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We consider a dynamical network model in which two competitors have fixed and different states, and each
normal agent adjusts its state according to a distributed consensus protocol. The state of each normal agent
converges to a steady value which is a convex combination of the competitors’ states, and is independent of
the initial states of agents. This implies that the competition result is fully determined by the network
structure and positions of competitors in the network. We compute an Influence Matrix (IM) in which each
element characterizing the influence of an agent on another agent in the network. We use the IM to predict
the bias of each normal agent and thus predict which competitor will win. Furthermore, we compare the IM
criterion with seven node centrality measures to predict the winner. We find that the competitor with higher
Katz Centrality in an undirected network or higher PageRank in a directed network is most likely to be the
winner. These findings may shed new light on the role of network structure in competition and to what
extent could competitors adjust network structure so as to win the competition.

C
ompetition among a set of competitors for obtaining a maximum number of votes from other agents in a
social network is a both important and common phenomena in real world. The competitors could be
candidates in numerous leader-selection cases, ranging from head–election in a small group to president-

election in a whole country1. They could also be those who have different proposals or promote different brands of
a product such as mobile phone and car2. There have also been some researches on, for example, how the fractions
of speakers of several competing languages evolve in time3 and even how the emerging Bitcoins appear to be a
possible competitor to usual currencies4.

The most well-known model in social dynamics for the competition of species is the voter model5,6, which has
also later on been used for the analysis of diffusion of innovations and consumption decisions. In its simplest
form, each agent in the voter model holds one of the two states. At each time step, a randomly selected agent takes
the state of one of its neighbors. Over the years, many modifications and extensions of the original voter model
have been proposed7. Voter-like dynamics on networks with different topologies and the interplay between
topology and dynamics have also been investigated8,9. However, many of such models, including the voter model,
Sznajd model10,11, Deffuant model12, Hegselmann-Krause model13 and so on have been focused on whether full
consensus can be reached.

A nature way to consider the existence of competitors in a network is to view them as zealots14,15 or stubborn
agents16–18 with fixed and different states. For example, it is shown that the existence of competing zealots in the
voter model prevents convergence and results in fluctuations in regular lattices14 and complete graphs15.
Competitive dynamics with continuous states in the stochastic gossip model is investigated in Ref.16, in which
long-run disagreements and persistent fluctuations appear. Influence of network structure and locations of
stubborn agents on the fluctuation of final states in a binary opinion formation model is studied in Ref. 17. In
Ref. 18,given one set of stubborn agents as mis-informers (agents who spread misinformation), the placement of
the other set of stubborn agents (named information disseminators) is formulated as an optimization problem.

The question we address in this work is: How do positions of competitors in a network affect voting outcome?
That is, can we predict which competitor will win in the sense that majority of agents in the network will eventually
support the competitor? Can we predict which competitor a normal agent will support based on the network
structure? Intuitively, the problem of which competitor will win should be related to the relative impact of the
competitors in a network. How to characterize the impact or importance of an individual (or even a community)
in a network is a question of great importance and applications in network analysis. Traditionally, identifying
such influential nodes usually relies on concepts of centralities, including degree (DC), betweenness (BC)19,
closeness (CC)20, eigenvector centrality (EC)21, Katz centrality (KC)22, PageRank (PR)23, and so on. Recently, a
lot of researches have also been focused on identifying influential nodes in dynamical processes on networks. For
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example, Kitsak et al. have argued that there are circumstances in
which a node with the highest DC or the highest BC has little effect,
and the most efficient spreaders are those located within the core of
the network as identified by the k-shell decomposition24. However,
till now, we still lack an understanding on which of these measures
could best predict the winner among competitors in a network.

