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A system of coupled oscillators can exhibit a rich variety of dynamical behaviors. When we investigate the
dynamical properties of the system, we first analyze individual oscillators and the microscopic interactions
between them. However, the structure of a coupled oscillator system is often hierarchical, so that the
collective behaviors of the system cannot be fully clarified by simply analyzing each element of the system.
For example, we found that two weakly interacting groups of coupled oscillators can exhibit anti-phase
collective synchronization between the groups even though all microscopic interactions are in-phase
coupling. This counter-intuitive phenomenon can occur even when the number of oscillators belonging to
each group is only two, that is, when the total number of oscillators is only four. In this paper, we clarify the
mechanism underlying this counter-intuitive phenomenon for two weakly interacting groups of two
oscillators with global sinusoidal coupling.

A
system of coupled oscillators provides abundant examples of dynamical behaviors including synchron-

ization phenomena1–11. Among them, collective synchronization emerging from coupled phase oscillators
has been widely investigated not only for globally coupled systems but also for complex network sys-

tems12–17. Furthermore, the dynamical behaviors exhibited by interacting groups of globally coupled phase
oscillators have been intensively investigated18–27. The appearance of the Ott-Antonsen ansatz28–30 has consid-
erably facilitated theoretical investigations on interacting groups of noiseless nonidentical phase oscillators with
global sinusoidal coupling. In addition, interacting groups of globally coupled phase oscillators as well as a system
of globally coupled phase oscillators have been experimentally realized using electrochemical oscillators31,32,
discrete chemical oscillators33,34, and mechanical oscillators35,36.

To study the phase synchronization between macroscopic rhythms, we recently formulated a theory for the
collective phase description of macroscopic rhythms emerging from coupled phase oscillators for the following
three representative cases: (A) phase coherent states in globally coupled noisy identical oscillators37–39, (B)
partially phase-locked states in globally coupled noiseless nonidentical oscillators40, and (C) fully phase-locked
states in networks of coupled noiseless nonidentical oscillators41. The theory enables us to describe the dynamics
of a macroscopic rhythm by a single degree of freedom called the collective phase. Accordingly, different
mathematical treatments were required for the physical situation in each case. The keystone of the collective
phase description method for each case is the following: (A) the nonlinear Fokker-Planck equation2, (B) the Ott-
Antonsen ansatz28–30, and (C) the Laplacian matrix14–17. Here, we note that there exist several investigations42–48

related to case (C).
In Ref. 39 for case (A) and Ref. 40 for case (B), we investigated the phase synchronization between collective

rhythms of globally coupled oscillator groups. In particular, the collective phase coupling function, which
determines the dynamics of the collective phase difference between the groups, was systematically analyzed
for sinusoidal coupling functions. As a result, for both cases, we found counter-intuitive phenomena in which
the groups can exhibit anti-phase collective synchronization in spite of microscopic in-phase external coupling
and vice versa.

In this paper, using the collective phase description method developed in Ref. 41, we study the phase syn-
chronization between collective rhythms of coupled oscillator groups for case (C). We analytically derive the
collective phase coupling function for two weakly interacting groups of two oscillators with global sinusoidal
coupling (see Fig. 1). We thereby demonstrate counter-intuitive phenomena similar to those found in cases (A)
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and (B), that is, effective anti-phase (in-phase) collective synchron-
ization with microscopic in-phase (anti-phase) external coupling.
Therefore, this paper and Refs. 39, 40 are mutually complementary
and together provide a deeper understanding of the collective phase
synchronization phenomena.

Results
This section is organized as follows. First, we formulate the collective
phase description of fully locked states with an emphasis on the
collective phase coupling function. Second, we analyze weakly inter-
acting groups of globally coupled two phase oscillators. Third, we
perform further analytical calculations for the case of sinusoidal
phase coupling. Fourth, we illustrate the collective phase coupling
function for several representative cases. Fifth, we demonstrate col-
lective phase synchronization by direct numerical simulations.
Finally, we consider interacting groups of weakly coupled Stuart-
Landau oscillators.

