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Activation of the phosphoinositide (PI) cycle generates the second messengers that control various aspects
of cellular signaling. We have previously shown that two PI cycle enzymes, type II phosphatidylinositol
5-phosphate 4-kinase (PIPK IIa) and phosphoinositide 3-kinase (PI3K), are activated through light
stimulation. In our earlier studies, we measured enzyme activities, instead of directly measuring the
products, due to lack of sensitive analytical techniques. Cells have very low levels of PIs, compared to other
lipids, so special techniques and sensitive analytical instruments are necessary for their identification and
quantification. There are also other considerations, such as different responses in different cell types, which
may complicate quantification of PIs. For example, although light activated PIPK IIa, there was no increase
in PI-4,5-P2 measured by liquid chromatography–mass spectrometry (LC/MS) This discrepancy is due to
the heterogeneous nature of the retina, which is composed of various cell types. In this study, we examined
PI generation in situ using immunohistochemistry with specific PI antibodies. PIs were generated in specific
retinal cell layers, suggesting that analyzing PIs from the total retina by LC/MS underscores the significance.
This suggests that PI-specific antibodies are useful tools to study the cell-specific regulation of PIs in the
retina.

P
hosphatidylinositol, a component of phospholipid in the cell membrane, contains a D-myo-inositol head
group, a glycerol backbone, and two fatty acids at the C1 and C2 acyl positions of glycerol1,3.
Phosphorylation of multiple free hydroxyls in the inositol head group generates several phosphorylated

PI derivatives. Differential phosphorylation at the 3-, 4-, and 5-positions allows for the generation of seven
distinct phosphoinositides1,2. Activation of the phosphoinositide (PI) cycle generates the second messengers that
control various aspects of cellular signaling3,4. The intracellular levels of phosphoinositides are controlled by PI-
specific kinases and phosphatases that can rapidly convert one phosphoinositide into another2. PI signals regulate
signal transduction, cytoskeletal assembly, membrane binding, and fusion that is spatially restricted to specific
membrane domains2. The formation of all seven phosphoinositides has been demonstrated in mammalian cells5.
We have also shown the formation of all PIs in intact photoreceptor outer segment membranes (ROS) prepared
from fresh bovine retinas6–9.

Studies from our laboratory have shown that the retina and ROS have an active PI metabolism. Biochemical
studies revealed that the ROS contain the enzymes necessary for phosphorylation of phosphoinositides. We
showed that light stimulates various components of the PI cycle in the vertebrate ROS, including diacylglycerol
kinase, PI synthetase, phosphatidylinositol phosphate kinase, phospholipase C, and phosphoinositide 3-kinase
(PI3K)6,8,10–12.

We previously reported the light activated type II phosphatidylinositol 5-phosphate 4-kinase (PIPK IIa, which
generates PI-4,5-P2) and class IA phosphoinositide 3-kinase (PI3K, which generates PI-3-P, PI-3,4-P2 and PI-
3,4,5-P3) in the retina12,13. In these experiments, we measured enzyme activities, instead of measuring product
formation. Phosphoinositides are minor components cells. Sensitive techniques are needed to determine the PI
species and quantity in the cell. Liquid chromatography–mass spectrometry (LC/MS) has been shown to identify
and quantify various species of PIs14. One of the unanswered questions from our earlier studies is the in vivo level
of PIPK IIa and PI3K-generated phosphoinositides that form in response to light.
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In the current study, we measured the PIP2 levels in dark- and
light-adapted retinas by LC/MS and found no difference between
dark- and light-adapted conditions. This contradicts our earlier
observation on the light-induced activation of PIPK II a13.
However, when we examined the generation of PI-4,5-P2 by
immunohistochemistry in situ, we found increased PI-4,5-P2 in the

rod outer segment membranes of light-adapted retina. We also
examined other PIs and their generation in gene knockout mouse
models using PI-specific antibodies. The LC/MS technique is sens-
itive and can determine the PI levels in relatively homogenous tis-
sues, such as the heart, liver, kidney, lungs, and spleen. The retina is a
highly organized structure made up of seven layers of heterogeneous

