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A hexagonal warping term has been proposed recently to explain the experimentally observed 2D equal
energy contours of the surface states of the topological insulator Bi2Te3. Differing from the Dirac fermion
Hamiltonian, the hexagonal warping term leads to the opening up of a band gap by an in-plane
magnetization. We study the transmission between two Bi2Te3 segments subjected to different in-plane
magnetizations and potentials. The opening up of a bandgap, and the accompanying displacement and
distortion of the constant energy surfaces from their usual circular shapes by the in-plane magnetizations,
modify the transverse momentum overlap between the two Bi2Te3 segments, and strongly modulate the
transmission profile. The strong dependence of the TI surface state transport of Bi2Te3 on the magnetization
orientation of an adjacent ferromagnetic layer may potentially be utilized in, e.g., a memory readout
application.

T
opological insulators (TIs)1 are a relatively new class of materials which have attracted much attention due to
their rich physics. For example, Majorana fermions have been shown to exist in junctions between super-
conductors and ferromagnetic insulators deposited on top of TIs2–4. Furthermore, strong spin orbit coupling

leads to interesting effects when a magnetization is applied to a TI5–7. In particular, Yokoyama and colleagues
studied the magnetoresistance in a two dimensional junction between two ferromagnets magnetized in different
directions deposited on top of a topological insulator8. They found that the transmission at a given energy is
strongly influenced by the relative k-space displacements of the Fermi surfaces resulting from the differing
magnetizations. The influence of the Fermi surfaces on the magnetoresistance motivates the study of the topo-
logical insulator Bi2Te3 in this present work.

The experimentally observed9,10 2D equal energy contours (EECs) of the surface states in Bi2Te3 differ at high
Fermi energies from the circular Dirac cone predicted by the simple Dirac fermion Hamiltonian H~v~k|~s. At
low Fermi energies, the EEC takes the form of a circle (Fig. 1(a)). As the Fermi energy increases, the contour
evolves from a circle to a hexagon and then to a snowflake with sharp tips along the six CM directions. Based on
the underlying 3-fold rotational and two-fold mirror symmetry of the [111] surface of the underlying rhom-
bohedral Bi2Te3 crystal structure, Fu suggested the addition of a hexagonal warping term to the Hamiltonian11.
The Hamiltonian then takes the form of

H~v kxsy{kysx
� �

zlsz k3
x{3kxk2

y

� �
, ð1Þ

where x is in the CK direction. The Hamiltonian reproduces the experimentally measured EECs.
Unlike the Dirac cone which is rotationally symmetric about the kx, ky plane, the dispersion relation arising

from Eq. 1 has only 6 fold rotational symmetry. The anisotropy of the Fermi surface in the kx, ky plane can be
expected to give rise to interesting directional dependent effects. For example, it has been suggested that a Bi2Te3

segment with a potential step may be exploited as a flat lens for focusing electron beams12.
Another peculiarity of the Hamiltonian is that an in-plane magnetic field modeled by a Zeeman term can open

up a band gap11. The Zeeman term mathematically resembles that due to magnetic coupling to a proximate
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ferromagnetic film or the effects of magnetic doping13. For ease of
exposition we say that the Zeeman term arises from an external
magnetization. We write the Zeeman term as ~M:~s and collect the
appropriate coupling constants into ~M itself. The introduction of a
bandgap due to an in-plane magnetization differs from the simple
Dirac fermion Hamiltonian H~v~k|~s where only an out-of-plane
magnetization can open up a band gap. We find that besides opening
up a band gap and displacing the position of the Dirac points in
reciprocal space, the in-plane magnetic field also distorts the shape
of the constant energy surfaces.

