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Non-zero curvature in a waveguide leads to the appearance of an attractive quantum potential which
crucially affects the dynamics in matter-wave circuits. Using methods of supersymmetric quantum
mechanics, pairs of bent waveguides are found whose geometry-induced potentials share the same scattering
properties. As a result, reflectionless waveguides, dual to the straight waveguide, are identified. Strictly
isospectral waveguides are also found by modulating the depth of the trapping potential. Numerical
simulations are used to demonstrate the efficiency of these approaches in tailoring and controlling
curvature-induced quantum-mechanical effects.

W
aveguides with non-zero curvature are basic constituents of matter-wave circuits in atom chip techno-
logy1,2, as well as its ion3, molecular4, and electron5 counterparts. Their relevance is further enhanced by
the development of flexible techniques to create optical waveguides for ultracold gases. In this context,

waveguide trapping potentials can be engineered by a variety of methods including the time-averaging painted
potential technique6, the use of an intensity mask7,8, and holographic methods, in particular, digital holography9.
Circular ring traps have attracted a considerable amount of attention6,10–15, most recently to study Josephson junction
dynamics16,17. Other curved waveguides have also been engineered, such as a stadium-shaped potential trap18,19.

The propagation of matter-waves in bent waveguides generally differs from that in straight waveguides due to the
appearance of a purely attractive local quantum potential of geometrical origin20–22. Under tight-transverse confin-
ment, the magnitude of this curvature-induced potential (CIP) is proportional to the square of the curvature of the
waveguide, and affects both the single-particle and many-body physics of the confined matter-waves23–29. As a result,
the scattering properties of a curved tight waveguide are modified, e.g., by the appearance of bound states23,26.
Advances in the design of bent waveguides, in which curvature-induced effects are tailored and suppressed, are
required for the miniaturization of matter-wave circuits. It is to this problem that we turn our attention.

Results
In this manuscript we design bent waveguides for matter-wave circuits free from spurious quantum mechanical
effects associated with CIPs. Three novel ideas are presented: (i) Exploiting the interplay of geometry and
supersymmetry in quantum mechanics, we relate pairs of waveguides whose CIPs are isospectral and share
the same scattering properties. (ii) We then identify waveguides which are reflectionless for coherent matter-
waves at all energies. (iii) Furthermore, we show that by tailoring the depth of the waveguide trap, it is possible to
cancel the CIP, rendering the dynamics of the guided matter-waves equivalent to that in straight waveguides.

Let us consider the dynamics of matter-waves confined in a tight waveguide whose axis follows the curve c,
parametrized as a function of the arc length q1 by the vector r 5 r(q1), with tangent t(q1). We start by recalling the
fundamental theorem of curves which asserts that a curve is completely determined, up to its position in space, by
its curvature k and torsion t30. Indeed, the expressions k 5 k(q1) and t 5 t(q1) constitute the natural intrinsic
equations of a curve. A parametrization of the curve can be obtained by integration of the Frenet-Serret equations
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where n̂~ dt̂=dq1
� �

=k (provided dt̂=dq1=0) and b̂~t̂|n̂ are the
principal normal and binormal unit vectors, and the curvature and
torsion at the point of arc length q1 are defined as k(q1) 5

jdt(q1)=dq1j and t q1ð Þ~{n̂:db̂=dq1, respectively. Let (q2, q3) be
the transverse local coordinates and consider a transverse confining
potential Ul (q2, q3) such that in the limit of tight confinement l R ‘

the particle is bounded to c. Under dimensional reduction, the
purely-attractive CIP emerges21–24,26

q1ð Þ~{
�h2

8m
k q1ð Þ2: ð2Þ

This result is independent of Ul and holds in particular under an
isotropic transverse harmonic confinement Uv\~mv2