Results
A dynamic model for competition. We consider a directed and
weighted network with N agents and M links. The agent set is
denoted as V~f1,2, � � � ,Ng and the topology of the network is
described by a coupling matrix A 5 (akl)N3N: if agent k is directly
influenced by agent l, then there is a link from agent k to agent l and
akl . 0; otherwise, akl 5 0. For simplicity, we assume that there are
just two competitors in the network, denoted as agents i and j, which
have fixed and different states as follows:

xi(t):z1, xj(t):{1, Vt§0: ð1Þ

Every other agent (called normal agent) kgV/{i, j} has a random
initial state and updates its state as follows:

xk(tz1)~xk(t)ze
X
l[Nk

akl xl(t){xk(t)ð Þ, ð2Þ

where xk(t) is the state of agent k at time t; the parameter e captures
the level of neighbors’ influence; Nk 5 {lgVjakl . 0} is the set of
neighboring agents of agent k that can directly influence agent k.
Note that Eq. (2) belongs to a set of distributed consensus
protocols, which can be traced back to the classical model of
DeGroot25. However, the existence of competitors in the network
prohibits global consensus. Instead, we have the following
convergence result:

Suppose that

1) Each normal agent has a path connecting to at least one com-
petitor;

2) 0vevD{1
max, where Dmax is the largest out-degree of agents in

the network.

Then the state of each normal agent will eventually reach a steady
value, i.e., as tR‘,

Xnorm(t)?�X ¼D (�D{�A){1 ci cj
� � z1

{1

� �
, ð3Þ

where XnormgRN22 represents the state vector of all normal agents,
and �D, �A and ci cj

� �
can all be derived from the network coupling

matrix A. Furthermore, if xk(0)g[21, 11], ;kgV/{i, j}, then
xk(t)g[21, 11], ;t . 0. The detailed analysis can be found in
Methods.

The sign of the steady state of each agent indicates his or her bias:
�xkw0 (�xkv0) implies that agent k will finally support competitor i
(j), and �xkj j corresponds to the degree of supporting. �xk~0 implies
that agent k will be a neutral agent which does not support or against
any competitor. Denote

Wij ¼D
X

k[V=fi,jg
sgn(�xk), ð4Þ

where sgn() is the sign function. If Wij . 0, then competitor i will win
in the sense that more normal agents will support him; if Wij , 0,
competitor j will win; ifWij 5 0, the competition ends up with a draw.

An illustration example. Fig. 1 shows the competitive dynamics on
three simple undirected networks which have the same number of
agents but different coupling structures. We take agent 1 and agent
10 as two competitors in each network with fixed states x1 ; 11 and
x10 ; 21. Steady states of normal agents are computed according to
Eq. (3). An red (blue) node represents an agent with positive
(negative) state. The darker the color the larger the absolute value
of the state. Nodes with white color represent neutral agents.

For network (a),W1,10 5 0, hence the competition ends up as draw.
Network (b) is derived from network (a) by just adding one edge
between agents 2 and 6, which results in W1,10 5 21 and agent 10
being the winner. By changing weights of edges in network (a), we get
network (c), which leads to W1,10 5 3 and agent 1 winning the
competition. We can see that both network structure and coupling
weights influence the competition results. In the following, we will
focus on unweighted networks in the sense that the weight of every
link in a network is one.

Figure 1 | An example of how network structure influences the competition result. (a) A simple undirected network of 10 agents with each edge of unit

weight. The competition between agent 1 and agent 10 ends up as draw. (b) The network is derived from (a) by adding one edge between agent 2 and 6,

which results in agent 10 being the winner. (c) The network has the same structure as network (a) but with different edge weights, which leads to agent 1

being the winner.
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Verification on a real network. To see whether Eqs. (1)–(2) could
properly model competition in real social networks, we test it on a
commonly used benchmark model in social network analysis---the
Zachary’s karate club network26 as shown in Fig. 2(a), which is a
network of friendships between 34 members of a karate club at a
US university in the 1970s. Due to the confliction between the
manager (agent 34) and the coach (agent 1), the club finally splits
into two communities, centered at the manager and the coach,
respectively, as depicted by the vertical dashed line in Fig. 2(a).

In simulation, we fix the states of agents 1 and agent 34 at 11 and
21, respectively. The state of every other agent evolves according to
Eq. (2). Fig 2(b) shows the steady states of all agents in the network, in
which red agents are supporters of agent 1 and blue agents are sup-
porters of agent 34. It is surprising to note that this splitting result
completely matches the real situation as shown in Fig. 2(a).
Furthermore, Fig. 2(b) also reveals the degree of supporting of each
normal agent, represented by the darkness of the color. For example,
agent 9 has the smallest absolute value of steady state among those
supporters of agent 34, which implies that agent 9 is the weakest
supporter of agent 34. This is also consistent with the reality that
individual 9 is indeed the weakest political supporter of the man-

ager26. Therefore, although our model is a very simplified version of
the very complex real-world competition, it might be a reasonable
mechanism for the competitive dynamics in some real social net-
works. Note that many network community detection methods can
correctly reveal the two communities in the karate network27, how-
ever, they do not explicitly use the information of the two competi-
tors in the network and cannot reveal the degree of supporting of
each agent towards the corresponding competitor.