Despite the interesting bandstructure properties of Bi2Te3, trans-
port across Bi2Te3 segments has not yet been studied extensively.
Ref. 14 derived the transmission between one TI segment and
another with an externally applied step-edge potential V(x) 5

2V0h(2x) where h(x) is the Heaviside step function. In the deriva-
tion it was implicitly assumed that there is a propagating state in the
transmitted segment which satisfies energy and transverse
momentum conservation. However, there exists more than one
propagating state with real, positive kx for some values of ky at high
jE 2 Vj (see Fig. 1(c)). It is not evident which of these multiple values
of kx in the transmitted region should be chosen. Moreover, the
derivation matched only the wavefunctions, and not the probability
flux, across the interface. Ref. 16 considered the transmission of a
wave incident from x , 0 across a Dirac delta potential located at x 5

0. The transmitted wavefunction at x . 0 contains left propagating
components back into the incident region within the sin(kxx) and
cos(kxx) terms in Eq. (4) of the paper. The presence of backwards
propagating wave components in the transmitted region is counter-
intuitive.

For a given value of transverse momentum ky and Fermi energy E,
the Hamiltonian Eq. 1 admits six eigenstates with real or imaginary
kx which may be real or complex, and which come in three Kramers
time-reversal pairs. We consider the transmission of electrons travel-
ing in the 1x direction from one Bi2Te3 segment on the left to
another on its right. Three of the eigenstates propagate or decay in
the 1x direction, and are physically appropriate states in the segment
which a wave traveling in the 1x direction is transmitted into. The
other three eigenstates propagate or decay in the 2x direction, and
are physically appropriate as the reflected components of a wave-
function in the incident segment. Both Refs. 14 and 16 assume that an
incident energy eigenstate with wavevector kx be reflected at the
interface into an eigenstate with the wavevector 2kx. This imposes

an artificial constraint that the incident wave is not reflected back
into the other 2 eigenstates which also propagate or decay in the
correct direction.

One difficulty in considering all eigenstates in studying transmis-
sion across an interface between 2 Bi2Te3 TI segments is the issue of
boundary conditions. In each TI segment there are 6 eigenstates for a
given value of E and transverse momentum ky. In solving the trans-
mission problem across an interface from TI region I to region II, the
weightages of six of the twelve eigenstates involved are fixed by the
requirements that evanescent states decay away from the interface,
and that the state incident on the interface from region I is given. This
leaves the weightages of the remaining 6 states to be solved for. The
usual practice of matching the wavefunctions and first derivatives for
the two spinor components across an interface between the two TI
segments gives only 4 equations. Another boundary condition
besides wavefunction and first derivative continuity is required to
solve for the 6 unknowns uniquely. We note that more recent
works15,17 did consider all six eigenstates explicitly. However, Ref.
15 only considered transmission across a delta potential barrier,
whereas it is not clear from the paper what set of boundary condi-
tions Ref. 17 used.

To the best of our knowledge, transport across Bi2Te3 segments
magnetized in different directions has not yet been studied. In this
work, we show that probability flux conservation across the interface
requires that the matching of the second derivatives of the wavefunc-
tions across the interface. We then calculate the transmission
between two Bi2Te3 segments subjected to different external poten-
tials and magnetic fields. We find that the distortion and displace-
ment of the constant energy surfaces, and the opening up of a band
gap lead to a rich transmission profile as the magnetization directions
and energy are varied.

Methods
Boundary conditions. We consider a generic Hamiltonian of the form

Ĥ~ap̂xzbp̂2
xzcp̂3

xzd

~{iaLx{bL2
xzicL3

xzd:
ð2Þ

The a, b, c and d above may be numbers or Hermitian operators which commute with
p̂x , for example some combinations of~s or p̂y and are independent of px. For this

Hamiltonian, we have v̂x~
LĤ
Lp̂x

~az2bp̂xz3cp̂2
x . Explicitly expanding out htr gives,

after some manipulations of the x derivatives and integration by parts,

Figure 1 | The EECs and eigenstate spin orientations for E 5 (a) 0.1 eV, (b) 0.3 eV and (c) 0.5 eV. The green arrows on the EECs indicate the

orientation of the Æsxæ and Æsyæ components at each point on the contour with larger arrowheads indicating higher spin polarization. The red and blue

dots indicate the Æszæ polarization with larger dots indicating larger magnitudes of spin polarization. Blue (red) dots indicate positive (negative) spin z

polarization. The dotted line in panel (c) indicates one value of ky where there are six real values of kx.

