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We study highly excited diskoid-like electronic states formed in the vicinity of charged and strongly
polarizable diskotic nanostructures, such as circular graphene flakes. First, we study the nature of such
extended states in a simple two-electron model. The two electrons are attached to a point-like nucleus with a
charge 21, where the material electron is forced to move within a 2D disk area centered at the nucleus, while
the extended electron is free to move in 3D. Pronounced and complex correlations are revealed in the
diskoid-like states. We also develop semiclassical one-electron models of such diskotic systems and explain
how the one-electron and many-electron solutions are related.

H
ighly extended Rydberg-like electronic states in atoms and molecules1,2 bear semi-classical concepts
developed in the Bohr model. Molecular Rydberg states can have extremely large permanent electric
dipole moments1 highly sensitive to their environment, which is useful in probing physical and chemical

processes at the nanoscale3,4. These extended electronic states can provide unique information about light-matter
interactions5,6 and particle entanglement7,8, with implications in quantum information and metrology sciences.

Similar extended electronic states were predicted to form9–11 and observed12,13 above the surfaces of metallic
carbon nanotubes (CNT). In these tubular image state (TIS), the electron is attracted to its hole image formed on a
highly (longitudinally) polarizable CNT surface. In principle, analogous diskoid-like electronic states (DES) could
be formed above highly polarizable diskotic nanostructures, such as graphene flakes or metallic nanodisks.
However, in contrast to TISs, here the image hole is induced in a transversely polarizable disk, which means
that it should be highly correlated with the orbiting electron. In this work, we introduce such highly excited
diskoid-like electronic states, find their solutions in a two-electron and one-electron (mean field) approximations,
and discuss their properties, in particular their correlations.

Results: Two-electron Diskoid-like States
A fully quantum mechanical description of correlated electronic states formed above nanoscale metallic surfaces
requires a proper accounting of many-body effects14. However, finding accurate solutions of the Schrödinger
equation for few electrons moving in arbitrary confining potentials remains a highly challenging task. The
problem of a pair of interacting electrons confined in a 3D cavity was solved exactly only recently for certain
types of cavity geometries15–17. Therefore, the development of simplified models where we could track, in a semi-
analytical fully explicit way, the emergence of electron-electron correlations in few-electron systems may have a
potential impact on several scientific areas.

We start with our discussion of DESs in one of the simplest possible approximation, where correlations
between the external electron and material electrons can be clearly observed. We introduce a simple two-electron
DES model, schematically shown in Fig. 1. The two electrons move around a localized nucleus with a charge of
Z 5 12, where the ‘‘material’’ (polarization) electron (ME) is confined in a 2D disk of the radius a (z 5 0, r # a),
whereas the ‘‘external’’ electron (EE) is free to move in a 3D space.

Theoretical model. The ‘‘hybrid’’ He atom in Fig. 1 can be described by the Hamiltonian (a.u.)
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written in the relative and position-weighted angular coordinates18,

d~w1{w2, w~
r2

1w1zr2
2w2

r2
1zr2

2
, related to the two-electron coordi-

nates, (r1, w1), (r2, w2, z2), where r12:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1zr2
2zz2

2{2r1r2cos dð Þ
q

and Z is the nucleus charge. The first and second lines in Eqn. 1 are
the one-electron h1(r1, d) (ME) and h2(r2, z2, d) (EE) Hamiltonians
in effective cylindrical coordinates, respectively. The third line
represents the Coulomb coupling of the two electrons and their

centrifugal term, with L2
z~{

L2

Lw2 .

We find the correlated two-electron eigenstates of H in Eqn. 1 by a
configuration interaction (CI) method, using a variational technique
with a one-electron basis set wavefunctions, which solve h1(r1, d)
and h2(r2, z2, d). The cylindrical symmetry of the Hamiltonian,
associated with the point group D‘h, prevent us from using the
Hylleraas basis set19,20 (He atom problems). Moreover, the mixed
dimensionality of our problem necessitates to consider ME and EE
as distinguishable Coulombically coupled particles. Then, the CI
eigenfunctions can be written in a separable form, Y ~r1,~r2ð Þ~

