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We analyze the topological Hall conductivity (THC) of topologically nontrivial spin textures like magnetic
vortices and skyrmions and investigate its possible application in the readback for magnetic memory based
on those spin textures. Under adiabatic conditions, such spin textures would theoretically yield quantized
THC values, which are related to topological invariants such as the winding number and polarity, and as
such are insensitive to fluctuations and smooth deformations. However, in a practical setting, the finite size
of spin texture elements and the influence of edges may cause them to deviate from their ideal
configurations. We calculate the degree of robustness of the THC output in practical magnetic memories in
the presence of edge and finite size effects.

R
ecent discoveries of skyrmionic configurations in magnetic and multiferroic systems1–3, the writing and
deletion of single magnetic skyrmions4, and ultrafast current-driven gyrotropic switching5,6 and oscilla-
tions7 of magnetic vortices have fueled interest in the properties of topologically nontrivial magnetization

textures such as vortices and skyrmionic configurations. For the vortex spin texture, analytical studies and
numerical micromagnetic simulations8,9 had predicted the formation of stable vortex configuration with core
radius of the order of the magnetic exchange length for ultra-thin disks with sufficiently large lateral dimensions.
Actual experimental observation of magnetic vortices was first achieved by Shinjo et al.10 in permalloy.
Subsequent theoretical and experimental research investigated the possibility of vortex-based memories5,11–13.
For the skyrmion spin texture, Bogdanov et al. theoretically predict the formation of skyrmions in magnetic
systems which is stabilized by the Dzyaloshinskii-Moriya (DM) interaction14–16. Numerical micromagnetic
studies17–19 showed that the size of the skyrmions scales as (D/Jex), where D is the DM interaction strength and
Jex is the exchange coupling strength. For typical magnetic parameters, the skyrmionic structure is stable for DM
strength of between 5 , D , 15 (mJ/m2)19. Experimental confirmation of the existence of skyrmionic config-
urations was recently attained via neutron scattering and Lorentz transmission electron microscopy1,2.
Subsequent research on the electron transport and current-driven dynamics of skyrmionic systems has indicated
their potential use in spintronic applications specifically in memory18,20,21. More recent experimental demonstra-
tions of the generation and visualization of molecular bound skyrmions22, and thermally driven ratchet motion of
a skyrmion microcrystals23 allude to the rich underlying physics of magnetic skyrmions.

Both the vortex and skyrmion configurations are associated with topological properties, such as the Berry or
geometric phase, which are quantized and invariant to any smooth deformations24. For instance, it has been
shown that relativistic electron vortex beams have an associated geometric phase that governs their dynamics25.
The first example of such topological transport in condensed matter physics is discovered in the context of the
quantum Hall effect, as described by Thouless et al. and Kohmoto26,27. Subsequently, the anomalous Hall effect in
a medium with spin-orbit coupling was also shown to have a topological basis28. More recently, the gauge
formalism was used to describe topological transport in various spin-orbital and magnetic systems29–31. The
insensitivity of these topological invariants to deformations and fluctuations which invariably attend to any
physical system, makes them attractive candidates for device applications. As devices shrink in size, the influence
of external noise and disturbances becomes ever more significant, thus increasing the appeal of stable topologic-
ally-linked device output. By linking these invariants to some measurable property of the magnetic system or
device, one may obtain an output which is naturally quantized (digital) and robust to noise and fluctuations. The
topological Hall conductivity (THC), first described in chiral pyrochlore material, is one such property28. Under
adiabatic conditions, the THC has been shown to be related to the quantized magnetic flux of the topological
magnetic (B) field. However, the quantized flux value strictly holds only for ideal skyrmion or vortex configura-
tions, which are spatially infinite in extent and are unaffected by any edge effects.
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Thus, in this paper, we analyze the THC under the non-ideal
situation of (i) finite size, and (ii) in the presence of edge interactions.
These two factors will become increasingly important in ultra-small
magnetic skyrmion and vortex elements, which may be potentially
used in memory application. In particular, there are proposals to
utilize the topological properties of vortex elements (such as its polar-
ity and chirality) to store binary bits of information6,32. In such an
application, the THC may provide a high-fidelity read-back scheme,
which is less susceptible to, e.g., incomplete switching or geometrical
non-uniformities of the elements. Under adiabatic condition, we
analyze the THC for both skyrmion and vortex patterns. In the
presence of edge effects, we mapped the configuration onto the unit
Bloch sphere, which provides us with an intuitive picture of the
influence of edge effect on the THE. From this mapping, we derived
the analytical expression for the THC, which was verified by direct
numerical integration. The THE was found to be dependent only on
the magnetization at the edges (which demarcates the boundary on
the Bloch sphere). This suggests that ‘‘edge engineering’’ of elements
may be utilized to achieve the desired THE output. By analyzing the
Berry phase associated with the vortex and skyrmion configurations,
it was shown that edge interactions in vortex elements can improve
the THC output by bringing it closer to the ideal quantized value, but
tend to have the opposite effect for skyrmion elements. However, for
vortices with higher winding numbers, the improvement of the THC
output is reduced.