Collective phase description of fully locked states. We consider
weakly interacting groups of coupled noiseless nonidentical phase
oscillators described by the following equation:
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for j~1, � � � , N and (s, t) 5 (1, 2), (2, 1), where w
sð Þ

j tð Þ[S
1 is the phase

of the j-th oscillator at time t in the s-th group consisting of N oscillators
and vj is the natural frequency of the j-th phase oscillator. The second
term on the right-hand side represents the microscopic internal
coupling within the same group, while the third term represents the
microscopic external coupling between the different groups. The
characteristic intensity of the external coupling is given by E§0.
When the external coupling is absent, i.e., E~0, Eq. (1) is assumed to
have a stable fully phase-locked collective oscillation solution9,10,49,50
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where H sð Þ tð Þ[S
1 is the collective phase at time t for the s-th group, V

is the collective frequency, and the constants yj represent the relative
phases of the individual oscillators for the fully phase-locked state.

When the external coupling is sufficiently weak, i.e., E=1, each
group of oscillators obeying Eq. (1) is always in the near vicinity of
the fully phase-locked solution (2). Therefore, we can approximately
derive a collective phase equation in the following form41:
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where the collective phase coupling function is given by
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Here, U�j is the left zero eigenvector of the Jacobi matrix Ljk at the
fully phase-locked collective oscillation solution defined in Eq. (2).
The Jacobi matrix Ljk is given by

Ljk~djk

X
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which is a Laplacian matrix14–17. That is, the Jacobi matrix Ljk pos-

sesses the following property for each j:
XN

k~1
Ljk~0. In Eq. (5), we

have used the Kronecker delta djk and derivative notation
C0jk wð Þ~dCjk wð Þ

�
dw. We also note that the Jacobi matrix Ljk defined

in Eq. (5) is generally asymmetric and weighted. Using the (j, j)-
cofactor of the Jacobi matrix and the summation over the index j, i.e.,

Mj~ det L̂ j,jð Þ, M~
XN

j~1

Mj, ð6Þ

the left zero eigenvector U�j of the Jacobi matrix that takes the form of
the Laplacian matrix can be generally written in the following form41–44:

U�j ~
Mj

M
,

XN
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U�j ~1: ð7Þ

In Eq. (6), the matrix L̂ j,jð Þ is the Jacobi matrix L̂ with the j-th row and
column removed, and the cofactor Mj is equal to the sum of the weights
of all directed spanning trees rooted at the node j according to the
matrix tree theorem51,52. Finally, we note that the collective phase H(s)

can be written in the following form41:
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under the linear approximation of the isochron1–3,9–11.

Interacting groups of globally coupled two phase oscillators. We
here analyze globally-coupled two-oscillator systems using the
collective phase description method for fully locked states. We first
consider weakly interacting groups of globally coupled phase
oscillators. That is, the microscopic internal and external coupling
functions are given by
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In this global coupling case, Eq. (1) is written in the following form:
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Figure 1 | Schematic diagram of two weakly interacting groups of two
oscillators with global coupling. The microscopic internal and external

couplings are represented by the solid and dotted arrows, respectively,

whereas the self-coupling is not shown. The phase of the j-th oscillator in

the s-th group is denoted by w
sð Þ

j .
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We further focus on the case in which the number of oscillators
within each group is two, i.e., N 5 2; a schematic diagram of the
case is shown in Fig. 1. In this case, the internal dynamics for each
group, i.e., Eq. (11) with E~0, is described as follows:
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where we dropped the group index s for simplicity. From Eqs. (12)
and (13), we obtain the following equation by subtraction:

d
dt
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2
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where the phase difference Dw(t) and frequency mismatch Dv are
defined as

Dw tð Þ~w1 tð Þ{w2 tð Þ, Dv~v1{v2: ð15Þ

Now, we assume that Eq. (14) has a fully phase-locked collective
oscillation solution. The phase difference of the stable phase-
locked solution, Dy 5 y1 2 y2, is determined by the following
equation:
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Using the phase difference Dy obtained from Eq. (16), the collective
frequency V is written in the following form:
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For these globally-coupled two-oscillator systems, the Jacobi matrix
L̂ defined in Eq. (5) is given by
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Therefore, the cofactors of the Jacobi matrix are given by
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and the sum of these cofactors is written as
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As found from Eq. (7), using these cofactors and the sum, Eq. (19)
and Eq. (20), the left zero eigenvector U�j is obtained as
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Finally, we note that the Jacobi matrix L̂ possesses not only the zero
eigenvalue but also the following non-zero eigenvalue:

l~M~
C0 {Dyð ÞzC0 Dyð Þ

2
: ð22Þ

When the external coupling intensity is sufficiently small compared
to the absolute value of this non-zero eigenvalue, i.e., E= lj j, the
collective phase description is valid41.

