elevation,
and high values of population density, economic output and vehicle
density. The corresponding units in the U-matrix reflect the close
distance between the unit and its neighbors. We conclude from
Figure 5 that t0.55 is negatively correlated with NDVI and elevation,
and positively correlated with population density, GDP, secondary
industry, tertiary industry, civil and private vehicle density. In con-
trast, AOT does not reveal an obvious relationship with urbanized
land fraction and primary industry.

Multiple linear regression. We carried out multiple linear regression
(MLR) between AOT and NDVI, elevation, and socio-economic
factors (not including urbanized land fraction and primary industry).
AOT is set as the dependent variable, while NDVI and elevation are
constant independent variables, and the socio-economic factor is
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Figure 2 | (a) Spatial distribution of 3-year average aerosol optical thickness at 550 nm wavelength over Guangdong; (b) Topographic map of

Guangdong obtained from SRTM. The AOT data was downloaded from NASA Level 1 Atmosphere Archive and Distribution System (LAADS) (http://

lpdaac.usgs.gov/lpdaac/get_data) and the maps were produced by Li using SuperMap 6.0.
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another independent variable. The Variance Inflation Factor (VIF)
was also applied to indicate the multicollinearity among the inde-
pendent variables. The results are displayed in Table 2. Each of the
regression coefficients for the dependent and independent variables
coincides with those from Unary linear regression (ULR), R2 rising to
between 0.78 and 0.83. The VIF values of NDVI are around 10 while
those of other variables are less than 10. This means there are some
correlations among NDVI and other factors: elevation and human
activities affect the vegetation coverage. Areas with low elevation or
high population density always have low values of NDVI. Since
vegetation, elevation and human activities affect the aerosols differ-
ently, all the variables are kept in the predictive models. The F tests
show the models have statistically substantial predictive capability,
and all of the corresponding P values are less than 0.0001. The higher
coefficients of GDP and vehicle also indicate the greater effects of
economic development and vehicles on aerosols. We evaluated the
accuracy of our results by computing the predicted t0.55 of the
21cities in 2012, and the root mean square error (RMSE) between
the actual and predicted values is calculated to range from 0.075 to
0.098, thus reflecting the stability of the models.

Discussion
The spatial distribution of multi-year average aerosol optical thick-
ness over the Guangdong province shows some interesting features.
The highest values of t0.55 mainly occur over the rapidly developing
and populated Pearl River Delta region, especially in Foshan,
Zhongshan, Jiangmen, Guangzhou, Dongguan, and Shenzhen, next
to the eastern part of Guangdong, where the import and export hubs,
Chaozhou and Shantou, are located. Lower values occur in the plains
in the south, and the lowest ones in the mountainous north and
northeast. Inspection of the Guangdong topographic map in
Figure 2(b) illustrates that elevation impacts the spatial distribution
of AOT. The overall topography goes from sea level in the south to
elevated terrain in the north. The AOT over the middle and southern
areas correspondingly is much higher than that in the north. Low
values (t0.55 , 0.4) occur in mountains and high hills, higher values
in the plains in the south, and the highest ones primarily on terraces
in the middle. Additionally the high humidity over the coastal
regions leads to droplet formation, and thus to a larger volume of
fine particles and higher value of AOT29.

Seasonal variations of aerosols in Guangdong display as maximum
values appearing in summer (0.416) and minimum values in autumn
(0.254). The distributions of AOT throughout the four seasons are
spatially similar, with the PRD region consistently having the highest
values and the mountainous north-northeast region having the low-
est. The difference of AOT between the seasons is related to precip-
itation, temperature and monsoon effects. Seasonal AOT variations
do not run parallel to low visibility, which always occurs in autumn
and winter. The reason for this is that AOT is the extinction effect of

Figure 3 | Seasonal variations of multi-year average AOT over Guangdong during 2010–2012. (a) Spring (March to May); (b) Summer (June to

August); (c) Autumn (September to November); (d) Winter (December to February). The map was produced by Li using SuperMap 6.0.

Table 1 | Total precipitation and temperature during 2010-2012
in Guangdong

Spring Summer Autumn Winter

Total precipitation (mm) 460 607 311 143
Average temperature (uC) 21.3 28.2 23.6 13.7
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the whole vertical aerosol column whereas ground visibility repre-
sents the horizontal extinction of the aerosol close to the surface and
is affected by boundary layer height.