Results
Hamiltonian and Topological Hall Conductivity. Conduction
electrons moving in a two-dimensional medium with a spatially
varying spin texture can be modelled by the Hamiltonian:

H~{
�h2

2m
+2{J n:sð Þ, ð1Þ

where

n~ sin h cos w, sin h sin w, cos hð Þ, ð2Þ

is the direction of the local magnetization, which varies smoothly
with position r in the medium, and (h, w) are the angles in spin space.
Applying a gauge transformation to align the reference spin axis to
the local magnetization direction (see Methods), the Hamiltonian is
then transformed to

H’~{
�h2

2m
+{

ie
�h

A rð Þ
� �2

{Jsz: ð3Þ

where the gauge potential is A 5 2iW0U{=U, with W0~
�h
e

being the

flux quantum. In the adiabatic limit, where the electron spin relaxes
to the local magnetization orientation, the off-diagonal compo-
nents of the gauge potential go to zero. The gauge potential
then corresponds to that of a magnetic monopole, i.e.,

A~
1
2

1{cos hð Þ+w½ �sz in Bloch (spin) space. By transforming the

gauge to the spatial (e.g., Cartesian) coordinates, and taking the
curvature we can derive the effective B-field associated with the
local magnetization distribution (spin texture) – see Methods. We
also discuss the applicability of the adiabatic limit in the systems
under consideration (see Methods).

If the spin texture varies over the x-y plane and has no z-depend-
ence, then only the vertical (z) component of the topological field will
be non-zero. This may be expressed in terms of the spin texture n as
(see Methods):

Bz~
W0

2
n: Lxn|Lyn
� �

: ð4Þ

This topological field induces a transverse Lorentz force on the elec-
tron. It is this transverse force acting on the conduction electrons

which gives rise to the topological Hall conductivity (THC). From the
semiclassical Drude theory, the THC is related to the topological
magnetic flux29, i.e.,

sxy~sxx
et�Bz

m

� �

~s0
xy

ð
S

n: Lxn|Lyn
� �

dS,

ð5Þ

where s0
xy~sxx

et

2mS

� �
W0~s2

xx
1

2neS

� �
W0 (see Methods for the

derivation of the above). Here, t is the scattering time, m is the

electron mass, sxx~
ne2t

m
is the longitudinal conductivity, S is the

sample area and �Bz is the averaged vertical field over S.
The more experimentally relevant parameter is the Hall resistivity,

which is given by rxy~
sxy

s2
xxzs2

xy

� �< sxy
�

s2
xx

� �
33, where the

approximation holds in the low field limit. Thus, in this limit both
the Hall resistivity and conductivity are proportional to the topo-
logical flux. The above proportionality of sxy and rsy to the topo-
logical flux is obtained by considering the semiclassical Drude model.
This proportionality still holds in the quantum regime, as can be
shown by applying the approach of Tatara et al.34 (see Methods).