Analytical formulas for the case of sinusoidal phase coupling. We
here consider the case of sinusoidal phase coupling functions for
both microscopic internal and external couplings. First, the
microscopic internal phase coupling function is given by

NCjk wð Þ~C wð Þ~{ sin wzað Þ, aj jv p

2
, ð23Þ

which is in-phase coupling (i.e., attractive). By substituting Eq. (23)
into Eq. (16), the phase difference of the fully phase-locked state is
obtained as

sin Dyð Þ~g, g:
Dv

cos a
, gj jv1, ð24Þ

which indicates that the fully phase-locked solution emerge from a
saddle-node bifurcation and exists under the condition of jDvj, cos
a. Owing to the in-phase coupling, i.e., Eq. (23), one solution of jDyj
, p/2 is stable, and the other solution of jDyj . p/2 is unstable.
Hereafter, the fully phase-locked solution indicates the stable one,
jDyj, p/2. Substituting Eqs. (23) and (24) into Eq. (17), we obtain
the collective frequency V as

V~v1{
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Similarly, substituting Eqs. (23) and (24) into Eq. (19), we obtain the
cofactors as follows:
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which yield M~{
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p
cos a. From Eqs. (21) and (26), the left

zero eigenvector U�j is thus written as
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In addition, the non-zero eigenvalue l defined in Eq. (22) is obtained
as

l~{
ffiffiffiffiffiffiffiffiffiffiffiffi
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p
cos a: ð28Þ

Next, the microscopic external phase coupling function is given by

NCst
jk wð Þ~Cst wð Þ~{ sin wzbð Þ, ð29Þ

which can be either in-phase coupling (i.e., attractive) under the
condition of jbj , p/2 or anti-phase coupling (i.e., repulsive)
under the condition of jbj . p/2. By plugging Eqs. (24), (27), and
(29) into Eq. (4), the collective phase coupling function takes the
following form:
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where the complex number with modulus r and argument d is given
by
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This formula is the main result of the present paper. It determines the
collective phase coupling function for two weakly interacting groups
of two oscillators with global sinusoidal coupling. The coupling type
can be found from the real part, i.e.,
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where r cos d . 0 and r cos d , 0 indicate in-phase and anti-phase
couplings, respectively. Finally, we note that Eq. (32) possesses origin
symmetry in the a-b plane.

Type of the collective phase coupling function for representative
cases. We here study the type of the collective phase coupling
function for the following five representative cases.

(i) The first case is g 5 0, which indicates that two oscillators
within each group are identical, i.e., Dv 5 0. Substituting
g 5 0 into Eq. (31), we obtain the following result:

g~0, reid~eib: ð33Þ

That is, the collective phase coupling function is the same as
the microscopic external phase coupling function, i.e., Fst (H)
5 Cst (H) 5 2sin(H 1 b).

(ii) The second case is gj j^1, which indicates the proximity of
the saddle-node bifurcation point, i.e., the onset of fully
phase-locked collective oscillation. Substituting gj j^1 into
Eq. (31), we obtain the following result:
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For the case of jgjR 1 (excluding a 5 0), the amplitude of the
collective phase coupling becomes infinity, i.e., r R ‘. Here,
we note that this property for the fully phase-locked states is
quite different from those for phase coherent states and par-
tially phase-locked states39,40. For the latter two states, the
amplitude of the collective phase coupling is finite at the onset
of collective oscillations. This difference in the properties
results from the difference of bifurcations. The fully phase-
locked states emerge from saddle-node bifurcations as men-
tioned above, whereas the phase coherent states and partially
phase-locked states emerge from supercritical Hopf bifurca-
tions39,40.

(iii) The third case is a 5 0, which yields a microscopic antisym-
metric internal coupling function. For this case, g 5 Dv.
Substituting a 5 0 into Eq. (31), we obtain the following
result:

a~0, reid~
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2
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That is, the phase shift d of the collective phase coupling
function is the same as the phase shift b of the microscopic
external phase coupling function.