www.nature.com/scientificreports
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Ltr~i Ĥy
� ��

y{y� Ĥy
� �� �

~{Lx y�ayz2Im y�bLxyð Þ{2Re y�cL2
xy

� �
z Lxy�ð Þc Lxyð Þ

� �
:

ð3Þ

Comparing with the continuity equation htr 1 hxj 5 0, we recognize the terms within
the large brackets in the second line as the probability flux. If c 5 0 (i.e. the
Hamiltonian is only quadratic in p̂x), the flux is the real part of y� v̂y so that for a
Hamiltonian quadratic in p̂x , matching y� v̂y across an interface – which matches
both the real and imaginary parts – automatically matches the flux across both sides of
an interface.

However, for c ? 0, the real part of the c term in y� v̂y is 3Re y�cL2
xy

� �
which is not,

in general, equal to the c term in the flux, 2Re y�cL2
xy

� �
{Lxy�cLxy. A simple

example suffices to illustrate this. Putting c 5 1 for simplicity, and writing y 5

exp(ikx) where k 5 (kr 1 iki) is in general complex, we have at x 5 0, we have
3Re y�cL2

xy
� �

~{3 k2
r {k2

i

� �
which is not equal to 2Re y�cL2

xy
� �

{Lxy�cLxy~

{3k2
r z2k2

i if the wavevector has an imaginary part.
In the system we will be considering in this paper, we identify the operators

a~vsy{3k2
ylsz , b 5 0, and c 5 lsz across both sides of the interface. (They differ in

the d term of Eq. 2.) In this instance, flux conservation can be achieved by matching i)
y ii) hxy and iii) L2

xy across both sides of the interface.

Results
Equal energy contours under an in-plane magnetization. The
eigenenergy E for a given ~k~k cos wð Þ,sin wð Þ,0ð Þ and magnetiza-
tion ~M~M cos wMð Þ,sin wMð Þ,0ð Þ reads

E2~
1
2

k6l2 1zcos 6wð Þð Þz2k2v2z2M2{4M kv sin w{wmð Þ
� ��

:ð4Þ

The high powers of k and presence of trigonometric terms involving
w and wM present difficulties for the derivation of compact analytic
expressions for the band gap and position of the Dirac point in k-
space at which the lowest energy propagating particle state with real~k
exist. We calculate these quantities numerically. We use the
numerical values of v 5 25.5 eVnm and l 5 0.25 eVnm23 11.

The in-plane magnetization leads to the opening up of a band gap
and a displacement of the Dirac point, as shown in panels (a) and (b)
of Fig. 2 respectively. The band gap reaches its maximum value of M
at magnetization angles wM 5 6(2n 2 1)p/6, n 5 1, 2, 3, and varies in

a roughly sinusoidal manner with the magnetization angle. The band
gap shifts the minimum energy at which propagating particle states
exist upwards. This leads to the k-space area covered by the EEC at a
given energy being generally larger for a magnetization angle with a
smaller band gap compared to that of a magnetization angle with a
larger band gap. This fact will have consequences for charge trans-
port between Bi2Te3 segments magnetized in different directions.

The trajectory of the Dirac points for a given magnetization mag-
nitude as the magnetization angle is varied follows a more compli-
cated path than the circular trajectories of the simple Dirac fermion
Hamiltonian. For the latter, the trajectories form circles in k-space. In
Bi2Te3, the trajectories of the Dirac points resemble the shapes of the
EECs. The trajectories of the Dirac points exhibit greater distortion
from the circular shape at a given value of M than the EECs do for
E 5 M.