Influence Matrix Criterion. From the steady states expression in Eq.
(3), competition results are fully determined by network structure
and positions of the competitors in the network. However, directly
computing the steady states according to Eq. (3) is computational
inefficient for large-scale networks, since for every different pair of
competitors, we have to re-compute the steady states. In the
following, we compute the Influence Matrix (IM), in which each
element characterizes the impact of one agent on another. Note
that if there is a link from agent k to l, i.e., akl 5 1, then agent l has
a direct impact on agent k. If there is a link from agents k to m, and a
link from agent m to l, then agent l has an indirect impact on agent k
via agent m. Intuitively, such an indirect impact should be weaker

Figure 2 | Verification of the model on Zachary’s karate club network. (a) Two real communities in the network led by agent 1 and agent 34, respectively,

as divided by the dashed line in the figure. (b) Two communities derived from our model. Red community consists of supporters of agent 1 and blue

community consists of supporters of agent 34. Darkness of the color represents the degree of supporting.
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than the direct impact. Taking into account the fact that the number
of paths of length r from agent k to l is (Ar)kl in the unweighted
network case, we define IM as a sum of the exponentially
decreasing impact of increasingly paths:

F~IzgAzg2A2z � � � ð5Þ

where gg(0, 1) is an attenuation factor. If g[(0, l{1
1 ), where l1 is the

largest eigenvalue of matrix A, then the above series converges28 and
we have:

F~(I{gA){1: ð6Þ

Let fki be the entry of F on k th row and i th column. Denote

Cij ¼D
X

k[V= i,jf g
sgn fki{fkj
� �

, ð7Þ

We have the following IM criterion:

. Which competitor will a normal agent support: If fki . fkj (fki ,

fkj), then agent k will support competitor i (j); If fki 5 fkj, then
agent k is a neutral agent;

. Which competitor will win: IfCij . 0 (Cij , 0), then competitor i
(j) will win; If Cij 5 0, the competition ends up with a draw.

Note that other measures of influence of an agent or a group of
agents in a network were proposed in Ref. 29–31. The basic idea is to
assume that these agents are ‘‘forceful’’ agents which always hold zero
states, and the influence of these agents in a network is captured by
the sum over all entries of the inverse of a corresponding reduced-
order matrix, which is determined by the dynamics of the normal
agents. Efficient algorithms were also proposed to identify the most
influential agents in order to avoid computing matrix inverse for
each given forceful agent29–31. The main benefits of the IM are that
we only need to compute the matrix inverse in Eq. (6) once and can
then predict competition result for each given pair of competitors,
including which competitor will win and which competitor each
normal agent will support.

Although different choice of g in Eq. (6) may generally result in
different IM, we find that the IM criterion is robust with respect to g,
in the sense that the criterion gives similar qualitative prediction for
different choice of g[½0:5l{1

1 , 0:9l{1
1 ) (see Supplementary Figure

S1). In the following simulations, we set g~0:85l{1
1 .

For the Zachary’s karate club network, Fig. 3 shows the difference
fk,1 2 fk,34 between the influences of two competitors (agent 1 and

agent 34) on a normal agent k. Comparing Fig. 3 with Fig. 2(b), we
can see that fk,1 2 fk,34 . 0 (fk,1 2 fk,34 , 0) if and only if �xkw0
(�xkv0), which implies that the competition result can be fully pre-
dicted by the IM criterion in this case.