Linear regression and self-organizing maps are applied to quanti-
tatively analyze the factors contributing to aerosol formation. Unary
linear regression in Figure 4 shows that aerosol optical thickness
shows a strong linear correlation with vegetation index (R2 5

0.782) and topography (R2 5 0.731). They indicate that aerosol
optical thickness is related significantly to vegetation index and topo-
graphy, in accordance with previous studies in other regions30–32. The
coefficient relating urbanized land percentage to t0.55 is only 0.43,
mainly affected by data from Jiangmen and Zhuhai. R2 between AOT
and population density is 0.588, high and low t0.55 value areas being
consistent with densely populated (Shenzhen and Dongguan) versus
small population density cities (Shaoguan and Heyuan). Correlations
between socio-economic factors, with the exception of primary
industrial output, and AOT are around 0.70. The result is consistent
with the study by Gang et al.33, which shows that regions with high
GDP, large population and large urban areas would have high PM2.5
concentrations over China, especially in areas with fast economic
development and population growth. Fast industrial and construc-
tion development leads to extensive air pollution and exhaust emis-
sions, such as sulfur oxide, nitrogen oxide, and smoke dust. These are
the principal sources for secondary aerosols and cause new partic-
ulate pollution resulting from photochemical reaction and other
ways. Cars and trucks also produce primary and secondary aerosols
in the atmosphere, including particulate matter, hydrocarbons,
nitrogen oxides, carbon monoxide, and micrometer sized solid part-
icles34,35. Thus, the increase in private vehicles is accompanied by
aerosol generation and concomittant deterioration of air quality,
which is also confirmed by previous research in the PRD showing
that industrial, on-road mobile, and power plant sources are major
contributors to SO2, PM10 and PM2.5

36. However, primary industry,
consisting of agriculture, forestry, animal husbandry, and fishery,
contributes insignificantly to aerosols. It implies that occasional bio-
mass burning has no bearing on the distribution of multi-year aver-
age aerosols in Guangdong, as also can be inferred from the positive
relation between NDVI and AOT.

The three most relevant socio-economic variables are GDP, indus-
trial output, and vehicle density with R2 5 0.74, indicating the great
influence of rapid industrial and vehicular growth on aerosols.
Results of unary linear regression demonstrates the crucial role of
anthropogenic emission on aerosol formation in the Guangdong
province. These relationships are visualized and validated by using
SOM. The spatial distributions of ln(GDP/area), ln(industry/area)

Figure 4 | Relationship between t0.55 and NDVI, elevation, urbanized
land fraction and several socio-economic variables in the 21 Guangdong
cities during 2010–2011. The analysis was done by Origin software.

Figure 5 | (a) is the SOM visualization of AOT and its contributing factors with 13 component planes. (b) is the unified distance matrix (U-matrix)

showing the distance between map neurons. Darker colors represent higher values in weight planes and larger distances in U-matrix. The map was

produced in SOM toolbox in MATLAB 7.0.
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and ln(vehicle density) planes in Figure 5 are more similar to the
AOT pattern than other variables, revealing aerosol distribution is
more highly related to GDP, industry and number of vehicles.

Multiple linear regressions between AOT and NDVI, elevation,
socio-economic factors similarly show high R2 values (0.78 , 0.83),
inferring that MLR is more suitable than ULR for modeling the
relationship between the annual average AOT and contributing fac-
tors, because the aerosol distribution is influenced by complicated
interactions among a variety of elements. Root mean square analysis
between observed and calculated data shows errors below 0.1, indi-
cative of the robustness of the analysis. The most critical contributors
to aerosol distribution are NDVI, economic and industrial develop-
ment, and vehicle density in Guangdong, which emphatically points
to the significance and necessity of reforestation, industrial pollution
prevention, and strict emission controls on vehicles.

Methods
Self-organizing Maps (SOM). A Self-organizing Map (SOM) is a type of artificial
neural network based on unsupervised learning to produce a low-dimensional,
discretized representation of training samples. It uses a neighborhood function to
preserve the topological properties of the input space37. It describes mapping from a
higher dimensional input space to a lower dimensional map. The procedure for
placing a vector onto the map is to find the node with the closest weight vector to the
data space vector. SOM has been applied to visualize simulation results to identify the
relationship between input parameters38–40. The component plane shows the value of
the variable in each map unit. The unified distance matrix (U-matrix) shows the
distance between map neurons, visualized by gray shade scaling. In this study, the
SOM toolbox based on the MATLAB 7.0 computational environment, developed by
the Laboratory of Computer and Information Science at Helsinki University of
Technology, was used for SOM simulation. The toolbox contains functions for
creating, visualizing and analyzing self-organizing maps. The input is a matrix stored
as. csv. After setting the number of neurons, the learning rate, neighborhood function,
and neighborhood radius, the network is trained to learn the topology and
distribution of the input samples so that the component planes and neighbor
distances can be obtained. It is available free of charge at http://www.cis.hut.fi/
projects/somtoolbox/.

Linear regression analysis. Linear regression analyzes the relationship between a
dependent variable and one or more independent variables. We carried out many
quantitative analyses of factors influencing the AOT distribution of by unary linear
regression (ULR) as well as multiple linear regression (MLR). The regression
relationship between AOT and contributing factors was computed and evaluated
with Origin 75 software.
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