Topological Hall Conductivity of Vortex and Skyrmion Textures.
Next, we consider the specific case of spin textures exhibiting axial
symmetry, such as the vortex and skyrmion configurations, for
which the topological flux expression assumes an especially simple
form. For these configurations, the polar and the azimuthal angles of
the spin orientation (h, w) can be expressed as

cos h rð Þ~
P

a2

a2zr2
, vortexð Þ

P
a2{r2

a2zr2
, skyrmionð Þ

8>>><
>>>:

w r,Qð Þ~WQzC
p

2
: for bothð Þ

ð6Þ

In the above, a is the core radius of the vortex or skyrmion, and
denotes the characteristic size of the vortex/skyrmion texture, (r,
Q) are the cylindrical coordinates in real space, while W, P 5 61,
and C 5 61 denote the winding number, polarity and chirality,
respectively. The topological invariants such as polarity P and
winding number W are linked to electronic transport properties in
skyrmion/vortex textures in the adiabatic limit. Since these quantities
are quantized and invariant to small deformations, they render the
electronic transport to be robust to noise and other fluctuations as
mentioned earlier. The gradient operator, in cylindrical coordinates,

is given by +~
L
Lr

r̂z
1
r

L
LQ

Q̂z
L
Lz

ẑ

� �
, and thus it follows from Eq.

(21) that the topological B-field for the vortex and skyrmionic
configurations in polar coordinates are, respectively, given by

Bv,s~

PW W0

2
2a2

a2zr2ð Þ2

" #
ẑ vortexð Þ;

PW W0

2
4a2

a2zr2ð Þ2

" #
ẑ skyrmionð Þ:

8>>>>><
>>>>>:

ð7Þ

Note that the topological field is independent of the chirality C. This
is because, as can be seen in the above equations, the change in
chirality involves just a constant phase difference of Dw 5 p in the
azimuth of the spin orientation. From the topological field in Eq. (7),
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the corresponding flux emanating over a circular vortex/skyrmion
element of radius R, is given by

WB~

ð2p

Q~0

ðR

r~0
Bv,sj jr drdQ

~nv,sp
R2

R2za2

� �
PW W0,

ð8Þ

where nv,s 5 1 (2), for the vortex (skyrmion) configurations. In the
limit of infinite vortex/skyrmion element, the flux corresponds to a
topological invariant with quantized values, i.e.,

lim
R??

WB~nv,spPW W0: ð9Þ

Since the above flux can be related to the Hall conductivity, as can be
seen from Eq. (5), thus the Hall conductivity arising from ideal vortex
and skyrmion textures of infinite extent will be quantized and
topological in nature.

For further analysis (e.g., into the edge effects), it is instructive to
see how the flux in real space (or any arbitrary space for that matter)

translates into the flux in spin space. Discounting the factor of
W0

2
,

the topological flux in real space is given by

WB~

ð
S

n: Lxn|Lyn
� �

dxdy

~ntSn: Lhn|Lwn
� � L h,wð Þ

L x,yð Þ

	 

dxdy

~ntS’n: Lhn|Lwn
� �

dhdw,

ð10Þ

where S9 is the enclosed region in spin space. In Eq. (10), we have

made use of Eq. (23) in the second line, and the fact that
L h,wð Þ
L x,yð Þ

	 

is

the Jacobian for the transformation between the Cartesian (x, y) to
the spin (h, w) spaces. Since (hhn 3 hwn) 5 n jhhn 3 hwnj, and that
jhhn 3 hwnj dhdw represents the differential area element on the unit
sphere (equivalent to the solid angle dV, as shown in Fig. 1), Eq. (10)
immediately leads to

WB~s0
xy

ð
S’

sin h dhdw~s0
xy

ð
S’

dV~s0
xyVS’: ð11Þ

Thus, the THC can be mapped to the solid angleVS9 subtended by the
spin texture in spin space. VS9 corresponds to the Berry or geometric
phase of the adiabatic electronic transport through the spin texture. It
thus follows, that for axially symmetric spin configurations of wind-
ing number W (i.e., h 5 h(r) and w 5 WQ 1 w0, where w0 is some

constant offset), that the spin texture will be mapped onto a spherical
cap in spin space. The THC would then assume a simple analytical
form:

sxy~s0
xy

ð
S’

sin h dhdw

~s0
xy cos h rð Þ½ �R0

ð2p

0

dw

dQ

� �
dQ

~2pWs0
xy P{cos h Rð Þ½ �:

ð12Þ

where R is the radius of the spin texture element in real space. By
considering Eq. (6), we recover the flux expression of Eq. (8). Finally,
for vortex (skyrmion) textures of infinite extent (i.e., as R R ‘),
cosh(R) R 0 (2P), and thus we obtain the quantized flux quantity
of Eq. (9).