YL r1,r2,z2,dð Þ e+iLwffiffiffiffiffi
2p
p , where L is an eigenvalue of Lz. We will focus

on S states with L 5 0 and expand Y0 in the eigenstates of h1,2.
As the Coulomb interactions of the ME and EE with nucleus do

not depend on d, this angle can be factored out in both (h1,2) sub-

systems, as y dð Þ~ 1ffiffiffiffiffi
2p
p e+ild. In the solution of the 2D H-atom21,

described by h1(r1, d), the radial part of the eigenfunctions can be

expressed in terms of confluent hypergeometric functions,

R1nl r1ð Þ~1F1 {nz lj jz1,2 lj jz1,bnr1ð Þ

|Anl bnr1ð Þ lj je{bnr1=2, Ev0,

R1kl r1ð Þ~1F1 i=kz lj jz1=2,2 lj jz1,i2kbr1ð Þ

|Ckl 2kbr1ð Þ lj je{ikbr1 , Ew0,

ð2Þ

where bn~
2Z

n{1=2
1
a0

, b~
Z
a0

, k~
2E
Z2

a0

e2

� �1=2

, and a0 is the Bohr

radius. The confinement of the ME in the disk area can be resolved by
applying a Dirichlet boundary condition, R1nl r1~a

�� ~022,23, which
selects and restricts the wavefunctions in Eqn. 2.

Then, the allowed energies of ME can be found from 1F1(2f 1 jlj
1 1, 2jlj1 1, a) 5 0. For a given value of jlj, the first root corresponds
to the ME energy of the lowest (n 5 jlj1 1) state and the successive
roots are its excited states. The confinement also removes the
l-degeneracy, leaving only the twofold degeneracy with respect to
the sign of l, so the energy spectrum can no longer be expressed as

in the free 2D H atom, En~{
Z2

2 n{1=2ð Þ2
. When the disk radius a is

decreased, the ME energy increases, passes through zero, and rapidly
rises to large values. In Table I, we summarize the energies for 2D H-
atom confined in the disk of radius a 5 1 nm. The 3D H-atom
Hamiltonian, h2(r2, z2, d), gives the solution for EE in the cylindrical
coordinates, R2nl(r2, z2)24.

Using these one-electron solutions, the combined CI wavefunc-
tions can be expanded as YN

L r1,r2,z2,dð Þ~
X

nkl
CN

nklR1nl r1ð Þ
|R2kl r2,z2

� �
yl dð Þ, where we omit the permutational spin sym-

metry, due to the distinguishability of ME and EE. However, these
wavefunctions should have spatial symmetries belonging to the D‘h

group, i.e., the i inversion in the force center and the sv reflection in
the plane containing z-axis.

These symmetry conditions can be satisfied by selecting certain
YN

L-wavefunction components. We need to take into account
that R1(r1) is totally symmetric, R2(r2, z2) is gerade/ungerade with
respect to i, and linear combinations of yl(d) can be either symmetric
or antisymmetric with respect to s. Then, considering S+

g=u L~0ð Þ,
the allowed symmetry-adapted wavefunction products are AN,+

g=u R1nl r1ð Þ

Rg=u
2kl r2,z2ð Þy+

l dð Þ. Here, yz
l dð Þ~ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p 1zdl0ð Þ
p cos ldð Þ for l 5 0, 1,

2, … and y{
l dð Þ~ 1ffiffiffi

p
p sin ldð Þ for l 5 1, 2, 3 … and A+

g=u are the

normalization coefficients. For simplicity, we focus on the Sz
g state

and use a limited basis set which consists of all the possible combi-
nations of eigenfunctions of h1,2, with l 5 0, 1, 2, …, 9 and n 5 l 1 1,

Figure 1 | Model (He-type) system with diskoid-like states, where one
electron is confined within the 2D disk area in the z 5 0 plane and the
second electron is orbiting around the disk in 3D.

Table I | The energy eigenvalues (a.u.) for orbitals of the 2D hydrogen atom (Z 5 2) confined in the disk of radius a 5 1 nm. Energy states
with E , 0 and E . 0 are highlighted with blue and red colors, respectively

l 5 0 l 5 1 l 5 2 l 5 3

E10 5 28.005643 E21 5 20.889515 E32 5 20.163121 E43 5 20.01118
E20 5 20.889515 E31 5 20.320225 E42 5 20.082219 E53 5 0.100311
E30 5 20.320225 E41 5 20.162923 E52 5 0.007547 E63 5 0.242860
E40 5 20.162837 E51 5 20.080790 E62 5 0.133351 E73 5 0.415372

l 5 4 l 5 5 l 5 6 l 5 7

E54 5 0.189837 E65 5 0.448944 E76 5 0.766247 E87 5 1.142297
E64 5 0.347205 E75 5 0.650439 E86 5 1.011136 E97 5 1.430107
E74 5 0.534240 E85 5 0.880975 E96 5 1.284670 E107 5 1.746312
E84 5 0.750451 E95 5 1.140261 E106 5 1.586679 E117 5 2.090793
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…, l 1 4 eigenvalues. Overall, the basis set contains 160 basis
functions.