\ q2
2zq2

3

� ��
2

with ground state width s0 5 [�h/(mvH)]1/2 28,29. The conditions for
the dimensional reduction to be valid explicitly read

ks0=1, k’j js0= kj j, k’’j js0=k2, ð3Þ

where primes denote derivatives with respect to q1.
We next pose the problem of identifying pairs of waveguides with

the same scattering properties, and engineering a waveguide which
minimizes the effect of the CIP. Generally, direct integration of the
Frenet-Serret equations is not possible. However, the quantum
mechanical behavior of matter waves bounded to isometric curves
with different torsion but the same curvature remains the same21,22

because is independent of t. In addition, matter-wave circuits in
atom chips and optical realizations of waveguides are often assoc-
iated with curves c on a plane, for which t 5 0. As a result, we focus
on planar curves, given by the parametrization r(q1) 5 (x(q1), y(q1)).
We shall return to the case of t ? 0 whenever the curve c exhibits
multiple points in which the waveguide self-intersects. The CIP
depends only on k2 and remains invariant under the mapping k R
sgn(g(q1))k with an arbitrary real function g(x), a symmetry which
we shall exploit to engineer the guiding potential. Provided t 5 0,
and k(q1) ? 0 for all q1 it is always possible to integrate the Frenet-
Serret equations, and to find the natural representation of the curve
in terms of the arc length
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In what follows we shall take (x0,y0) 5 (0,0) without loss of generality,
and extend Eq. (4) to q1 , 0 to sample the full range of .

Supersymmetric partner waveguides. In the Witten model of
supersymmetric quantum mechanics (SUSY QM)31,32, a pair of
SUSY partner Hamiltonians is considered with the factorization,

H{ :~ {
§0, Hz :~ {

§0, ð5Þ

where the annihilation and creation operators are defined by

:~
ipffiffiffiffiffiffiffi
2m
p zW q1ð Þ and {:~{

ipffiffiffiffiffiffiffi
2m
p zW q1ð Þ, in terms of the

superpotential W(q1). The SUSY partner Hamiltonians can be explicitly

written as H+~{
�h2

2m
L2

q1
zV+, where V+ q1ð Þ :~W2 q1ð Þ+

�hffiffiffiffiffiffiffi
2m
p W’ q1ð Þ are partner potentials. We consider the case in which

the SUSY partner potentials are both induced by curvature, i.e.

V+~ +~{
�h2

8m
k2
+. It follows that SUSY partner Hamiltonians

are associated with curves whose curvatures k6 are related by

k2
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8
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h i

, ð7Þ

where we have used the relation between the derivative of the
superpotential and the commutator of the creation and annihilation
operators in the second line33. The relation between k6, can be further
developed by making reference to the ground state y0 of H2 satisfying
H2y0 5 0, in terms of which the superpotential reads

W q1ð Þ~{
�hffiffiffiffiffiffiffi
2m
p Lq1 y0

y0
. Using this expression in (6), it follows that

k2
z q1ð Þ~k2

{ q1ð Þz8
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� �2
" #

: ð8Þ

According to the fundamental theorem of curves, the shape and length
of a planar curve is completely determined by its (single-valued and
continuous) curvature. It follows that the SUSY partner potentials V+
are associated with the family of curves {c6} (with curvatures k6

satisfying k2
+~{

2m
�h

W2+

ffiffiffiffiffiffiffi
2m
p

�h
W’), that we shall refer to as SUSY

partner curves. This set can be extended to include curves associated
with a family of shape-invariant potentials34, as discussed in Methods,
or using higher-order SUSY QM32.

Why are waveguides along these curves of interest? The main
physical feature of SUSY partner curves is that they exhibit the same
scattering properties, a distinguishing feature directly inherited from

+
32,35. Let c6 be open waveguides with finite curvature as q1 R

6‘, so that + q1?+?ð Þ?W q1?+?ð Þ2~: W2
+, and consider

the scattering states of momentum k and energy E 5 �h2k2/(2m), with
reflection and transmission amplitudes R6(k) and T6(k), respect-

ively. It follows that R{ kð Þ~
W{zi�hk

� ffiffiffiffiffiffiffi
2m
p

W{{i�hk
� ffiffiffiffiffiffiffi

2m
p Rz kð Þ and T{ kð Þ~

Wz{i�hk’
� ffiffiffiffiffiffiffi

2m
p

W{{i�hk
� ffiffiffiffiffiffiffi

2m
p Tz kð Þ where k~ 2m E{W2

{

� �� 	1=2
.

�h and k’~

2m E{W2
z

� �� 	1=2
.

�h, that is, the reflection as well as the transmis-

sion probabilities are the same for SUSY partner curves. Further, the
Hamiltonians H6 associated with SUSY partner curves are isospec-
tral, except for the lowest energy level of H2 with zero-energy, which
is absent in the spectrum of H1.