Edge Effects on the Topological Hall Conductivity. Besides
recovering the flux expression obtained earlier by algebraic means,
the above transformation of the spatial spin texture to the Bloch
sphere in spin space also provides a pictorial representation of the
THC. We find that the flux of axially symmetric spin textures
contributing to the THC can be mapped to the solid angle or
spherical cap on the unit Bloch sphere. With this theoretical
insight we can now analyze the THC of an ‘‘edged’’ vortex or
skyrmion texture, where there exists an edge anisotropy which
tends to align the magnetization n along the element boundary,
i.e., in the azimuthal direction +Q̂. In general, the edge effect can
be modelled by modifying the original magnetization direction n to

n’~ nzsð Þ= nzsj j, ð13Þ

where

s:s rð ÞQ̂~s0 e{ R{rð Þ=l{e{ Rzrð Þ=l
� �

Q̂

~2s0e{R=l sinh
r
l

� �
Q̂:

ð14Þ

The parameter s0 denotes the strength of the edge anisotropy, while l
is the length-scale over which it acts. Edge anisotropy causes the
magnetization to be aligned along the edge of a magnetic element
so as to lower the magnetic pole density at the boundary, and
minimize the free energy of the system35,36. The strength of the
edge anisotropy s0 is proportional to the discontinuity in the
saturation magnetization DMs across the boundary, while its

characteristic decay length is given by l<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A
�

m0DM2
s

q
, where A

is the exchange constant and m0 is the permeability of vacuum.
Note that the second term in the first line of Eq. (14) arises from
the edge interaction from the diametrically opposite segment of the
boundary, assuming that the edge interaction decays exponentially as
we move away from the boundary towards the vortex/skyrmion core.
For the case of vortex/skyrmion texture of unit winding number (W
5 1), the azimuthal spin orientation is already parallel to the
direction of the edge interaction as can be seen from Eq. (6). Thus,
in this special case, the edge interaction would only modify the polar
angle, which is now given by

cos h’ r,sð Þ~ cos h rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z2s sin h rð Þzs2

p , ð15Þ

where s 5 jsj and cos h is given by Eq. (6), with the winding number
W 5 1.

For the vortex configuration, the presence of the edge interaction
causes the spin orientation to align away from the polar direction.
This has the effect of ‘‘stretching’’ downwards the boundary of the
spherical cap on the Bloch sphere closer to the equatorial plane, thus
increasing the subtended solid angle or Berry phase V [see Fig. 2(a)].

Figure 1 | The above depicts the area element dA on the unit Bloch sphere

in spin space, which is given by dA~v1|v2~
Ln
Lh

|
Ln
LQ

����
���� dhdw

� �
N̂ ,

whose magnitude represents the solid angle subtended by dA.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 5123 | DOI: 10.1038/srep05123 3



Since V is directly related to WB [see Eq. (11)] and hence to the THC,
and that the ideal topological THC value corresponds to V 5 p for a
vortex of unit winding number [see Eq. (9)], the presence of the edge
interaction would tend to ‘‘improve’’ the THC towards the ideal
value. In other words, a vortex element of finite radius R which

originally yields a flux of P{cos h Rð Þ½ �pW0~
pR2

R2za2
PW0, would

now yield a flux of [P 2 cos h9(R, s)]pW0 in the presence of edge
anisotropy. This flux value is closer to the quantized value of PpW0

which emanates from an ideal vortex of infinite size. In other words,
as far as the THC is concerned, a finite vortex element with edge

anisotropy is effectively equivalent to an ideal vortex (without edge
effect) of a larger radius.