(iv) The fourth cases are special values of b. Substituting b 5 0,
6p, 6p/2 into Eq. (31), we obtain the following results:
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For microscopic antisymmetric external coupling functions,
i.e., b 5 0, 6p, the type of the collective phase coupling
function coincides with that of the microscopic external
coupling function. In contrast, for microscopic symmetric
external coupling functions, i.e., b 5 6p/2, the type of the
collective phase coupling function is determined by the sign
of the microscopic internal coupling parameter a.

(v) The fifth case is b 5 a, which indicates that the microscopic
external coupling has the same phase shift as the microscopic
internal one. Substituting b 5 a into Eq. (31), we obtain the
following result:
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From the condition of jaj , p/2, both microscopic internal
and external coupling functions are in-phase coupling.
However, the type of the collective phase coupling function
is anti-phase coupling under the following condition:

cos2 av

g2

1z
ffiffiffiffiffiffiffiffiffiffiffiffi
1{g2

p : ð40Þ

For the case of jgjR 1, the above condition becomes cos2 a ,

1, which is satisfied for all a except for a 5 0.

Collective phase synchronization between two interacting groups.
Now, we study counter-intuitive cases under the condition of g 5

3/4. The type of the collective phase coupling function is shown in
Fig. 2, where the solid curves are determined by Eq. (32), i.e., r cos d
5 0. Here, we note that the type of the collective phase coupling
function can be different from that of the microscopic external
phase coupling function. Two sets of parameters, which were used
in Fig. 3, are also shown in Fig. 2.

Two groups of two-oscillators exhibiting phase-locked states were
separately prepared with their corresponding phases being nearly
identical. Then, these states were used as the initial condition in
Fig. 3(a). In spite of the microscopic in-phase external coupling,

b 5 3p/8, the external phase difference w
1ð Þ

1 {w
2ð Þ

1




 


 approached p

after some time; this indicates anti-phase collective synchronization
between the groups. In contrast, Fig. 3(b) shows in-phase collective
synchronization between the groups in spite of the microscopic anti-
phase external coupling, b 5 25p/8.

Interacting groups of weakly coupled Stuart-Landau oscillators.
We further consider interacting groups of globally coupled Stuart-
Landau oscillators described by the following equation:
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for j~1, � � � , N and (r, t) 5 (1, 2), (2, 1), where W sð Þ
j tð Þ[C

1 is the
complex amplitude of the j-th limit-cycle oscillator at time t in the s-
th group consisting of N oscillators. The first and second terms on the
right-hand side represent the intrinsic dynamics of each oscillator,
the third term represents the microscopic internal coupling within
the same group, and the fourth term represents the microscopic
external coupling between the different groups. When the internal
and external couplings are sufficiently weak compared to the
absolute value of the amplitude Floquet exponent, we can
approximately derive a phase equation in the following form2:
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where the parameters of phase oscillators are given by

vj~bj{c2, ð43Þ

PK eia~K 1zic2ð Þ 1{ic1ð Þ, ð44Þ

PJ eib~J 1zic2ð Þ 1{ic3ð Þ: ð45Þ

The phase of each Stuart-Landau oscillator is given by the following
equation1–3,9–11: w 5 arg W 2 c2 ln jWj. Here, we focus on the case in
which the number of oscillators within each group is two, i.e., N 5 2.
Using the following constants, r 5 0.01 and a 5 3p/8, the parameters
of the Stuart-Landau oscillators are fixed at K 5 J 5 r cos(a), c1 5 c3

5 0, c2 5 tan(a), b1 5 c2 1 3r cos(a)/4, and b2 5 c2. Under these
conditions, the parameters of the p hase oscillators are obtained as PK

5 PJ 5 r 5 0.01, a 5 b 5 a 5 3p/8, v1 5 3r cos(a)/4, and v2 5 0,
which correspond to the parameters in Fig. 3(a). In particular, we
note that g 5 (Dv)/(PK cos a) 5 (3r cos(a)/4)/(r cos(a)) 5 3/4. The
external coupling intensity is fixed at E~0:001. The direct numerical
simulation result of Eq. (41) is shown in Fig. 4. Similarly to Fig. 3(a),
Fig. 4 shows anti-phase collective synchronization between the
groups in spite of the microscopic in-phase external coupling.