Figure 1 | Immunofluorescence analysis of PI-4,5-P2 in mouse retina. Prefer-fixed sections of dark- (A–D) and light-adapted (E–H) mouse retinas were

stained for PI-4,5-P2 (A, E), transducin alpha (B, F), and DAPI (C, G). Immunofluorescence was analyzed by epifluorescence. Panels C and G

represent the merged images of PI-4,5-P2 and transducin alpha. Panels D and H represent the omission of PI-4,5-P2 and transducin alpha antibodies.

ROS, rod outer segments; RIS, rod inner segments; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform

layer; GCL, ganglion cell layer.

Figure 2 | Immunofluorescence analysis of PI-3-P in mouse retina. Prefer-fixed sections of dark- (A–D) and light-adapted (E–H) mouse retinas

were stained for PI-3-P (A, E), transducin alpha (B, F), and DAPI (C, G). Immunofluorescence was analyzed by epifluorescence. Panels C and G represent

the merged images of PI-3-P and transducin alpha. Panels D and H represent the omission of PI-3-P antibody. ROS, rod outer segments; RIS, rod inner

segments; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer.
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cells. Each retinal cell type has its unique function. It is important to
determine in which cell type the PIs are generated in response to
light. Our studies suggest that PI-specific antibodies are useful tools
to study the cell-specific regulation of PIs in the retina.

Methods
Materials. Purified mouse monoclonal anti-PI-3,4-P2, anti-PI-3,4,5-P3, anti-PI-4,5-
P2, anti-PI-3-P and polyclonal anti-hVps34 (class III PI3K) antibodies were obtained
from Echelon Biosciences, Inc. (Salt Lake City, UT). Polyclonal anti-transducin alpha
(Ta) antibody was obtained from Santa Cruz Biotechnology (Santa Cruz, CA). DAPI
stain used for nuclear staining and secondary antibodies were purchased from
Invitrogen-Molecular Probes (Carlsbad, CA). Monoclonal anti-arrestin antibody was
a kind gift from Dr. Paul Hargrave (University of Florida, Gainesville). All other
reagents used for buffer preparations were of analytical grade and purchased from
Sigma (St. Louis, MO).

Animals. All animals were treated in accordance with the ARVO Statement for the
Use of Animals in Ophthalmic and Vision Research and the NIH Guide for the Care
and Use of Laboratory Animals. The protocols were approved by the IACUC at the
University of Oklahoma Health Sciences Center and Dean McGee Eye Institute.
Animals were born and raised in our vivarium and kept under dim cyclic light (40–
60 lux, 12 h light/dark cycle). Photoreceptor-specific conditional insulin receptor
knockout mice15 were born in the animal facility in 60-lux cyclic light (12 h on/off)
and maintained under these lighting conditions until they were used in an
experiment. The Nrl-/- mice were kindly provided by Dr. Anand Swaroop (NIH,
Bethesda, MD). The Rpe65-/- mice were kindly provided by Dr. Jing-Xing Ma
(University of Oklahoma Health Sciences Center, Oklahoma City). For experiments
that required enucleating the eye or removing the retina, mice were killed by
asphyxiation with CO2 followed by cervical dislocation. On the day of an experiment,
animals were dark-adapted overnight and the next day morning around 9.00 AM, half
of the animals were exposed to normal fluorescent room light (300 lux) for 30 min11

before the retinas were being subjected to either biochemistry or for an
immunohistochemistry.