For the skyrmion texture, however, the effect of the edge inter-
action is more complicated, and depends on the angular extent of the
original spherical cap V 5 [P 2 cos h(R)]p, in the absence of edge
interaction. If (R/a) , 1, then V , Pp from Eq. (8), i.e., the original
spherical cap is wholly within the top hemisphere. Then, the edge
interaction would have the effect of stretching downwards the
boundary of the spherical cap to the equatorial plane, thus bringing
the solid angle or Berry phase closer to the ideal value of V 5 2Pp.
However, when (R/a) . 1, the original spherical cap in the absence of

Figure 2 | (a) and (b) show the Bloch spheres corresponding to a vortex and skyrmion elements, respectively. For both configurations, the dark blue

spherical cap refers to the solid angle V of the Bloch sphere or the Berry phase contributing to the topological flux, and hence the THC, in the absence of

edge interactions. In the presence of edge interactions, the boundaries of the spherical caps are stretched downwards (upwards) for the vortex (skyrmion)

configurations, towards the equatorial plane. This brings the solid angle or the Berry phase closer to the ideal value of V 5 p for the vortex texture,

but away from the ideal value of V 5 2p for the skyrmion texture. (c) and (d) The contour plots of the topological Hall conductivity (THC) for (a) the

vortex and (b) skyrmion configurations of positive polarity (P 5 1) and unit winding number (W 5 1), calculated based on Eq. (16) as a function of

element size R and edge anisotropy strength s0. The THC is expressed in units of s0
xy 2s0

xy

� �
for the vortex (skyrmion) configurations, which corresponds

to the ideal THC value due to a vortex (skyrmion) of infinite extent. The above calculated THC values coincide exactly with the analytical THC result

given by Eq. (12), assuming a polar angle of Eq. (15).
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edge interaction extends beyond the equator. The effect of edge
interaction would be to ‘‘pull’’ upwards the boundary of the cap
towards the equatorial plane [see Fig. 2(b]. The resulting solid
angle/Berry phase is reduced and diverges away from the ideal value
of V 5 2Pp. In the special case where the element size coincides with
the skyrmion core radius, i.e., R 5 a, the spherical cap is already
hemispherical in the absence of edge interaction. The magnetization
direction along the boundary of the skyrmion element coincides with
the edge anisotropy direction (both along the azimuthal direction).
Hence, the addition of edge interaction will neither change the mag-
netization direction at the boundary nor the subtended solid angle V.
Thus, the THC has a constant value of s0

xy corresponding to V 5 Pp

regardless of the edge anisotropy strength s0, as shown by the vertical
contour line corresponding to (R/a) 5 1 in Fig. 2(d).

Numerical verification. The above theoretical analysis is verified by
numerical calculation of the flux via direct integration of the z-
component of the B field over a vortex/skyrmion element of size R,
in the presence of an edge anisotropy strength s. For a general spin
texture n(r, Q), the corresponding B-field can be evaluated from Eq.
(21) as

Bz~{
W0

2
cos2w+nz|+

ny

nx

� �
:ẑ

~{
W0

2Wr
sin2 WQð Þ Lnz

Lr

L ny
�

nx
� �

LQ
{

Lnz

LQ

L ny
�

nx
� �

Lr

� �
:

ð16Þ

After substituting the spin texture n9 of Eq. (13) into the above to
obtain the topological field, the numerical value of the resulting flux
over the vortex/skyrmion element is then obtained via the

integration: WB~

ð2p

0

ðR

o
Bz r drdQ. The calculated flux value is

found to coincide (within numerical accuracy) to the analytical
prediction of cosh9(R, s)PpW0, where cosh9(R, s) is given by Eq. (15).

Discussion
Our analysis in the previous section has shown that the THC is
determined by the solid angle subtended by the spin texture in the
Bloch space, which is equivalent to the Berry phase associated with
the adiabatic transport through the texture. To explore this idea
further, we consider the THC for a family of skyrmionic configura-
tions, whose polar angle is defined as

cosh rð Þ~P
ap{rp

apzrp

� �
ð17Þ

where p is some even integer, while the azimuthal angle is given by
Eq. (6). Note for the case of p 5 2, we recover the skyrmion texture of
Eq. (6), which was considered earlier. All the configurations defined
by Eq. (17) exhibit the skyrmion pattern of h(r) 5 0 at r 5 0, and h(r)
5 p as r R ‘, i.e., with the spin texture pointing vertically up at the
centre (origin) and vertically down at large distances from the origin,
and the transition between these two extremes occurring at around r
5 a. Now, the larger the value of p, the faster would be the transition
or spin rotation at around r 5 a. Hence, for a skyrmion element of
radius R . a, we would expect the skyrmion texture to subtend over a
larger solid angle over the Bloch sphere corresponding to a larger
Berry phase. Thus, the corresponding THC would increase and more
closely approach the ideal THC value of sxy~2Ps0

xy of an infinite
skyrmion. Numerical evaluation of the field via Eq. (16), followed by
direct integration of the vertical flux over the skyrmion element
confirms the predicted increase in the THC towards 2Ps0

xy as p
increases and the skyrmion transition gets sharper.