The positions of the Dirac points~k� differ from the~k�~ẑ|~M
�

v
given in Ref. 11. The latter holds only in the low M limit when the
trajectories of the Dirac points are roughly circular. The k-space
angle w 5 arctan(ky/kx) of the Dirac point is related to the magnet-
ization angle by wM 5 w 2 p/2. This can be seen from the last term of
Eq. 4 where the energy achieves its minimum value for fixed values of
k and M when the sin(w 2 wM) term is 1. At w 5 wM 1 p/2 and the
large k limit, the k6 term of Eq. 4 dominates so that E < k3l
jsin(3wM)j. This explains the peaking of sinusoidal variation and
peaking of the band gap at wM 5 6 (2n 2 1)p/6, n 5 1, 2, 3.

Transport between two Bi2Te3 segments. To study the effects of the
in-plane magnetization on the transport properties of Bi2Te3, we
consider the system outlined schematically in Fig. 3. The system
consists of two Bi2Te3 segments of semi-infinite length along the x
direction and infinite width along the y direction. Charge flows from
the left source segment to the right drain segment in which a
magnetization ~M2~M2 cos wM2ð Þ,sin wM2ð Þð Þ and a potential U is
applied. The potential shifts the dispersion relation of the drain
segment on the energy axis with respect to that of the source
segment. For a given source Fermi energy E we define E2 5 E 2 U.

(a) (b)

Figure 2 | (a) The band gap in eV as a function of the magnetic field strength M and angle wM. (b) The thick blue lines indicate the trajectory of

the Dirac points in k space as wM is varied at fixed values of M from 0.05 eV to 0.20 eV. The black dotted lines show the constant energy surfaces at

E 5 0.1 eV and E 5 0.2 eV.

www.nature.com/scientificreports
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Fig. 4 shows the transmission plotted as a function of magnitude
M2 and direction wM2 of the drain magnetization for the transmission
from an unmagnetized source segment. The electron energy is cho-
sen to be the intermediate range, i.e., E 5 0.3 eV, at which the EEC
takes the form of a hexagon, while the drain segment is biased at E2 5

E 2 U2 5 0.1 eV, i.e., at the low energy regime where the EEC
assumes a circular shape.

The dependence of the transmission on M2 can be divided into
three regimes. In the low M2 regime (0 eV , M2 , 0.07 eV) the
transmission peaks weakly around wM2 5 6p/2, while at intermedi-
ate values of M2 the transmission exhibits sharper peaks near wM2 5

0, 6p. At large values of M2, the trend is reversed and the transmis-
sion drops to almost zero near wM2 5 6np/6, n 5 (1, 3, 5).

Discussion
These observations may be explained by examining the evolution of
the EECs as M2 and wM2 are varied (as shown in Fig. 5).

For low values of M2, the EECs at the drain lie completely within
the k-space region spanned by the EEC at the source. Fig. 5(a) shows
that the drain EECs adopt an almost circular profile and the ky range
spanned is only weakly dependent on wM2. The spin polarizations
(not shown) of the right-propagating eigenstates also do not exhibit
much angular variation. Thus, there is little modulation of the trans-
mission as the orientation of M2 is varied. In the intermediate range

of M2 [shown in Fig. 5(b)], the transmission is dominated by the ky

range spanned by the drain EEC. Since the transverse momentum is
conserved across the source-drain interface, a larger range of ky

subtended by the drain EEC translates to a greater number of
propagating states which can transmit electrons over a wider range
of incidence angle. The transmission peaks occur near wM2 5 0, p,
which correspond to the two magnetization angles where the drain
EECs cover the largest ky range. In the large M2 regime shown in
Fig. 5(c), the energy gap induced by the in-plane magnetization
eliminates the presence of propagating states at wM2 5 6np/6, n 5

(1, 3, 5), and reduces the ky range covered by the drain EECs at other
magnetization angles. The absence of propagating states for certain
range of wM2 leads to a sharp modulation of the transmission about
the critical angles of wM2 5 6np/6, n 5 (1, 3, 5), a feature which
would be conducive for applications to sense the orientation of ~M2,
such as memory read-out. The displacement of the drain EECs from
the k-space origin also leads to some portions of the drain EECs lying
outside the source EEC. This leads to the generally lower transmis-
sion seen in Fig. 5 for large values of M2.