Design of reflectionless curves. CIPs are of attractive character and
as a result can lead to quantum reflection36–39. The dynamics of a
guided matter-wave on a bent waveguide is generally affected by the
curvature. We next illustrate the power of the SUSY partner
waveguides in designing reflectionless curves. An obvious instance
where the CIP vanishes is that of an infinite straight waveguide, with
k2 5 0 and superpotential W 5 A tanh aq1 with A . 0. This
configuration is of relevance to guided atom lasers40,41, and we wish
to mimic it in bent waveguides. SUSY QM allows us to find SUSY
partners which are reflectionless. In this case, V1(q1) is given by the

modified Pöschl-Teller potential Vcurv q1ð Þ~{
�h2

2m
n nz1ð Þ

cosh2 aq1ð Þ
32, so

that the curvature of the SUSY c1 curve reads

kz q1ð Þ~2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n nz1ð Þ

p
sechaq1, ð9Þ

where n is a positive integer. Provided that the dimensional reduction
is valid, the transmission probability for a waveguide with curvature

(9) and arbitrary n, is given by Tzj j2 kð Þ~ m2

1zm2
with

m~
sinh pk=að Þ

sinpn
and k~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mE=�h

p
. Such a waveguide becomes

reflectionless for integer values of n. Different reflectionless
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waveguides are plotted in Fig. 1, where it is shown that the number of
multiple points increases with the magnitude of the curvature. A
simple waveguide without junctions can then be engineered by
exploiting the invariance of the CIP with respect to changes in the
sign of the curvature, or by considering a nonzero torsion t ? 0,
whose realization might be achieved using an extended version of the
painted potential technique6. We emphasize that there are infinitely
many instances of reflectionless waveguides. Let us illustrate this by
adapting the algorithm developed by Sukumar42 to CIPs. One can
construct reflectionless waveguides supporting n bound states. Let us

fix the bound state energies to be En~{
�h2

2m
g2

n with g2
nw

g2
n{1w . . . g2

1. The symmetric reflectioneless curves are described
by the equation

k2
n q1ð Þ~8L2

q1
lndetDn, ð10Þ

where Dn½ �ij~
1
2

gi{1
j exp gjq1


 �
z {1ð Þizjexp {gjq1


 �h i
. For a

single bound state, one obtains k2~8g2
1sechg1q1, closely related to

the SUSY curves associated with (9). Figure 1 (lower panels) shows
the reflectionless curves corresponding to a Sukumar potential
supporting two bound states with g1 5 1 and g2 5 3/2, where
multiple points in 1(c) are avoided by a non-zero torsion
(t~20q{1

0 ) in 1(d). The axis of the associated waveguide follows
the curve (x(s), y(s), ts) with (squared) curvature k2 sð Þ~
{8m sð Þ

�
�h2, torsion t and arc length q1~

ffiffiffiffiffiffiffiffiffiffiffiffi
1zt2
p

s. At variance
with (9), the relative angle between the asymptotes can be tuned by
adjusting the value of g2 relative to g1, which will allow for the
engineering of reflectionless bends through a range of desired
angles. Further examples of reflectionless waveguides can be found
by using the infinite family of reflectionless potentials discussed by
Shabat43 and Spiridonov44. The reflectionless character of the SUSY
waveguides becomes apparent in the dynamics of guided matter
waves. Figure 2 shows an elongated Gaussian beam being guided
in a bent waveguide with curvature given by (9). c1 is
asymptotically flat for q1 R 6‘. For a general non-integer value
of n, the traveling beam is substantially reflected off the bent
region. For integer n there exists a delocalized critical bound-state
with zero energy and the waveguide becomes reflectionless for all
scattering energies. However, the degree of bending increases with n.
As a result, reflectionless waveguides provide a remarkable
counterexample to the common expectation that the reflection
probability increases with the degree of bending of the waveguide.
In addition, the numerical simulations correspond to the
propagation in a waveguide with finite transverse width, for which
the explicit form of the curvature induced potential20,26,29 is more
complex than that in Eq. (2) used to design the reflectionless SUSY
waveguide, and where excitations of the transverse waveguide modes
are possible. The fact that despite the finite transverse width the
waveguide remains reflectionless illustrates the robustness of its
design against imperfections. We also note that the reflectivity of
the Pöschl-Teller potential changes only gradually as n departs
from an integer value.