First, we discuss the angular distributions in the two-electron
wavefunctions (correlations) for ME and EE, caused by the elec-
tron-electron coupling. Figure 2 shows the spatial distribution of

ME, r1r2 YSg ~r1,~r2ð Þ
�� ��2, in different excited Sg states, when EE is

positioned at a distance of r2 5 0.2 a and r2 5 2.5 a from the center
and w2 5 0 (the x-axis in the disk plane). We can see that all the
considered states (N 5 5, 29, 48, 120) have a significant angular
asymmetry of the ME distribution. Moreover, the radial nodal pat-
tern seems to be also altered in the moderately excited (b, c) states. In
the higher excited state (d), one would expect that an opposite charge
(hole) is accumulated close to the external electron in the disk.
However, since a single ME can not represent well a metal, this hole
does not form.

Figure 3 (top) shows the evolution of the ME distribution in N 5

29 for different radial positions of EE, r2 5 0.1 2 0.8 a (Dr1 5 0.1a),
localized in the disk plane (z2 5 0, w2 5 0). As r2 grows oscillations of
the ME density can be observed (correlations with EE). Figure 3
(middle) shows the same for the N 5 120 state, but r2 5 a 2 3.8 a
and Dr2 5 0.4 a. We can observe very interesting oscillations in the
ME density even when EE is far away from the disk. Figure 3 (bot-
tom) presents the EE distribution for N 5 72 outside the disk area
(gray), when the ME position is changing like that of EE in Fig. 3
(top). This time, we observe oscillations of the EE density localized
near the disk edge, where most of the EE population is largely pre-
sent. However, the angular asymmetry is not seen farther from the
disk.

We also study the radial distributions in the same two-
electron wavefunctions for ME and EE. Figure 4 (top) compares

the one-electron density matrix for ME, r1
�WN r1ð Þ
�� ��2~r1

ð
r2

| WN r1,r2,z2,dð Þj j2dr2 dz2 dw2, with the one-electron distribution,
r1 R1l1n1 r1ð Þj j2, where l1, n1 correspond to the basis function which
has the largest variational coefficient in WN(r1, r2, z2, d). In the
middle excited states (N 5 29, 48) the correlations significantly

perturb the ME distribution. In these states, r1
�WN r1ð Þ
�� ��2=0 is lar-

gely spread over the whole disk, where even the nodal pattern is
suppressed, as noticed in Fig. 2. However, in contrast to angular
correlations (Fig. 2), the radial correlations are suppressed in the
low (N 5 5) and highly (N 5 120) excited states.

In Fig. 4 (bottom), we perform the same analysis for EE. In par-

ticular, we compare r2
�WN r2,z2ð Þ
�� ��2~r2

ð
r1 WN r1,r2,z2,dð Þj j2

|dr1 dw1 with r2 R2l2n2 r2,z2ð Þj j2, where we set z2 5 0 (EE in disk
plane) and pick l2, n2 for the largest variational coefficient in WN(r1,
r2, z2, d). The radial distributions of EE are affected for all the chosen
states, but for N 5 29, 48 the correlations are substantially larger.

In order to analyze the electron correlations in more detail, we
evaluate how the eigenstates WN are spread over the used basis wave-
functions, and compare these results with the average ME-EE dis-
tance Ær12æ in these states. In Fig. 5 (top), we present the standard
deviation of the variational coefficients for N 5 1–160 states, normal-

ized as
XM

i
cN

i

�� ��2~1. We evaluate the degree of delocalization from

Dloc~1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

XM

i
cN

ij j
� 	2



M

s
. For low and highly excited states

the eigenfunctions are localized on a few one-electron wavefunc-
tions, whereas the eigenfunctions in the middle part of the energy
spectrum are more evenly distributed over the basis set. For each WN,
we also calculate the average number of states Ænæ/M whose vari-
ational coefficients exceed a threshold E. In Fig. 5 (top, inset) the
distribution shows how many basis wavefunctions contribute to
the N state at a given threshold E. For the chosen thresholds

Figure 2 | ME density r1r2 YSg ~r1,~r2ð Þ
�� ��2 (~r2 fixed) when EE sits on the disk plane at a distance of r2 5 0.2 a (cases a, b, c) and r2 5 2.5 a (case d) from the

center with w2 5 0 for a) N 5 5, b) N 5 29, c) N 5 48, d) N 5 120. The coordinates are given in units of a disk radius, a 5 1 nm.

www.nature.com/scientificreports
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E~0:02, 0:05, the eigenfunctions have practically the same profiles
of delocalization as when obtained through standard deviation of the
variational coefficients.