In general, for a given pair of competitors i and j in a network, we
use the IM criterion to predict the bias of each normal agent and
calculate the success rate of prediction as follows:

rij ¼
D 1

(N{2)

X
k[V=(i,j)

sgn(fik{fjk)zsgn(�xk)
�� �� sgn(fik{fjk)

�� �� sgn(�xk)j jzg sgn(fik{fjk)
�� ��z sgn(�xk)j j
� �

2
, ð8Þ

where g(x) 5 2, if x 5 0; otherwise g(x) 5 0. The average success rate
of prediction on the bias of normal agents over all the N(N 2 1)/2
possible pairs of competitors in a network is denoted as ,r..
Similarly, the success rate of prediction on who will win as the frac-
tion of correct prediction over all the possible pairs of competitors
can be formulated as follows:

s ¼D 1
N(N{1)

X
i,j

sgn(Cij)zsgn(Wij)
�� �� sgn(Cij)

�� �� sgn(Wij)
�� ��zg sgn(Cij)

�� ��z sgn(Wij)
�� ��� �

: ð9Þ

Table I shows the value of ,r. and s for 16 real social networks. The
maximum value of ,r. is 91.6%, the minimum is 74.0% and the
average is 83.8%. s is almost always larger than 80%: the maximum is
96.9%, the minimum is 79.9% and the average is 86.1%. These results
verify the validity of the IM criterion. We conjecture through simu-
lation that for most pairs of competitors the prediction of a normal
agent’s bias being incorrect is because two competitors have very
similar influence on the normal agent (see Supplementary Figure S2).

Comparison with centrality-based criteria. Given a pair of com-
petitors, the IM criterion can not only predict which competitor will
win but also predict the bias of each normal agent. Intuitively, the
winner should be more important or have higher impact on the
network than the loser. Over the years, a number of centrality
measures have been proposed to characterize the ‘‘importance’’ or
‘‘impact’’ of a node in a network. However, one difficulty in applying
these centrality measures is that it is often unclear which of the many
measures should be used in a particular circumstance. Here, we
compare the IM criterion with criteria based on several common-
used node centrality measures, including betweeness (BC), closeness
(CC), degree (DC), eigenvector (EC), Katz (KC), K-Shell (KS) and
PageRank (PR) (see Methods for the computation of these
measures).

Figure 3 | Application of the IM criterion to Zachary’s karate club network. Agent 1 and agent 34 are two competitors. A normal agent is colored red

(blue) if the influence difference fk1 2 fk34 . 0 (fk1 2 fk34 , 0). We dye all the nodes according to their normalized difference. The darker the color the

larger the absolute difference is.

www.nature.com/scientificreports
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Centrality-based criterion. The competitor with higher centrality
value will win. Competitors with the same centrality value will end up
with a draw.

To compare these criteria, we select 16 real networks of different
sizes, including 8 undirected and 8 directed networks (see Table I).
For each criterion, we calculate the success rate of prediction as the
fraction of correct prediction of who will win over all N(N 2 1)/2
possible pairs of competitors in each network (see Fig. 4–5).
According to the average success rate over undirected and directed
networks, we have the following order:

. For undirected networks: KC (84.8%), IM (84.4%), EC(79.7%),
PR (78.4%), DC (77.8%), BC (69.4%), KS (61.4%), CC (39.6%).

. For directed networks: PR (92.9%), KC (88.5%), IM (87.9%),
EC(86.9%), DC (80.5%), BC (77.7%), KS (63.9%), CC (39.5%).

We can see that criteria based on KC, PR, IM and EC are always
better than the criteria based on the other four centralities. For
undirected networks, KC criterion has the best performance: It pro-
vides highest success rate of prediction in 5 of 8 networks. On the
other hand, PR criterion is always the best for each of the 8 directed
networks. From the definition of KC, PR and EC (see Methods), these
results imply that whether a competitor could win depends to a large
extent on both the number and importance of those agents that the
competitor could directly influence.

In fact, the KC of node i can be directly defined from IM as the
influence of node i on the whole network:

KCi~
X
k[V

fki: ð10Þ

The KC-based prediction criterion can be derived from the IM cri-
terion by just changing the order of summation and sign function in
Eq. (7):

sgn(KCi{KCj) ¼D sgn(KCij)~sgn
X

k[V=fi,jg
(fki{fkj), ð11Þ

where KCi is the KC value of node i (For a directed network, we just
need to add one more term (fji 2 fij) in the sum). Directly summing

up the influence errors in Eq. (11) may help reduce perturbation, and
thus result in more robust criterion. This might explain why KC
criterion is better to predict the winner than the IM criterion.
PageRank is basically a variant of Katz centrality which is widely
used for ranking nodes in directed networks such as WWW32.
Although IM criterion is not the best, an advantage of IM criterion
over node-centrality based criteria is that it could also predict the bias
of each normal agent, in addition to predict the winner.