Preparation of tissue for paraffin sectioning using Prefer as a fixative. Mice were
euthanized by CO2 asphyxiation and the eyeballs were placed in Prefer solution
(Anatech Ltd, Battle Creek, MI) for 15 min at room temperature followed by 70%
ethanol overnight. The tissue was paraffin-embedded and 5 mm thick sections were cut
and mounted onto slides. Sections were deparaffinized in 2–3 changes of xylene (10
minutes each) and hydrated in 2 changes of 100% ethanol for 3 minutes each, 95% and
80% ethanol for 1 minute each, and then rinsed in distilled water. The slides were then
subjected to antigen retrieval, boiled in 10 mM sodium citrate buffer pH 6.0, then in
sub-boiling temperature for 10 min, and cooled down for 30 min. The slides were
washed three times in 1X PBS containing 0.1% Triton-X 100, blocked with horse serum
for 1 h, and primary antibody was added overnight at 4uC. For fluorescent detection,
slides were incubated with a mixture of Texas-red-anti-mouse and FITC-anti-rabbit
antibodies (Vector Laboratories, Burlingame, CA), each diluted 15200 in PBS with 10%
horse serum. Following incubation for 1 h at room temperature, the slides were washed
with PBS and cover-slipped in 50% glycerol in PBS. Antibody-labeled complexes were
examined on a Nikon Eclipse E800 microscope equipped with a digital camera. Images
were captured using Metamorph (Universal Imaging, West Chester, PA) image analysis
software. All images were captured using identical microscope and camera settings.

Quantitation of Polyphosphoinositides in the retina. Polyphosphoinositides were
extracted using a modified Bligh-Dyer extraction16 and were derivatized using
trimethylsilyl diazomethane as described17. Polyphosphoinositides were measured as
their TMS-diazomethane derivatives using a Shimadzu UFLC equipped with a Vydac
214MS C4, 5 m, 4.66250 mm column, coupled with an ABI 4000-Qtrap hybrid linear
ion trap triple quadrupole mass spectrometer in multiple reaction monitoring
(MRM) mode. 17:0–20:4 PI-4,5-P2 was used as the internal standard.

Statistical analysis. One-way ANOVA and post-hoc statistical analysis using
Bonferroni’s pairwise comparisons were used to determine statistical significance
(p,0.05).

Figure 3 | Generation of PI-4,5-P2 and PI-3-P is under the control G-protein coupled receptor rhodopsin activation. Prefer-fixed sections of dark- (A–

E) and light-adapted (F–J) Rpe65-/- mouse retinas were stained for PI-4,5-P2 (A, C), PI-3-P (F, H), transducin alpha (B, D, G, I), and DAPI (B, D, G, I).

Immunofluorescence was analyzed by epifluorescence. Panels B, D, G, and I represent the merged images of either PI-4,5-P2 or PI-3-P with

transducin alpha. Panels E and J represent the omission of primary antibodies. ROS, rod outer segments; RIS, rod inner segments; ONL, outer nuclear

layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer.
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Results
Light-dependent generation of PI-4,5-P2 (PIP2) in rod outer
segment (ROS) membranes. PIPKIIa catalyzes the synthesis of
PI-4,5-P2. We previously reported significantly higher levels of
PIPKIIa enzyme activity associated with ROS membranes
prepared from light-adapted rats13. However, the endogenous PI-
4,5-P2 lipid synthesis in retina in situ has never been reported.
Retinal sections from dark- and light-adapted (300 lux for 30 min)
mice were subjected to immunohistochemistry with PI-4,5-P2 and
rod transducin antibodies. The adaptability of animals to dark and
light conditions was examined with transducin immunolocalization.
In dark-adapted retinas, transducin is localized to the rod outer
segments (ROS; Fig. 1B). Upon light illumination, transducin is
translocated to rod inner segment (RIS) and the outer plexiform
layer (Fig. 1F). Immunolocalization studies suggest a strong PI-4,5-
P2 immunoreactivity observed in light-adapted ROS (Fig. 1E, G), but
not in dark-adapted ROS (Fig. 1A, C). The PI-4,5-P2 immunoreac-
tivity was also observed in the outer nuclear layer (ONL), inner
nuclear layer (INL), and ganglion cell layer (GCL). However, the
localization was independent of either dark- or light-adaptation.
This experiment suggests that PI-4-5-P2 generation in the ROS is
light-dependent.