The effects of varying the potential in the drain segment for a fixed
magnitude of magnetization provides an alternative perspective.
Fig. 6 shows the transmission plotted against the drain magnetization
direction and drain potential. The trends observed can also be
explained by examining the EEC profiles in the drain region, shown

z

x

y TI

TI
Mz

Mx

My

Figure 3 | A schematic of the system studied. The system consists of two semi-infinite long Bi2Te3 segments of infinite width. Charge flows from the left

source segment into the right drain segment in which a magnetization ~M2 and external potential U is applied.
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Figure 4 | The transmission plotted against the drain magnetization direction wM2 and magnetization magnitude for E 5 0.3 eV and E2 5 E 2 U2 5
0.1 eV.
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for three representative values of E2 in Fig. 7. The low transmission
centered around wM2 5 np/6, n 5 1, 3, 5 at low values of E2 corre-
sponds to the absence of propagating states due to the large band
gaps induced at these values of wM (Fig. 7(a)). The transmission peaks
at wM 5 0, p at intermediate values of E2, where the drain EECs still lie
largely within the ky region spanned by the source EEC, correspond
to the largest range of ky spanned by the drain EECs as wM2 is
varied (Fig. 7(b)). As E2 is increased further, an increasing proportion
of the k-space area spanned by the EECs starts to fall outside the ky

region spanned by the source EEC. This leads to the transmission
peaks occurring close to wM 5 6p/2 where the overlap in the ky

region spanned by both the source and drain EECs is the greatest
(Fig. 7(c)).

We have thus far concentrated on the ky overlap between the
source and drain EECs as the primary explanation of the observed

transmission profile. However, the kx and spin mismatch in the
source and drain regions does affect the transmission as well. In order
to investigate the effects of these two factors, we now let the range of
E2 in Fig. 6 extend to negative values as shown in Fig. 8. Negative
values of E2 correspond to transmission from source particle states to
drain hole states, which have the opposite spin configuration.

The general features of the transmission profile for particle-to-
particle transmission (positive E2) are largely similar, but not ident-
ical, to those for particle-to-hole transmission. The reason for this lies
in the fact that for a given magnetization ~M and jEj the EECs for the
particle and hole states with energy 6jEj have identical shapes. The
right propagating states for positive and negative values of E, how-
ever, lie in different segments of the EECs as shown in panel (b) of
Fig. 8. The ky range spanned by the right propagating states for
negative and positive values of E are roughly the same. This accounts

Δky

Figure 5 | The EECs in the source region (thick black hexagon) at E 5 0.3 eV, the trajectories of the Dirac points traced out by wM2 by the variation of
wM2 (thick green lines) and the EECs in the drain region (thin blue lines) for E2 5 0.1 eV and M25(a)0.05 eV, (b) 0.15 eV and (c) 0.28 eV. The

positions of the Dirac points and the corresponding values of wM2 for each of the drain EECs are marked out in (b) in the same color. The ky range spanned

by the wM2 5 0 drain EEC is indicated in panel (b).
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Figure 6 | The transmission plotted against the drain magnetization direction direction wM2 and drain energy E2 for E 5 0.3 eV and M2 5 0.2 eV.
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(a) (b) (c)

Figure 7 | The EECs in the source region (thick black hexagon) at E 5 0.3 eV, the trajectories of the Dirac points traced out by the Dirac points
(thick green lines) by the variation of wM2 (green dots) and the EECs (thin blue lines) in the drain region for M2 5 0.1 eV, and E25(a)0.05 eV,
(b) 0.12 eV and (c) 0.25 eV.