The analysis in the previous paragraph reveals an important
insight on the THC of axially symmetric spin textures – since the
THC is related to the spherical angle subtended in the Bloch space, it

is thus determined solely by the spin configuration at the element
boundary. In other words, the THC would not be affected by the spin
distribution within the interior of the element. To illustrate this
point, we compare the THC arising from two skyrmion elements
whose edge interaction decays at different rates within the interior
of the elements. If the decay lengths of the edge interaction are set at l
and 2l for the two elements, their respective spin configurations are
then given by

s~s0 e{ R{rð Þ=l{e{ Rzrð Þ=l
� �

Q̂,

s’~s’0 e{ R{rð Þ=2l{e{ Rzrð Þ=2l
� �

Q̂:
ð18Þ

By setting the ratio of the edge interaction strengths at

s0=s’0~
1{e{2R=l

1{e{R=l
, ð19Þ

the spin texture will be identical along the boundary of the two
elements (i.e., at r 5 R), but would differ within the interior (r ,

R). However, their THC should be identical, since it is only depend-
ent on the spin configuration at the boundaries. This is borne out by
numerical flux calculation via Eq. (16) and direct integration. As
shown in the inset of Fig. 3, by setting the edge anisotropy strengths
according to Eq. (19), the two spin textures are made to coincide at
the boundary of the skyrmion elements, but not within the interior.
However, this difference does not affect the overall THC, as the THC
values for the two spin textures are exactly identical (see main plot of
Fig. 3). This has intriguing implications from the application stand-
point – for skyrmionic and vortex elements, one can control the THC
output merely by engineering the spin texture along the boundary
without needing to consider the spatial variation of the magnetiza-
tion within the element. Furthermore, the spin texture at the bound-
aries tends to be more amenable to external factors, e.g., by

Figure 3 | Contour lines for THC in units of s0
xy for skyrmion

configurations of two different decay lengths L 5 l and L 5 2l. The

contour lines for the latter exactly coincide with that of a skyrmion with

decay length L 5 l, but with a modified edge anisotropy strength of s’0
which is given by Eq. (19). The inset shows the spatial profile of the in-

plane spin component as a function of distance r from the centre of a

skyrmion element of size R 5 2.5a, for the two decay lengths. The two spin

configurations coincide at the boundary r 5 R.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 5123 | DOI: 10.1038/srep05123 5



controlling the geometry of the boundaries, or by interfacing with
other materials.

Now, we consider the THC arising from the vortex configuration
of a higher winding number, i.e., for W 5 2. In this case, the azi-
muthal angle of the spin orientation rotates faster than the tangential
direction to the boundary element. Hence, there is an angular devi-
ation ofDQ 5 (W 2 1)Q between the direction of the edge interaction
and the azimuthal orientation of the spin texture at the boundary. We
would thus expect that the edge effect has a weaker effect in stabil-
izing the vortex texture, compared to the W 5 1 case where the edge
effect is always fully aligned to the azimuthal spin direction. In gen-
eral, in the presence of edge interactions and for the higher winding
numbers of W . 1, the spin orientation within the element is given
by