Light-dependent generation of PI-3-P in outer nuclear layer of rod
photoreceptor cells. We previously reported a light-dependent
activation of PI3K in the retina as well as in isolated outer segment
membranes8,11,12. However, in these studies, we measured only the

enzyme activity using exogenous substrates, not the actual PI3K-
generated products. Retinal sections from dark- and light-adapted
(300 lux for 30 min) mice were subjected to immunohistochemistry
with PI-3-P and rod transducin antibodies. Immunolocalization
studies suggest a strong PI-3-P immunoreactivity observed in the
outer nuclear layer of rod photoreceptor cells from light-adapted
mice (Fig. 2E, G) compared with dark- adapted mice (Fig. 2A, C).
We also found PI-3-P in the INL layer and GCL. However, the
localization was independent of either dark- or light-adaptation.
This experiment suggests that light enhanced the generation of PI-
3-P in the rod photoreceptor cells.

Light-dependent generation of PI-4,5-P2 and PI-3-P is signaled
through the photoactivation of G-protein coupled receptor
rhodopsin. To determine whether the light-induced generation of
PI-4,5-P2 and PI-3-P generation is signaled through bleachable
rhodopsin, we examined the generation of PI-4,5-P2 and PI-3-P in
retinal sections of dark- and light-adapted retinal pigment epithelium
65 knockout (Rpe65) mice. Rpe65-/- mice have opsin in their rod outer
segments, but do not form photobleachable rhodopsin due to the
absence of regeneration of chromophore 11-cis-retinal18. No light-
dependent generation of PI-4,5-P2 (Fig. 3A–D) or PI-3-P (Fig. 3 F–
I) was found in Rpe65-/- mouse retinas. This experiment suggests that
activation of the enzyme responsible for the generation of PI-4,5-P2,
PIPKIIa13, and the enzyme responsible for the generation of PI-3-P,
the class IA phosphoinositide 3-kinase12, is controlled by photoacti-
vation of rhodopsin in photoreceptor cells.

Figure 4 | Generation of PI-3-P is under the control of insulin receptor activation. Prefer-fixed sections of light-adapted wild type (A, B, F, G) and IR KO

(C, D, H, I) mouse retinas were stained for PI-4,5-P2 (A–D), PI-3-P (F–I), transducin alpha, and DAPI (B, D, G, J). Immunofluorescence was analyzed by

epifluorescence. Panels B, D, G, and I represent the merged images of either PI-4,5-P2 or PI-3-P with transducin alpha. Panels E and J represent the

omission of primary antibodies. ROS, rod outer segments; RIS, rod inner segments; ONL, outer nuclear layer; OPL, outer plexiform layer; INL,

inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer.
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Light-dependent generation of PI-3-P is signaled through the
insulin receptor in photoreceptors. We previously reported an
increased association of PI3K with the insulin receptor in light-
adapted ROS membranes compared with dark-adapted ROS mem-
branes12. To further validate our earlier observations, we examined the
generation of PI-4,5-P2 and PI-3-P in retinal sections of light-adapted
wild type and conditional rod photoreceptor-specific insulin receptor
knockout mice15. No PI-3-P generation was found in the ONL of
photoreceptors in the insulin receptor knockout mice compared
with wild type mice (Fig. 4 H, I vs Fig. 4 F, G). These studies
further confirm our earlier findings that the insulin receptor
regulates PI3K activity in vivo. The generation of PI-4-5-P2 in the
rod outer segment membranes is almost identical in wild type and
insulin receptor knockout mouse retinas (Fig. 4 A–D), further
attesting to the specificity of light-dependent IR/PI3K-mediated
generation of PI-3-P in photoreceptor cells.