Figure 8 | (a) The transmission profile for the same set of parameters as in Fig. 6 with the exception that E2 now extends to negative values. (b) The

EECs for an unmagnetized segment at E 5 0.1 and no magnetization (black), and M2 5 0.2 eV, wM2 5 0.4p and wM2 5 20.4p respectively as

labeled. The arrows indicate the directions of the in-plane spin polarization on the EECs of the right propagating hole (green) and particle (red) states in

the drain segment. The lengths of the arrowheads are indicative of the magnitude of the in-plane spin polarization.

www.nature.com/scientificreports
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for the similarities in the particle-to-particle and particle-to-hole
transmission profiles in terms of the rough positions of the trans-
mission peaks and troughs. However, the difference in the kx values
and spin orientations of the right propagating states of electrons and
holes leads to the asymmetry in the particle-to-particle and particle-
to-hole transmission profiles. This asymmetry is accentuated by the
distortion of the constant energy surfaces from the circular shape by
the hexagonal warping term. In addition, there is also an asymmetry
in the transmission profile about the wM2 5 0 axis. This may be
explained by considering the EECs for 6wM, for some given wM.
As shown in Fig. 8(b), the EECs for 6wM are reflections of each other
about the kx 5 0 axis. However, the portions of the EECs which
correspond to the right propagating states lie on different regions
of the corresponding EECs for 6wM. This leads to, for instance, the
right propagating states at a given value of ky having different spin
polarizations for opposite signs of wM, and hence an asymmetrical
transmission profile about wM2 5 0. Thus, in summary, two factors
play a role in determining the dependence of the transport on the
magnetization direction and magnitude – the extent of the overlap
across ky of the the source and drain EECs, and the degree of mis-
match between the spin configurations of the propagating states in
the two electrodes.

We note in passing that proposals for the formation of the
Majorana fermion state in TI systems involve junctions between
ferromagnetic insulators and superconductors deposited on top of
TIs. The anisotropy in the shape of the EECs induced by the in-plane
magnetization and asymmetry between the particle and hole states
just discussed may lead to the presence of Majorana fermion states in
Bi2Te3 with unusual properties compared to Majorana states result-
ing from TIs with the more commonly studied circular EECs. The
anisotropy may also be indicative of anomalous effects which emerge
as the dimensions of the TI segments are shrunk from being semi-
infinite (in the x and z directions) to finite ones18. A detailed discus-
sion of these issues are, however, beyond the scope of this paper.

Conclusion
In this work we showed the appearance of a band gap, and the
accompanying distortion and displacement of the constant energy
curves in k space in Bi2Te3 with the application of an in-plane mag-
netic field. We then studied the transmission to a drain Bi2Te3 seg-
ment with an external magnetization and potential applied from a
source Bi2Te3 segment without the magnetization and potential. The
band gap, and distortion and displacement of the constant energy
curves by the in-plane magnetization affects the overlap of the trans-
verse momentum ky range spanned by the EECs in the source and
drain regions. The sharp modulation of the transmission with the
magnetization orientation for the high M2 regime and low E2 regime,
as depicted in Figs. 4 and 6, respectively, suggests a possible applica-
tion of Bi2Te3 in the read-out of magnetic memory. The two states of
a memory bit can be represented by the magnetization direction of an
adjoining ferromagnetic layer (which is coupled to the topological
surface states of Bi2Te3) being in the wM 5 0 and wM 5 p/2 directions.
In the former state there is no band gap and the transmission is finite
while in the latter the transmission is 0 due to the large band gap. A
gate voltage can be applied on the drain segment to tune the value of
E2 so as to achieve an optimum balance between the differences in
transmission between the two memory states, and the robustness of

the system to deviation of the magnetization from the reference wM 5

0 and wM 5 p/2 directions.
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