Degree (DC) is certainly the simplest criterion to predict the win-
ner. However, it is a bit surprising to see that DC criterion provides as
high as 80% success rate of prediction and performs even better than
criteria based on BC, KS and CC. This implies that the number of
agents that competitors could directly influence is still a relatively
important factor. On the other hand, CC turns out to be the poorest
criterion to predict the winner: the corresponding average success rate
is just a little bit better than that of the completely random guessing
(33.3%). Note that CC of a node captures how long it will take to
spread information from the node to all other nodes sequentially. Our
results show that this score has little effect on the competition.

Discussion
In summary, we study a model of competitive dynamics in which two
competitors have fixed and different states, and each normal agent
adjusts its state according to a distributed consensus protocol. The
steady states of normal agents are fully determined by the network
structure and positions of competitors in the network. Although real
world competition involves a number of complex factors, we find
that this very simple model can completely reveals the competition
result in the well-known Zachary’s karate club network. We propose
the Influence Matrix (IM) criterion to predict which competitor a
normal agent will support and which competitor will win. By simu-
lations on 16 real networks of different sizes, we verify the effective-
ness of the criterion on predicting which competitor each normal
agent will support. We also compare the IM metric with those cent-
rality measures on predicting which competitor will win. Though
Katz centrality (KC) and PageRank (PR) provide best prediction
for undirected and directed networks, respectively, these classical
centrality measures cannot be applied to predict the bias of normal
agents.

These findings suggest that competitors in a network might use
techniques such as PageRank optimization33 to adjust network struc-
ture in order to win the competition. Although we assume that there
are only two competitors in the model, the above analysis can also be
generalized to the case with two sets of competitors in a network, and
a nature way to deal with this case is to view all agents in a set as a
super-agent. However, a key challenge here is that there does not
existing a simple relationship between the sum of the centrality
values of all agents in a set in the original network and the centrality
score of the super-agent in the new network. All these issues will be
considered in future work.

Methods
Theoretical analysis of the model. Eqs. (1) – (2) can be can be rewritten in the
following matrix form:

X(tz1)~(IN{eH|L)X(t)~TX(t), ð12Þ

where IN is an identity matrix; L 5 D 2 A is the Laplacian matrix, D is the diagonal
matrix of agents’ out-degrees; H is an indicative diagonal matrix with H(s, s) 5 0 if
agent s is a competitor, and H(s, s) 5 1 otherwise. Obviously, the sum of each row of
matrix T equals to 1.

For convenience, we reorder the agents so that the two competitors come last.
Thus, we have

D~

�D 0 0

0 di 0

0 0 dj

2
64

3
75 and A~

�A ci cj

ri 0 �
rj � 0

2
64

3
75, ð13Þ

where di and dj denote the out-degrees of competitor i and j, respectively; vectors ci, cj,
ri, and rj contain the corresponding elements in the reordered coupling matrix.

Table I | The average success rate of prediction of the IM criterion
on 16 real networks. For each network, we show its type and name;
number of nodes (N) and links (M) of the largest strongly connected
component; the average success rate of prediction on the bias of
normal agents (,r.) and the success rate of prediction on who
will win (s). Note that, since the size of the slashdot network is too
large, we randomly sample 100000 pairs of competitors in the
network to obtain ,r. and s

Type Name N M ,r. s

Undirected ca-GrQc42 4158 13428 0.740 0.809
Undirected dolphin43 62 159 0.878 0.878
Undirected email44 1133 10902 0.847 0.888
Undirected facebook45 4039 88234 0.754 0.799
Undirected football46 115 4120 0.834 0.821
Undirected karate29 34 78 0.902 0.872
Undirected netsci47 379 1828 0.842 0.829
Undirected polbook48 105 441 0.821 0.853
Directed advogato49 3140 40066 0.818 0.832
Directed online50 1294 19026 0.897 0.917
Directed p2p51 2068 9313 0.847 0.870
Directed polblogs52 793 15781 0.853 0.929
Directed rado-email53 126 5639 0.916 0.969
Directed slashdot54 23214 241077 0.864 0.874
Directed twitter55 1726 6901 0.781 0.800
Directed wiki56 1300 39456 0.816 0.841
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Hence, Eq.(12) can be rewritten as