Localization of class III PI3K in the retina. PI-3-P can be generated
by class IA/B, class II, and class III PI3K enzymes1. Class III enzymes
will phosphorylate only PI to produce PI-3-P1. We examined the
localization of class III PI3K in retinal sections from dark- and
light-adapted mice. The adaptability of animals to dark and light
conditions was observed with arrestin immunolocalization. In
dark-adapted retinas, arrestin is localized to the rod inner
segments and the outer plexiform layer (Fig. 5B). Upon light
illumination, arrestin translocates to photoreceptor outer segments
(Fig. 5F). Our immunohistochemical data suggest that class III PI3K
is predominantly localized to retinal pigment epithelium and inner
retinal layers, especially Müller cells, irrespective of dark or light
adaptation (Fig. 5A, C, E, G). The class III PI3K immunoreactivity
was absent in the photoreceptor layer (Fig. 5A and E). This
experiment also suggests that light-dependent generation of PI-3-P
as we observed in the ONL (Fig. 2) may be by class IA/B PI3K.

Light-dependent generation of phosphorylated phosphoinosi-
tides in cone-dominant retina. The data presented in Figures 1
through 5 were obtained from either wild type or knockout mouse
retinas, which are rod-dominant (.95% rods and 3–5% cones).
Although cones constitute a small percent of retinal photorecep-
tors in humans and rodents19,20, they are essential for optimal
visual acuity, color vision, and visual perception under moderate to
high light intensities in humans. To determine the light-dependent
generation of phosphoinositides in cones, we used neural retina
leucine zipper (Nrl) knockout mice21. Mice lacking the transcrip-
tion factor Nrl experience a block in the differentiation of rod
precursor cells, resulting in retinas containing a single class of
photoreceptors that are indistinguishable from authentic cones21–24.
The Nrl-/- retina is characterized by large undulations of the outer
nuclear layer (ONL), commonly known as rosettes. These arise due
to defects in the outer limiting membrane and delayed maturation of
a subset of photoreceptors25. We stained the retinal sections from
dark- and light-adapted Nrl-/- mice with antibodies against PI-4,5-P2,
PI-3-P, PI-3,4,5-P3, and PI-3,4-P2. The results showed a light-
dependent generation of PI-4,5-P2 (Fig. 6 C,D) and PI-3-P (Fig. 6
H,I), in Nrl-/- mouse retinas, but no difference in PI-3,4,5-P3 (Fig. 6 K,
N) and PI-3,4-P2 generation between dark- and light-adaptation
(Fig. 6 P,S). These experiments suggest that, similar to rods, cones
have an active light-dependent PI generating system through a light-
dependent activation of respective enzymes of the PI cycle (PIPK IIa-
and PI3-kinases).

Increased generation of PI-4,5-P2 in dark-adapted type 1 diabetic
Ins2Akita mouse retinas. In this experiment, we examined the
generation of PI-4,5-P2 in retinal sections from dark- and light-
adapted Ins2Akita mice. The Ins2Akita mutation results in a single
amino acid substitution in the insulin 2 gene that causes
misfolding of the insulin protein26. As early as 4 weeks of age, male

Figure 5 | Immunofluorescence analysis of class III PI3K in mouse retina. Prefer-fixed sections of dark- (A–D) and light-adapted (E–H) mouse retinas

were stained for class III PI3K (A, E), arrestin (B, F), and DAPI (C, G). Immunofluorescence was analyzed by epifluorescence. Panels C and G represent the

merged images of class III PI3K and arrestin. Panels D and H represent the omission of class III PI3K antibody. RPE, retinal pigment epithelium; ROS, rod

outer segments; RIS, rod inner segments; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL,

ganglion cell layer.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 5463 | DOI: 10.1038/srep05463 5



mice heterozygous for this mutation show progressive loss of b-cell
function, decreased pancreatic b-cell density, and significant
hyperglycemia26. Immunolocalization studies suggest a strong PI-
4,5-P2 immunoreactivity observed in ROS of light-adapted Ins2Akita