Canceling out the geometry-induced potential. A variety of
experimental techniques to design matter-wave circuits, such as
the painted potential technique, offers an alternative way to
control the design of c: the modulation of the potential depth of
the waveguide. Consider two arbitrary isometric waveguides c and

Figure 1 | Supersymmetric reflectionless waveguides. (a) Waveguide

whose CIP is the reflectionless Pöschl-Teller potential with n 5 1. Its SUSY

partner curve is the straight line c2 with zero curvature. (b) The multiple

point can be removed to obtain a simple waveguide using the curvature

mapping k(q1) R sgn(q1)k(q1) under which the CIP remains invariant.

(c) For higher curvature values, as in the waveguide associated with the n 5

2 Sukumar reflectionless potential shown here, integration of the Frenet-

Serret equations leads to curves with several multiple points. (d) Such CIPs

can be engineered in a non-planar waveguide, with non-zero torsion t.

Figure 2 | Scattering dynamics in bent waveguides. Sequence of snapshots of the time-evolution of the density profile of a wavepacket along a planar bent

waveguide with the curvature (9) and n 5 1/2 (left), and n 5 1 (right), as in Fig. 1(b). Generally, the wavepacket is split by the CIP into a transmitted

and a reflected component. Despite the high degree of bending shown in the inset, whenever n is an integer, the waveguide becomes reflectionless

and exhibits unit transmission probability for all energies of the impinging matter-wave beam. The color coding varies from white to red as the

probability density increases. The dimensions of each waveguide image are 908s0 3 47s0 and the time interval between successive images is 1920/vH. The

initial wavepacket has FWHM 5 235s0 and momentum (1/32)mvHs0, and a 5 1/8.
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~c (both either open or closed, and without multiple points), with CIPs

c q1ð Þ and ~c q1ð Þ, respectively. Under the consistency conditions
(3), it is then possible to make ~c isospectral to c by modulating the

depth of the waveguide potential, i.e., by creating a potential barrier

of the form U q1ð Þ~{ ~c q1ð Þ{ c q1ð Þ
h i

. A natural case is that in

which c q1ð Þ either vanishes or is an irrelevant constant energy
shift. U(q1) is then the potential required to flatten out the depth
of the global potential of ~c. In addition, the acceleration of the guided
matter-waves towards the region of high-curvature is prevented. To
explore in detail this possibility, we consider an elliptical trap20,29,45,
associated with the curve r(u) 5 (a cos u, b sin u), with a $ b . 0, and
circumference L. The CIP in an elliptical trap reads

uð Þ~{
�h2

8m
a2b2

b2 cos2 uza2 sin2 uð Þ3
: ð11Þ

The eccentricity of an ellipse is defined by e~ 1{ b=að Þ2
� 	1

2[ 0,1½ � and
can be used to quantify the deformation from a circle (for which a 5

b, e 5 0). For a ring of radius a 5 b (c, with e 5 0), the curvature is
k(q1) 5 1/a and the CIP becomes constant, and the ground state
density profile is uniform along the arc length q1. For ~c with e . 0, the
CIP comes into play and creates two attractive double wells, centered
around the points with higher curvature q1 5 {0,L/2} (b , a) and

with the minimum value {
�h2

8m
a2

b4
. The extent to which geometry-

induced effects can be cancelled out by painting a barrier
U q1ð Þ~{ ~c q1ð Þ is illustrated in Fig. 3. Such cancellation is
effective as long as the consistency conditions for the dimensional
reduction hold, which ceases to be the case as e is increased while the
transverse width s0 remains fixed.

The ground state density profile is a fairly robust quantity, but we
note that this compensation is efficient as well for dynamical pro-
cesses involving all spectral properties of the waveguide. Consider

Figure 3 | Canceling out the curvature-induced potential. Elliptical

waveguide potentials of increasing eccentricity (top) and corresponding

ground state densities (middle). Bottom row shows ground state densities

when the CIP is compensated by modulating the depth of the trap. The

dimensionless density profile n(q1)s0 is scaled up by a factor 103, the

perimeter of the ellipse is L 5 150s0 and the plotted area is 80s0 3 50s0.