Xnorm(tz1)

xi(tz1)

xj(tz1)

2
64

3
75~

Q B
0

0

1 0

0 1

2
4

3
5 Xnorm(t)

xi(t)

xj(t)

2
64

3
75, ð14Þ

where Xnorm g RN22 represents the state vector of all normal agents;
Q~IN{2{e(�D{�A) and B~e ci cj

� �
. Thus,

Xnorm(t)~QXnorm(t{1)zB
xi(t{1)

xj(t{1)

" #

~QtXnorm(0)z
Xt{1

k~0

QkB
xi(0)

xj(0)

" # ð15Þ

If each normal agent has a path connecting to at least one competitor, then
�D{�A [ RN{2 is invertible34. Since 0vevD{1

max, we can show from Geršgorin disk

theorem that the spectral radius of Q is less than 1. Thus, as tR‘, we have

Xnorm(t)?(IN{2�Q){1B
xi(0)

xj(0)

" #

~(IN{2�IN{2z�D{�A){1 ci cj
� � xi(0)

xj(0)

" #
~(�D{�A){1 ci cj

� � z1

{1

" #
:

ð16Þ

According to Lemma 4 in Ref. 35, each entry of (D{A){1 ci cj
� �

is nonnegative
and each row sum of (D{A){1 ci cj

� �
is equal to one. Thus, the steady state of each

normal agent is a convex combination of 11 and 21.

Computation of centrality measures. We use a MATLAB toolbox called ‘octave-
networks-toolbox’ to compute the centrality measures36. To be self-contained, we give
the definition of these measures as follows (note that in our definition, an link from
agent k to agent l means agent k could be directly influenced by agent l):

Figure 4 | The success rate of prediction of competition result on 8 real undirected networks. Here we compare the IM criterion with 7 centrality-based

criteria. (a) the success rate of prediction for each network. (b) the average success rate of prediction of each criterion over 8 networks.
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In-BC37: the in-betweenness centrality of node l is computed by

CBin(l)~
X
kvm

gkm(l)
gkm

, where gkm is the number of geodesics from node k to node m and

gkm(l) is the number of geodesics that node l is on;

In-CC38: the in-closeness centrality of node l is computed by CCin(l)~
X
k=l

1
d(k,l)

,

where d(k, l) is the shortest distance from node k to node l;
In-DC: the in-degree of a node is the number of agents that an agent could directly

influence;
In-EC21: the eigenvector centrality is a natural extension of degree by considering

both the number and the importance of those agents that an agent could directly
influence. The EC of a network is equal to the eigenvector corresponding to the largest
eigenvalue of the coupling matrix. According to the definition of the network
structure, we use AT to compute the In-EC;

In-KC: the Katz Centrality is a variation of EC, by adding an initial importance to
each agent. The In-Katz-Centrality of a network is computed by (I 2 aAT)211, where 1
is a vector with all ones of an appropriate size, and the attenuation factor. Related
studie39 shows that there is no significant change in ranking of nodes based on Katz
Centrality with a [ ½0:5l{1

1 , 0:9l{1
1 ). In simulations, we set a~0:85l{1

1 ;

In-KS40: nodes are assigned to different in-shells according to their remaining in-
degrees, which is obtained by successive pruning of nodes with in-degree smaller than
the current in-k-shell value. We start by removing all nodes with in-degree kin # 1,
until that all nodes left are with in-degree larger than 1. The removed nodes, along
with the corresponding links, form an in-k-shell with index kins 5 1. In a similar
fashion, we iteratively remove the next in-k-shell. As a result, each node is associated
with one kins index;

PageRank: the algebraic expression of the page rank can be formulated as

PR~(I{mAT D{1){11
1{m

N
, where m is the dampening factor. We use the power

method41 to compute the page rank value, and set m 5 0.85. The Page Rank is a
variation on the Katz Centrality by dividing the importance of those agents which
could directly influenced by an agent, by their out-degrees.
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