n’x~sin h cos wzs cosDQ cos w{DQð Þ

n’y~sin h sin wzs cosDQ sin w{DQð Þ

n’z~cos h,

ð20Þ

where w is given by Eq. (6), s is the interaction strength as given by Eq.
(14). Note that the edge interaction acts along the tangent to the
element boundary, which is denoted by the azimuthal angle of (w
2 DQ), while the strength of the edge interaction is modulated by the
angular deviation DQ between the magnetization and the edge. The
spin texture denoted by Eq. (20) does not exhibit axial symmetry.
However, one can still calculate the corresponding THC by trans-
forming the spin texture to the Bloch sphere. For the case of W 5 2,
the spherical cap contributing to the THC would be ‘‘double-layered’’
since it winds around the Bloch sphere twice, while the polar angle of
its boundary would vary at different azimuthal angle w with its lower
(upper) limits coinciding with the spherical caps of a unit winding
number in the presence (absence) of the edge interaction at w 5 0 (p).
Just as in the case of vortices with W 5 1 (unit winding number)
discussed earlier, the THC for W 5 2 vortieces approaches the ideal
value of Ws0xy when the radius of the element far exceeds the core
size, i.e., R?a. However, by comparing Fig. 4(b) with Fig. 2(c), we
find the THC for the W 5 2 vortices are more weakly-dependent on
the edge interaction compared to that of W 5 1 vortices. This is
because for the former case, the direction of the magnetization at
the edges does not always coincide with that of the edge anisotropy
(along the azimuthal direction). In the Bloch space, this weaker
dependence can be seen schematically by the fact that the W 5 2

spherical cap occupies a smaller solid angle than the W 5 1 spherical
cap in the presence of edge interactions [see Fig. 4(a)]. Thus, one can
surmise that although utilizing vortex elements of winding number
W 5 2 may double the number of memory bits per element, the
robustness of the bit elements would be less susceptible to edge
engineering.

Finally, we discuss the implementation of the read-out of memory
based on the vortex or skyrmion configurations. The proposed
device structure is shown in Fig. 5). For the vortex configuration,
submicron sized nano-elements made of permalloy (NiFe) have been
fabricated to a high degree of regularity and precision10,37. For the
skyrmion configuration, regular circular elements of diameter <
50 nm can be formed in a regular lattice in multiferroics such as
Cu2OSeO3

3. Experimentally, the Hall output voltage is usually mea-
sured via a standard six terminal Hall probe configuration (see
e.g.,38). For the proposed memory device, the Hall probe would have
to be miniaturized. We propose a cross-point architecture to read out
the THE output for a particular vortex/skyrmion cell element as
shown in Fig. 5). Current would be passed through the column line
passing through the element under consideration, while the THE
voltage output is read across the corresponding row line. The pro-
posed cross-point architecture has also been employed in other

Figure 4 | (a) Bloch sphere showing a spherical cap (dark orange) corresponding to a vortex texture with a higher winding number, i.e., W 5 2. The

boundaries B1 and B2 correspond to the spherical cap for a W 5 1 vortex (of unit winding number), in the presence and absence of edge interaction,

respectively. (b) The contour plot of the corresponding THC in units of s0
xy . The THC sxy approaches 2s0

xy as R and s0 approaches infinity.

Figure 5 | Proposed memory device based on magnetic elements with
skyrmion/vortex configurations. The memory read-out of a particular cell

is effected via the THE output across the horizontal voltage line as current

is passed through the vertical line, with the two lines intersecting at the cell

being read.
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memory applications, e.g., in magnetic RAM chips, which employ
cross-linked write and read current lines39.

Methods
Gauge Potential and Effective Topological Field. To solve the Hamiltonian in Eq.
(1) for any arbitrary n, it is first diagonalized by a local gauge transformation, U(r),
i.e., U{(n ? s)U 5 sz. The gauge U(r) is non-unique; a convenient choice is given by U

5 (m ? s), where m~ sin
h

2
cosw,sin

h

2
sinw,cos

h

2

� �
. The gauge transformation yields

a gauge potential which corresponds to that of a magnetic monopole, i.e.,

A~
1
2

1{coshð Þ+w½ �sz in Bloch (spin) space. Since we are dealing with the

topological gauge fields induced by a two-dimensional spatial spin texture, it is useful
to transform them to the spatial (e.g., Cartesian) coordinates, as follows:

Ai~
W0

2
1{cos hð Þ+w:

Ln

Lxi

[ A~
W0

2 1znzð Þ {ny+nxznx+ny
� �

:

The curvature of the gauge potential yields the effective B-field, i.e.,

B~+|A~
W0

2
sin h +h|+wð Þ: ð21Þ

If the spin texture varies over the x-y plane and has no z-dependence, then only the
vertical (z) component of the topological field will be non-zero, i.e.,

Bz~
W0

2
sin h +h|+wð Þ:ẑ

~
W0

2
sin h LxhLyw{LyhLxw

� �
~

W0

2
sin h

L h,wð Þ
L x,yð Þ

	 