In Fig. 5 (bottom), we show that the Ær12æ dependence on N is
almost linear; the quasi-periodic oscillations originate from the spe-
cific choice of the basis set. We found that Ær12æ has local maxima in
the N states which are localized on a particular basis wavefunction
and it has local minima in the N states which are more delocalized
over the basis set.

These observations agree with the previous results, since in the N
5 29, 48 states, where Ær12æ has a minimum, ME has a highly corre-
lated radial distribution, seen in Fig. 2 b–c and 4. The suppressed
radial correlations in the low excited stated can be related to the
mixed dimensionality of this problem, where ME coupling to the
nucleus can not be well disturbed by the electron repulsion with
EE. In moderately excited states, Ær12æ , 1–2 nm and the mixed
dimensionality becomes less relevant. In highly excited states,
r12h i^3{5 nm, so the radial correlations largely disappear.

These electron-electron correlations in DES could potentially be
observed experimentally using spectroscopic techniques. One could
measure the energy shifts in optical transitions (compared to theor-
etical spectra of non-correlated system) or reductions of electron
kinetic energies by the Coulomb repulsion25. Because of the highly
correlated nature of DESs, the highly excited electron orbiting such
discoid structures might be prone to decay (angular momentum
exchange with material electrons). This electron-electron damping
mechanism was much less significant in TISs, where the electron
coupling to nanotube vibrations was the dominant damping
mechanism10.

Mean-field solutions. In principle, we can describe at a semi-
classical (one-electron) level the motion of highly excited electrons
moving in a mean-field potential formed above diskoid nanostruc-
tures. Following Fig. 1, we assume that EE moves around a charged
and polarizable (ME) disk (‘‘Hartree hole’’ of an image charge). In

principle, these semi-classical problems can be studied by asymptotic
expansion methods20,21,26–30 or perturbation methods, which can be
used to obtain one-electron solutions of this mean-field problem26,28.

We illustrate two ways of finding effective mean-field potentials,
UN(r2, z2), which could describe the interaction of EE with the nuc-
leus and ME (affected by EE). In the first case, we evaluate the average
potential that EE experiences, provided that its angular momentum
quantum number is l2 and ME is in the jl1, n1æ state, UI

l1,l2,n1
r2,z2ð Þ~

l2
2{1=4

r2
2

{
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
2zz2

2

p z
1

2p

ð
R2

1l1n1
r1ð Þ

r1

r12
dr1 dd. This potential

does not include the polarization of ME, but the nucleus screening
is accounted for. Alternatively, we can obtain the mean-field poten-

tial, UII
N r2,z2ð Þ~ l2

2{1=4
r2

2
{

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

2zz2
2

p z

ð
�WN r1ð Þ
�� ��2 r1

r12
dr1 dd,

where �WN r1ð Þ
�� ��2~ ð

WN r1,r2,z2,dð Þj j2r2 dr2 dz2 dw2. This is an

effective potential between EE, the force center and ME with a dis-
tribution affected by EE.

In Fig. 6, we present the UI and UII
N potentials. The UI

l,n1
r2ð Þ

potential is calculated for different l1 5 l2 and n1 5 l1 1 1. It develops
a well detached local minimum for l2 $ 5 at r2 . 1.5 a. Small ripples
in the potential form at r2 , a due to an inhomogeneous charge
distribution on the disk. The ripples depend slightly on n1, but vanish
at l2 . 6. The quantum numbers l1, l2, n1 are extracted from the CI
coefficients of the ‘‘exact wavefunction’’. However, the correspond-
ence between jL 5 0, Næ and jl1, l2, n1æ is approximate. Comparison
of the potentials shows that polarization is important for l2 5 2, 3.
This is compatible with our exact two-electron solution where cor-
relation effects are negligible for low excited states with l2 5 0, 1
(Fig. 4 a). Both mean-field and classical (Fig. 8 (top)) potentials
develop well detached minima for l2 $ 5 at r2 . 1.5 a and l $ 8 at
r . 3.5 a, respectively. For highly excited states, both the disk-elec-
tron distance and the average electron-electron distance are large, so
the correlations are no longer seen.