Figure 4 | Curvature-induced suppression of temporal Talbot oscillations. Time evolution of the density profile n(q1,t) 5 # dqHn(q1,qH,t) of an initially

tightly-localized wavepacket released in a two-dimensional elliptical waveguide. (a) For a ring trap (e 5 0) n(q1,t) exhibits Talbot oscillations as a result of

the quadratic dispersion relation (left). Two Talbot oscillations are displayed. (b) Whenever e . 0, the CIP lifts the degeneracies in the spectrum and

suppresses Talbot oscillations (e 5 0.9). (c) The CIP can be cancelled out by modulating the depth of the trap (e 5 0.9). L 5 150s0 in all cases and

hence the revival time tR 5 mL2/(p�h) is constant for different values of e.

www.nature.com/scientificreports
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the time evolution of the density profile of an initially localized
wavepacket released in the elliptical trap, displayed in Fig. 4. For a
ring trap, where e 5 0, the evolution of the density profile n(q1, t)
weaves a highly structured interference pattern with ‘‘scars’’ in the
plane (q1, t), known as a ‘‘quantum carpet’’46. Such quantum carpets
exhibit a temporal analogue of the Talbot effect: in wave optics, the
near-field diffraction pattern of a wave incident upon a periodic
grating is characterized by a spatial periodicity47,48. The quantum
dynamics of an initially localised wavepacket which is released in a
two-dimensional ring trap exhibits a periodic revival of the initial
state, with period tR 5 mL2/(p�h) (the temporal analogue of optical
Talbot oscillations). The reconstruction of the density profile at t 5 0
can be traced back to the quadratic dispersion relation of the trap
and the degeneracies it entails49,50. This phenomenon has been
experimentally observed in a variety of systems51,52. In a two-dimen-
sional elliptical waveguide, the spectrum is modified and the disper-
sion relation ceases to be quadratic. For e . 0, the geometry-induced
potential lifts the degeneracy in the spectrum, leading to the sup-
pression of Talbot oscillations. Nonetheless, the dynamics corres-
ponding to a ring trap can be effectively recovered in an ellipcal
trap with e . 0 after compensating the depth of the waveguide
potential. The reapperance of Talbot oscillations in compensated
elliptical waveguides signals the isospectral properties with respect
to the ring trap, illustrating the suppression of curvature-induced
effects.

Discussion
The dynamics of matter waves in bent waveguides is severely dis-
torted by the appearance of an attractive curvature-induced quantum
potential. As matter wave circuits shrink in size and atomic velocities
must be reduced to maintain single mode propagation, curvature-
induced potentials impose practical limitations on minimum velo-
cities, and methods to reduce their effects are needed. Using methods
of supersymmetric quantum mechanics, we have introduced a
framework to design sets of bent waveguides which share the same
scattering properties. As a relevant example, an infinite family of
reflectionless waveguides with a controllable number of bound states
has been presented. As a complementary approach, we have dis-
cussed the possibility of tailoring curvature-induced effects by con-
trolling the depth of the waveguide trapping potential. Our
discussion has been focused on the effects of curvature on guided
matter-waves which are experimentally realizable by a variety of
techniques including atom chip technology and the painted potential
technique based on a time-averaged optical dipole potential6. Our
results are however directly applicable to other systems such as
optical waveguides and photonic lattices23, in which curvature-
induced potentials53,54, reflectionless potentials55, and concepts of
supersymmetric quantum mechanics56,57 have already been imple-
mented in the laboratory, and that provide a natural alternative
platform to experimentally explore the interplay between geometry
and supersymmetry in quantum mechanics.

Methods
Let us consider the case in which the superpotential depends on a collective set of
parameters a0, W 5 W(q1;a0). The partner potentials + are shape-invariant if they
are related by z q1; a0ð Þ~ { q1; a1ð ÞzR a1ð Þ where the residual term R(a1) is
independent of q1 and a1 5 f(a0) is a new set of parameters obatined form a0 by the
action of the function f(?). By iteration, one can construct the series of Hamiltonians

{Hkjk 5 0, 1, …} with H0 5 H2 and H1 5 H1, such that Hs~H0z
Xs

k~1
R akð Þ,

with ak 5 fk(a0), i.e., obtained by the f function iterated k times. It follows that the
squared curvatures of the SUSY partner curves {cs21, cs} are related by a constant shift

k2
s q1ð Þ~k2

s{1 q1ð Þ{
8m

�h2 R asð Þ~k2
0 q1ð Þ{

8m

�h2

Xs

k~1

R akð Þ: ð12Þ
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