SCIENTIFIC REPORTS

DOI: 10.1038/srep05692

SUBJECT AREAS:

SPECTROSCOPY TRANSFORMATION OPTICS NONLINEAR OPTICS

FIBRE OPTICS AND OPTICAL COMMUNICATIONS

SCIENTIFIC REPORTS:

3 : 2064 DOI: 10.1038/srep02064 (2013)

Published: 24 June 2013

Updated: 12 December 2014 **CORRIGENDUM:** Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation

Chi Zhang, Jianbing Xu, P. C. Chui & Kenneth K. Y. Wong

The authors neglected to cite some of the previous studies related to Fourier Transformation in the Introduction section of this Article¹⁻⁴. These additional references are listed below as references 1–4, and should appear in the text as below.

"This concept was first introduced by Azana et al. for real-time Fourier transformation⁹, where group-velocity dispersion (GVD) directly stretched spectra in the time domain. After wavelength-to-time mapping, the spectrum can be captured by a single-pixel detector and a real-time oscilloscope."

should read

"Earlier work on real-time Fourier transformation has been demonstrated by Tong¹, Bhushan² and Azana⁹ where group-velocity dispersion (GVD) directly stretched spectra in the time domain. After wavelength-to-time mapping, the spectrum can be captured by a single-pixel detector and a real-time oscilloscope. Its first demonstration in applying DFT spectroscopy³ was not as practical until the introduction of optical amplification as in ADFT⁴."

In addition Table 1 is incomplete and should also include an additional reference⁵ listed as reference 5 below. Table 1 should read:

Table 1 Performance of	of PASTA versus di	fferent technologies			
Specifications	OSA ²⁴ AQ6370C (Yokogawa)	FROG ²⁵ FROG Scan (MesaPhotonics)	BOSA ²⁶ (Aragon Photonics)	ADFT ⁷	PASTA
Resolution	0.02 nm	0.2 nm	80 fm	~0.04 nm	0.03 nm
Wavelength range	100 nm	100–600 nm	37 nm	10 nm ⁽⁵⁾	5 nm
Sensitivity	-60 dBm ⁽¹⁾	>30 dBm ⁽³⁾	-70 dBm	>30 dBm ⁽³⁾	—30 dBm ^µ
Frame rate	5 Hz ⁽¹⁾	2 Hz	1 Hz	25 MHz	100 MHz
Input condition	Any	Short pulse (fs~ps)	Any	Short pulse (fs~ps)	Any
Observation time span	Any	30 ps	Any	~20 ms	\sim 20 ms
Polarization .	Any	Sensitive	Sensitive	Any	Sensitive ⁽²⁾

⁽¹⁾ There is a trade-off between sensitivity and frame rate of the OSA, e.g. when sensitivity = -90 dBm, frame rate = 1/(75 sec) = 13.33 mHz. ⁽²⁾ It can be solved by polarization-diversity technique²³. ⁽³⁾ Since the FROG and the ADFT systems primarily measure the short pulse, here the sensitivity refers to the peak power of the pulse. ⁽⁴⁾ PASTA sensitivity is characterized with the CW source, and there is no sensitivity improvement for the pulse source measurement, when comparing with the ADFT. ⁽⁵⁾ Here the wavelength range is only for this specified application, the DFT process can be operated over much wider wavelength range, e.g. over 100 nm⁵.

1. Tong, Y. C., Chan, L. Y. & Tsang, H. K. Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope. *Electron. Lett* 33, 983–985 (1997).

2. Bhushan, A. S., Coppinger, F. & Jalali, B. Time-stretched analogue-to-digital conversion. Electron. Lett. 34, 839-841 (1998).

3. Kelkar, P. V., Coppinger, F., Bhushan, A. S. & Jalali, B. Time-domain optical sensing. *Electron. Lett* **35**, 1661–1662 (1999).

4. Chou, J., Boyraz, O., Solli, D. R. & Jalali, B. Femtosecond real-time single-shot digitizer. Applied Physics Letters 91, 161105 (2007).

5. Godin, T. *et al.* Real time noise and wavelength correlations in octave-spanning supercontinuum generation. *Opt. Express* **21**, 18452–18460 (2013).