Figure 3 | (top) Evolution of the ME density r1r2 YSg ~r1,~r2ð Þ
�� ��2 (~r2 fixed) for EE positioned in the disk plane (z2 5 0, w2 5 0) at different distances r2 from

the disk center for the N 5 29 state. The snapshots correspond to r2 5 0.1 a–0.8 a values separated byDr2 5 0.1 a. The area r1 # a is shown. (middle) The

same as in (top) for the N 5 120 state. The snapshots correspond to r2 5 1 a–3.8 a values separated by Dr2 5 0.4 a. The area r1 # a is shown. (bottom)

Evolution of the EE density r1r2 YSg ~r1,~r2ð Þ
�� ��2 (~r1 fixed) in the disk plane (z2 5 0) for different distances r1 of ME (w1 5 0) from the center of the N 5 72

state. The snapshots correspond to r1 5 0.1 a–0.8 a values separated by Dr1 5 0.1a. The area r2 # 4a is shown. The disk is gray.

www.nature.com/scientificreports
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One-electron Diskoid-like States
Here, we describe the diskoid-like states in an one-electron approxi-
mation, where we evaluate the electron binding potential classically,
rather than by resorting to the semi-classical solutions discussed
above. First, we calculate the electrostatic potential of an electron
interacting with a perfectly conducting (isolated or grounded,
charged or neutral) nanodisk. To this goal, we obtain the analytical
solution of a Poisson equation with appropriate boundary condi-
tions. Then, we numerically solve the single-electron Schrödinger
equation for the electron moving in this potential. Note that the
system is somewhat different than in the previous section, since
the charge is freely distributed on the whole disk and the screening
is ideal, rather than having a positively charged nucleus and one
screening ME moving in 2D.

Charge distribution on a metallic disk. We start by finding the
equilibrium charge distribution s(x, y) of an isolated metallic disk
(centered at the coordinate origin and oriented in the x 2 y plane)
with a radius a and a charge Q. The electrostatics of a perfectly
conducting uniform thin circular disk was first discussed by Lord
Kelvin31. He derived the expressions for a surface charge density s(r)
on an equipotential disk using the formula for the gravitational
potential of an elliptical homoeoid.

The Kelvin’s approach gives the surface charge density of an ellipsoid,

s x,y,zð Þ~ Q
4pabc

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

a4
z

y2

b4
z

z2

c4

r :

Figure 4 | (top) The radial distributions rME of ME, r1 R1l1n1 r1ð Þj j2 and r1
�WN r1ð Þ
�� ��2, obtained from the one- and two-electron solutions. The blue- and

red-fill areas show the localizations of ME which is free and perturbed by EE, respectively. (inset) r1
�WN r1ð Þ
�� ��2{r1 R1l1n1 r1ð Þj j2 for N 5 5 is shown.

(bottom) The radial distributions rEE, r2 R2l2n2 r2ð Þj j2 and r2
�WN r2ð Þ
�� ��2, of EE in the disk plane, obtained from the one- and two-electron solutions. The

blue- and red-fill areas show the localizations of EE non-perturbed and perturbed by ME, respectively.

www.nature.com/scientificreports
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By projecting this surface charge density on the plane z 5 0, one can
obtain the charge density of an ellipse,

s x,yð Þ~ Q
4pab

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

x2

a2
{

y2

b2

r ,

and a disk,

s rð Þ~ Q
4pa

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2{r2

p , r2~x2zy2:

In all these cases, the potential is constant over the particular geomet-
rical objects.

The problem of finding the electrostatic potential generated by a
charged equipotential disk can be reduced to the equations for the
unknown function f(k) (mixed boundary conditions),

Vs r,zð Þ~
ð?

0
dk f kð Þe{k zj jJ0 krð Þ,

Vs r,0ð Þ~V0, 0ƒrƒa,

dVs

dz
r,0ð Þ~0, avrv?

ð3Þ

where Q~V0
2a
p

. These equations have the solution, Vs r,zð Þ~

Q
ð?

0
dk

sin kað Þ
ka

e{k zj jJ0 krð Þ32, giving the same expression for the

charge density as above.

Induced charge distribution and image potential. Next, we find
the potential energy of a point charge above a metallic disk. When
a metallic disk is present in a potential created by external charges,
Vext(r, w, z), it develops an induced surface charge density, s(r,
w), and a related potential, Vs(r, w, z), which makes the total
potential Vtotal 5 Vext 1 Vs constant on the disk. Depending,
on the isolated or grounded character of the disk, the total
induced charge (integral of s(r, w) over disk) remains constant
(zero) or not. For a neutral isolated disk, s and Vs originate solely
in the disk polarization.

Due to the presence of disk edges, finding the potential Vs(r, w, z)
can be a relatively complex task. Since the Lord Kelvin’s solution,
many sophisticated techniques have been developed. For example,
Sommerfeld has shown33 that such problems can be solved by image
potential techniques. In this way, a Green’s function for a conducting
disk and a point charge with Dirichlet boundary conditions could be
found34,35.