mice (Fig. 7 H, I) compared with light-adapted wild type mice (Fig. 7
C, D). We also found an increased PI-4,5-P2 immunoreactivity in the
outer nuclear layer, inner nuclear layer, and ganglion cell layers in
dark-adapted Ins2Akita mouse retinas (Fig. 7 F, G) compared with
dark-adapted wild type mouse retinas (Fig. 7A, B). The PIP2 levels
were measured from dark- and light-adapted wild type and Ins2Akita

mouse retinas as their TMZ-diazomethane derivatives17 using a
Schimadzu UFLC equipped with a Vydac 214MS C4, 5m, 4.6 3

250 mm column, coupled with an ABI 4000-Qtrap hybrid linear
ion trap triple quadrupole LC-mass spectrometer in multiple
reaction monitoring (MRM) mode14. In these studies, we measured
lysophosphatidylcholine (lysoPC) to normalize the data (as the
amount of retina material was too small to weigh or to do a lipid
phosphate assay on) as this lipid level was not changed during light/
dark conditions. Our data suggest an increased level of PIP2 formed

in dark-adapted Akita mouse retinas compared with light-adapted
conditions, further confirming our immunohistochemistry data
(Fig. 7K). Our data also suggest that there was no difference in
PIP2 levels between dark- and light-adapted wild type mouse
retinas (Fig. 7K). It is interesting to note that even though there
was an increase of PI-4,5-P2 immunoreactivity in the ROS layer of
light-adapted wild type mice (Fig. 1E), we did not observe a
significant difference when we subjected the total retinas to LC/MS
analysis (Fig. 7K).

Discussion
Over the past two decades, we and others have shown that light
stimulates various components of the PI cycle in the vertebrate ret-
ina6,7,11,27–31. We reported earlier that the activation of PIPK IIa and
the enzyme class IA PI3K are light-dependent11,13. In our earlier
studies, we indirectly measured the PIPK IIa and class IA PI3K
activites in the presence of added exogenous PIPK IIa substrate
PI-5-P and PI3K-substrate PI-4,5-P2, and quantified the radiolabel-
led phosphorylated products PI-4,5-P2 and PI-3,4,5-P3

11,12,13,15.

Figure 6 | Immunofluorescence analysis of PI-4,5-P2, PI-3-P, PI-3,4,5-P3 and PI-3,4-P2 in cone dominant retina. Prefer-fixed sections of dark- (A, F, K,

P) and light-adapted (C, H, M, R) Nrl-/- mouse retinas were stained for PI-4,5-P2 (A, C), PI-3-P (F, H), PI-3,4,5-P3 (K, M), PI-3,4-P2 (P,R), and DAPI (B,

D, G, I, L, N, Q, S). Immunofluorescence was analyzed by epifluorescence. Panels E, J, O, and T represent the omission of primary PI antibodies.

RPE, retinal pigment epithelium; ROS, rod outer segments; RIS, rod inner segments; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner

nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer.
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Fluorescently-tagged protein domains (e.g., PH domains) have been
used by a number of independent laboratories as phosphoinositide
sensors to detect PIs in vivo32–36. We have also applied this approach
to an in vivo model of transgenic Xenopus laevis to demonstrate the
light-dependent generation of PIs specifically in photoreceptor cells,
using the Akt1-AH domain as the cellular probe37. Identification of
these phosphoinositide species in response to light in vivo would
further advance our understanding of the role of individual PIs in
the regulation of specific phospholipid-binding proteins.