:

ð22Þ

A more useful expression of the topological field can be obtained by considering the
vector product (hxn 3 hyn). Since n is a function of h and w, one can expand the
product:

Lxn|Lyn~
L h,wð Þ
L x,yð Þ

	 

Lhn|Lwn
� �

~n
L h,wð Þ
L x,yð Þ

	 

sin h,

ð23Þ

where the second equality follows directly from Eq. (2). From Eqs. (22) and (23), we

have n:Lxn|Lyn
� �

~
L h,wð Þ
L x,yð Þ

	 

sinh, from which the alternative expression for the

topological field follows:

Bz~
W0

2
n: Lxn|Lyn
� �

: ð24Þ

Semiclassical Derivation of the Topological Hall Conductivity. We present the
derivation of the topological Hall conductivity (THC) leading to Eq. (5). By
definition, the transverse conductivity is given by

sxy:
jy

Ex
~

nevy

Ex
: ð25Þ

In the presence of a vertical magnetic field (Bz), the transverse velocity vy is given by

vy~
Fyt

m
~

eBzvxt

m
, ð26Þ

where Fy 5 eBzvx is the transverse Lorentz force due to the vertical field Bz, t is the
scattering time, and m is the electron mass. Substituting Eq. (26) into Eq. (25), we have

sxy~
ne
Ex

eBzvxt

m

� �
~

nevx

Ex

eBzt

m

� �
~sxx

eBzt

m

� �
: ð27Þ

where we have made use of the definition sxx:
jx

Ex
~

nevx

Ex
. Averaging the vertical Bz-

field over the spin texture element, i.e.,

�Bz~
W0

2S

ð
S

n: Lxn|Lyn
� �

dS, ð28Þ

and substituting the above into Eq. (27), we obtain Eq. (5) in the main text.

Applicability of the Adiabatic Approximation. In the adiabatic limit, the electron
spin is assumed to have sufficient time to relax as it passes through and interacts with

the local moments. Physically, the adiabatic limit is approached when the variation of
the spin texture n is gradual enough such that the probability of spin-flip transition
can be neglected. In other words, �hvq=D, where vq is the rate of change of n and D is
the energy-split between the spin-up and down electrons. Specifically, in our system,
we have:

vq<
Ln

Lt

����
����< Ln

Lr

����
����vF<

�hkF

wme
, ð29Þ

where vF is the Fermi energy, and w is the characteristic length over which n varies.
The spin split in energy is given by D 5 2J, where J is the s-d exchange energy. Thus,
the adiabatic limit is satisfied under the following condition:

�hvq=D

[
�h2kF

wme
=2J

[
EF

J
1

wkF

� �
=1:

ð30Þ

Assuming typical values for ferromagnetic metals of kF < 1010 m21, EF < 5 eV, J <

1 eV40, and vortex/skyrmion core radius of 20–40 nm,
EF

J
1

vkF

� �
*O 10{2

� �
, and

thus the above adiabatic condition generally holds.

Derivation of Hall Resistivity in the Quantum Regime. The proportionality of the
Hall conductivity and hence, the Hall resistivity to the topological flux [see Eq. (5)]
was earlier shown via the semiclassical Drude model. This may also be shown in the
quantum regime via the Kubo (linear response) formalism34. In this regime, the Hall
resistivity is given by:

rxy~ lim
v?0

4J2

e2n2

� �
1
S
|
X
kqs

Im As
x qð ÞA{s

y qð Þ
h i 1

v

� �
f ek,{sð Þ{f ek,sð Þ

2sJ{v

~{
�h

e2n2S

X
q

Im As
x qð ÞA{s

y qð Þ
h iX

ks

f ek,sð Þ

~
�h nz{n{ð Þ

2e2n2S

ð
S

n: Lxn|Lyn
� �

dS

~
�hP

2e2nS

ð
S

n: Lxn|Lyn
� �

dS~
P

neS
W0

2

� �
WB:

ð31Þ

In the above, P is the spin polarization of current in the system and As
i qð Þ is the

Fourier trnsform of the spatial gauge field. Note that the proportionality of rxy (and
hence sxy) to WB still holds in the quantum regime.
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