Alternatively, the electrostatic potential of a point charge above a
disk36 could be found from the Copson theorem37. The target is to
find the electrostatic potential Vs ~rð Þ created by the induced charge
density s(r) present on the disk, which can be expressed in the
external space as,

Vs ~rð Þ~
ð

r’va
z’~0

s r’ð Þ d2~r’
~r{~r’j j: ð4Þ

According to the central lemma, the potential generated by the
external charge in the area of the disk can be expressed as,

Vs rð Þ~
ðp=2

{p=2
l r cosbð Þdb, ð5Þ

where l(x) is a so called ‘‘strip function’’,

l xð Þ~
ð

s x,yð Þdy: ð6Þ

Equations 5 and 6 form a pair of integral transforms equivalent to
Eqn. 4. The physical meaning of the lemma is in the connection
between the strip function l(x) and the potential created on the disk
surface. Once Vs(r) is known, one can try to find the strip function
which would generate the same (up to the additive constant) but
opposite sign potential in the disk, and cancel Vs(r). Thus, the total
potential in the disk area would be constant. Along with the unique-

Figure 5 | (top) Degree of delocalization of energy eigenfunctions

in N states over the basis wavefunctions, Dloc, where M 5 160 is total

number of basis wavefunctions. (inset) The average number of states Ænæ/M
whose variational coefficients exceed a threshold of E~0:05, 0.02. (bottom)

The average electron-electron distance Ær12æ as a function of N.

Figure 6 | Comparison of the mean-field potentials without
UI (r2, z2 5 0) (solid lines) and with UII (r2, z2 5 0) (dotted lines) the ME
polarization. The first is calculated for the states with l1 5 l2 5 l with

n1 5 l 1 1.

www.nature.com/scientificreports
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ness of the Poisson equation solution, this provides the correct
expression for l(x) or s(r) and, thus, for Vs ~rð Þ.

In some cases the strip function can be easily guessed. A point
charge, qext, placed at r 5 0 and z 5 z0 creates on the disk the

potential Vs rð Þ~ qextffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

0zr2
p . By inspecting this Vs, the strip func-

tion can be easily found as l x; z0ð Þ~{
qext

p

� 	 z0

z2
0zx2

. We can use

this strip function to compute the interaction potential energy
between a point charge placed at the disk axis r 5 0 at distance z

above the disk, Vs,r~0 zð Þ~{
qext

p

a
z2za2

z
1
z

arctan
a
z

� �
z

2qext

ap
|

arctan2 a
z

. For z R 0, we obtain Vs zð Þ*{
1

2z
, while for z?a,

Vs zð Þ*{
8a5

4pz6
, as expected for a charge above an infinite conduct-

ing plane and for a point charge coupled to a quadrupole, respect-
ively. In a similar way, we can also find the induced charge

density, s r; z0ð Þ~{
1

2pr

d
dr

ð ffiffiffiffiffiffiffiffiffiffiffiffi
a2 { r2
p

{
ffiffiffiffiffiffiffiffiffiffi
a2{r2
p l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2zr2; z0

p� 	
dx ~

{
qext

p2
|

z0

z2
0zr2ð Þ3=2

arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 {r2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

0 zr2
p z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

0 zr2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 {r2

p
 !

z
qext

ap2
|

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2{r2

p arctan
a
z0

.

In Fig. 7 (top), we show the charge distributions on a neutral disk
induced by an external point charge positioned at two different dis-
tances above the disk center (r 5 0). The closer the point charge is to
the disk plane, the more negative image charge the disk develops
beneath it. The induced charge density diverges at the disk edges

s rð Þ*1
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2{r2
p

. Given the disk neutrality, we have q~

2p
Ð a

0r s rð Þdr~0.
In order to find a general solution for the potential induced by a

point charge in an off-axis position above the disk, we need to solve a
Poisson equation with Dirichlet boundary conditions. This leads to a
pair of dual integral equations involving Fourier components fn(r) of

the external potential, Vext r,wð Þ~
X?

n~0
fn rð Þcos n wzað Þ, calcu-

lated in the disk area. Then, the Fourier components of the potential
created by the induced charge on the disk, Vns(r, z), can be calculated
from the integral equations for the unknown function W(k),

Vns r,zð Þ~
ð?