One of the unanswered questions from our previous studies was
whether the in vivo levels of PIPK IIa and PI3K-generated phosphoi-
nositides increased in response to light. LC/MS is a sensitive analyt-
ical chemistry technique that has been used for the identification and
quantification of less abundant phosphoinositides14. This technique
has limitations, however, in its ability to analyze PI levels in hetero-
geneous areas, such as the retina. The retina is a highly organized
structure made up of seven layers of cells. Seven types of neural cells
make up the retina: two kinds of photoreceptor cells (rods and

cones), retinal pigment epithelial cells (RPE), bipolar cells, amacrine
cells, horizontal cells, and ganglion cells. Each retinal cell type has its
unique function. It is desirable to know in which cell type the PIs are
generated in response to light. LC/MS can measure PIP, PIP2, and
PIP3. However, it cannot discriminate between the different posi-
tional enantiomers of PIP (PI-3-P, -4-P, and -5-P) and PIP2 (PI-4,5-
P2 and PI-3,4-P2). This is because mass spectrometry measures ion
masses, and the masses of the ions we measure for these lipids are the
same. Treating the samples with a specific PI-phosphatase followed
by measuring their levels via LC/MS would allow us to identify the
specific PI.

When we measured PIP2 levels in the total retinas of dark and
light-adapted animals, we did not observe any significant increase in
the level of this lipid from light-adapted retinas compared with dark-
adapted retinas, despite our previous finding of increased activity of
PIPK IIa in rod outer segments isolated from light-adapted rats13.
However, we did observe increased levels of PIP2 in dark-adapted
type I diabetic Ins2Akita mouse retinas compared with light-adapted

Figure 7 | Immunofluorescence analysis of PI-4,5-P2 in type 1 diabetic Ins2Akita mouse retina. Prefer-fixed sections of dark- (A–E) and light-adapted (F–

J) wild type (A–E) and type 1 diabetic Ins2Akita (F–J) mouse retinas were stained for PI-4,5-P2 (A, C, F, H), transducin alpha, and DAPI (B, D, G, I).

Immunofluorescence was analyzed by epifluorescence. Panels B, D, G, and I represent the merged images of PI-4,5-P2 and transducin alpha. Panels E and J

represent the omission of PI-4,5-P2 antibody. ROS, rod outer segments; RIS, rod inner segments; ONL, outer nuclear layer; OPL, outer plexiform layer;

INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer. Quantification of PIP2 levels in the whole retina from dark- and light-

adapted wild type and Ins2Akita mice. Polyphosphoinositides were extracted from the retina and derivatized using trimethylsilyl diazomethane, then were

measured using mass spectrometry. Data are mean 6 SEM, n5 6. The PIP2 levels were normalized to lysophosphatidylcholine. The significance between

dark-adapted WT and type diabetic Ins2Akita shows p,0.05.
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retinas. To understand the discrepancy between our biochemical and
analytical results, we examined the generation of various phosphoi-
nositides in situ employing immunohistochemistry with specific PI
antibodies. We observed PI-4,5-P2 immunoreactivity in the retinal
ONL, INL, and GCL in both dark- and light-adapted conditions. Rod
outer segments also displayed PI-4,5-P2 immunoreactivity, but only
under light-adapted condtions. This finding further confirms our
earlier studies on the activation of PIPK IIa in ROS membranes
isolated from light-adapted animals13. The LC/MS data from the total
retina shows a marginal increase in the level of PIP2, because the ROS
generated pool of PI-4,5-P2 is small compared with PI-4,5-P2 in other
layers under both conditions. With a significant elevation of PI-4,5-
P2, observed in dark-adapted type I Ins2Akita mice, we clearly detected
that difference by LC/MS (Fig. 7).

Another technical limitation is that the LC/MS cannot differenti-
ate between PI-4,5-P2 and PI-3,4-P2. Our studies suggest that
immunohistochemistry coupled with LC/MS would be an ideal
way to determine the levels and location of PIs in the retina. PI-
specific antibodies have been previously used to demonstrate mul-
tiple, distinct cellular pools of PIs in mammalian cells38. The
immunohistochemical analysis also indicates the generation of PI-
4,5-P2 and PI-3-P. Presumably, the enzymes are controlled by GPCR
rhodopsin activation. Collectively, our studies suggest that PI-spe-
cific antibodies are useful tools to study the cell-specific regulation of
PIs in the retina.
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