0
dk W kð Þe{k zj jJn krð Þ,

ð?
0

dk W kð Þ Jn krð Þ~fn rð Þ, 0ƒrƒa,

ð?
0

dk W kð Þ k Jn krð Þ~0, avrv?:

ð7Þ

Instead, we consider the Fourier components sn(r) of the induced
charge density, which can be obtained with the help the Abel’s integ-
ral equation,Ð a

0
u sn uð Þdu

Ð 2p

0

cos n hzað Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2zu2{2r u cos hzwð Þ

p dh~

~fn rð Þcos n wzað Þð Þ:
ð8Þ

Using the Copson’s theorem37, we can find that

sn rð Þ~{
2
p

d
dr

ða

r

t Sn tð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
t2{r2

p dt,

Sn rð Þ~ 1
2p

1
r2n

d
dr

ðr

0

tnz1fn tð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
r2{t2

p dt:

ð9Þ

Then, the induced charge density in the disk can be found as s(r, w)
5 Sn sn(r) cos (n(w 1 a)).

In Fig. 7 (bottom), we show the induced surface charge density,
s(r, w), on a neutral disk for a point charge located at r 5 0.5 a, z 5

0.5 a. We can clearly see the induced negative charge beneath the
point charge. The charge distribution also diverges at the disk edge.

The resulting potential created by the induced surface charge den-
sity s(r, w) has the form,

Vs r,zð Þ~
ða

0

ð2p

0

s u,hð Þu dh duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2zu2zr2{2ur cos hð Þ

p : ð10Þ

A grounded disk in an external field (of a point charge) gains beside
its polarization also a nonzero induced charge, q (integral of s). In
order to calculate the induced potential when the disk has a net

charge Q, we need add a term
1

4pa
Q{qð Þ

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2{r2

p
to s(r, w) in

Eqn. 10 (Kelvin’s formula for a total charge of Q 2 q).
One can easily find that Vs(r, z) has a short range asymptotics of

{
a
r2 r??
�� (grounded disk), {

a3

r4 r??
�� and {

a5

z6 r~0,z??
�� (neutral

disk). Therefore, Vs(r, z) cannot support the formation of states
localized outside the disk. In order to support such states, the long
range asymptotics should have a Coulomb character as well.
Therefore, in the remaining calculations, we consider a metal disk

Figure 7 | (top) Induced image charge densities on a neutral disk for two

axial positions z 5 0.3a, and z 5 0.5a of an external point charge. (bottom)

Induced charge density on a neutral disk for a point charge positioned

above a disk at r 5 0.5 a, and z 5 0.5 a.
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(radius a 5 1 nm) bearing a charge of Q 5 jej, which can provide the
necessary long-range asymptotics.

One-electron 1D diskoid-like states. In order to capture the main
features of the diskoid states, we consider first 2D motion of an
electron in the plane (z 5 0) of the charged polarizable disk, using
the potential obtained in the previous section. The Schrödinger
equation for the radial part R xð Þ~f xð Þ

� ffiffiffi
x
p

of the wavefunction is
(x 5 r/a),

{
L2f
Lx2

z
l2{1=4

x2
z

1
E

Va,z~0 xð Þ
� �

f ~
E
E

f , ð11Þ

where E~
�h2

2mea2
~38:1 meV and Va,z50 is the total electrostatic

potential in the disk plane.

In Fig. 8 (top), we show the effective potentials, U, formed in Eq. 11
by the attractive Coulombic and repulsive centrifugal terms. For l $

lmin 5 8, the potentials develop local wells, with minima rapidly
shifting outwards with increasing l. For example, rmin 5 3.67a for
l 5 9. In Fig. 8 (bottom), we also show the ground n 5 1 and the first
excited n 5 2 states for l 5 8, with an energy difference of De <
0.004 eV. In order to disclose the role of polarization in the forma-
tion of these extended states, we calculate the states when the disk
polarization is removed. In this case, lmin 5 5 and the effective poten-
tial has a minimum at rmin 5 2.4 a, in contrast to rmin 5 2.9 a (lmin 5

8) for the conducting disk. These results are similar to those for
tubular image states9–11.

One-electron 2D diskoid-like states. Next, we find the full solution
of a diskoid-like system described by the 2D Schrödinger equation
(x 5 r/a, y 5 z/a),

{
L2f
Lx2

{
L2f
Ly2

z
l2{1=4

x2
z

1
E

Va x,yð Þ
� �

f ~
E
E

f : ð12Þ

The energy factor is E~�h2�2mea2 and Va(x, y) is the 2D induced
electrostatic potential. We solve Eqn. 12 using a finite difference
method with the Hamiltonian matrix defined in a 2D square lattice
with (i, j) nodes,

Figure 8 | (top) Effective potentials U (r, z 5 0) formed in the disk plane

for different angular momenta quantum numbers. (bottom) The lowest

two states of an electron (l 5 8) formed in the effective potential U.

Figure 9 | The effective potential of a charged disk (a 5 1 nm) for l 5 6, 8, 9 and 10. The black dashed line marks U (r, z) 5 0. The red area is the

repulsion centrifugal wall. The disk is shown by a black solid line.

Figure 10 | The contour plot for the diskoid state | 1, 1æ with l 5 8 of a
charged disk. The disk is shown by the red solid line at z/a 5 0, r/a 5 0–1

middle left.
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ĤR
� 

x~iD
y~jD

~ Vijz4t
� �

Rij{t Riz1,jz
�

zRi{1,jzRi,jz1zRi,j{1
�
:

ð13Þ

Here, only the nearest neighbors are taken into account and

t~
�h2

2meD
2 is a ‘‘hopping’’ parameter. The effective potential

Ua(x, y) has singularities at 0 # r , a, z 5 0 and r 5 a, z 5 0.
In Fig. 9, we show the effective potentials for different l, where two

distinct types of potential wells are seen to form. For l # 7, the
effective potentials develop local minima in the vicinity of the disk
edges. An electron orbiting in states localized in these local minima
overlap with the disk and easily fall onto its surface. At l $ 8, the

competition between a long-range Coulomb attraction (*{
1
r

) and

a centrifugal repulsion (*
1
r2

) leads to the formation of an additional

minimum (arrow) at r . 3a and 23a , z , 3a, where an electron
can only cause a negligible polarization of the disk. The formed
potential wells are 0.085, 0.368, and 0.915 eV deep (along the path
r, z 5 0) for the l 5 8, 9 and 10 states, respectively. In Fig. 10, we show
one of the states (l 5 8) formed in these wells obtained in the one-
electron approximation for a charged and polarizable disk. It has one
node in each (r and z) direction. In Table II, we summarize the
energies of these diskoid-like states. Each state is characterized by a
pair of quantum numbers nr and nz. The calculations show that the
binding energies are approximately twenty to eighty times larger
those of tubular image states11. At higher l the states change their
order.

Note that the potential well formed near the disk edge (Fig. 9)
remains there at all l’s. This high electric field could potentially be
used for the detection and trapping of atoms. At modest charging (1
e-charge on the disk of radius a 5 1 nm corresponds to 2.26 V of
external potential) the electric field near the edges could potentially
ionize neutral atoms. This effect could be used for the development of
compact, cold-atom based interferometers, atom counting and
quantum correlation measurements in cold atomic gases38.

Finally, we would like to briefly discuss the connection between
the many-electron and one-electron diskoid-like states, discussed
above. In principle, one could find highly excited many-electron
(not just two-electron) wavefunctions of metallic nanodisks. In such
states, the position of one of the electrons can be fixed and the rest of
the many-electron wavefunction can be used to construct a one-
electron density matrix. Then, we might find that as the position of
the fixed electron is positioned further away from the disk axis, the
density matrix produces electron densities similar to that in Fig. 7
(bottom). This does not mean that the hole is dynamically pursuing
the electron in a classical sense, but it shows the nature of (static)
many-electron eigenstates and their connection to the one-electron

solutions. Obviously, in the two-electron solution we can not recover
densities with holes perfectly matching the position of the fixed EE in
the classical sense, since the single ME can not properly screen this
EE.

Conclusions
We have studied extended diskoid-like electronic states present in
highly polarizable molecular or metallic nanosystems, and described
their complex correlations and other properties. One-electron
(mean-field) solutions have also been discussed and compared to
the correlated two-electron solutions. In principle, highly excited
DESs in the one-electron limit may be described as ‘‘circular’’
Rydberg-like states with jmj5 n 2 1, where m and n are the magnetic
and principal quantum numbers, respectively. For large m, the
orbital of an electron lies in a thin torus centered on the disk axis
and reveals quantum position fluctuations around the classical Bohr
orbits. These single-electron states have large magnetic moments,
smallest Stark effect, and potentially long radiative lifetime39. All
these features could make DESs useful in quantum entanglement
manipulations40.

However, electron-electron correlations (present in many-elec-
tron DESs) do not allow a stable existence of such one-electron states.
Therefore, if such one-electron states were somehow prepared, they
could decay relatively fast due to correlations; the exchange of angu-
lar momentum between electrons (neither l1 nor l2 are good quantum
numbers) should decay fast the external electron. Due to the highly
correlated nature of the two-electron DESs, they themselves might be
prone to coupling and decay, for example, due to light-matter and
electron-phonon interactions.

Despite these limitations, DESs are of high fundamental and prac-
tical interests, due to many existing nanoscale systems in which they
could be observed and applied. These states may be found in the
metal nanoparticles41, metal clusters42, and graphene flakes43. DESs
may play a significant role in plasmonic excitations, electron scatter-
ing experiments, Wigner molecules, and cold matter science areas38.
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