Discussion
In this paper, we considered the phase synchronization between
collective rhythms of fully locked oscillator groups, clarified the rela-
tion between the collective phase coupling and microscopic external
phase coupling functions, analytically determined the type of the
collective phase coupling function for weakly interacting groups of
two oscillators with global sinusoidal coupling, and demonstrated
that the groups can exhibit anti-phase (in-phase) collective syn-
chronization in spite of microscopic in-phase (anti-phase) external
coupling. The theoretical predictions were successfully confirmed by
direct numerical simulations of the phase oscillator model and
Stuart-Landau oscillator model.

In Refs. 39, 40, we investigated the phase synchronization between
collective rhythms of globally coupled oscillator groups under two
typical situations: phase coherent states in the noisy identical case39

and partially phase-locked states in the noiseless nonidentical case40.
In particular, we found the counter-intuitive phenomena similar to
the results in this paper. That is, weakly interacting groups can
exhibit anti-phase collective synchronization in spite of microscopic
in-phase external coupling and vice versa. Here, we note that these

Figure 2 | Effective type of phase coupling between collective rhythms of
fully locked oscillator groups with a g (2p/2, p/2), b g [2p, p], and g 5
3/4. The solid curves are analytically determined by Eq. (32), i.e., r cos d 5

0. The filled circle (.) indicates a 5 b 5 3p/8 corresponding to Fig. 3(a)

and Fig. 4. The times sign (3) indicates a 5 3p/8 and b 5 25p/8

corresponding to Fig. 3(b).

Figure 3 | Interacting groups of phase oscillators (see Methods). Time evolution of the internal and external phase differences, i.e., w
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 and
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, respectively.

The collective phase difference is approximated as the external phase difference, i.e., H 1ð Þ{H 2ð Þ



 


^ w

1ð Þ
1 {w

2ð Þ
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. The parameters are a 5 3p/8, v1 5 3

cos(a)/4, v2 5 0, and E~0:001. (a) Effective anti-phase collective synchronization with microscopic in-phase external coupling, b 5 3p/8. (b) Effective

in-phase collective synchronization with microscopic anti-phase external coupling, b 5 25p/8.
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three papers considered different physical situations and utilized
different mathematical methods, but arrived at the similar counter-
intuitive phenomena.

We also remark that fully phase-locked states emerge from a finite
number of oscillators9,10; even two is possible as actually studied in
this paper. In contrast, phase coherent states and partially phase-
locked states emerge from a large population of oscillators2; the
number of oscillators is infinite in theory. From this point of view,
fully phase-locked states can be more easily realized in experiments
such as electrochemical oscillators31,32, discrete chemical oscilla-
tors33,34, and mechanical oscillators35,36. We hope that the counter-
intuitive phenomena studied in this paper, i.e., effective anti-phase
(in-phase) collective synchronization with microscopic in-phase
(anti-phase) external coupling, will be experimentally confirmed in
the near future and that the formula (31) will help in such
experiments.

Finally, we emphasize that collective synchronization between
interacting groups of coupled oscillators cannot be fully clarified
by simply analyzing microscopic interactions between individual
oscillators. In particular, microscopic in-phase (anti-phase) external
coupling does not necessarily lead to in-phase (anti-phase) collective
synchronization. As clarified in this paper, counter-intuitive phe-
nomena can occur even when the number of oscillators belonging
to each group is only two. We hope that the analytical results for the
simple cases studied in this paper will provide an insight into more
complex cases.

Methods
Numerical method for Fig. 3. We applied an explicit Euler scheme with a time step
Dt 5 0.01 for Eq. (11) with Eqs. (23) and (29). The parameters are N 5 2, a 5 3p/8, v1

5 3 cos(a)/4, v2 5 0, and E~0:001 with (a) b 5 3p/8 or (b) b 5 25p/8. The initial

values are w
1ð Þ

1 0ð Þ~ arcsin 3=4ð Þ and w
1ð Þ

2 0ð Þ~0 with (a) w
2ð Þ

j 0ð Þ^w
1ð Þ

j 0ð Þ or (b)

w
2ð Þ

j 0ð Þ^w
1ð Þ

j 0ð Þzp.
Here, we note the accuracy and stability of the numerical method. On the right-

hand side of Eq. (11), the first and second terms represent the internal dynamics of
O(1) while the third term represents the external coupling of O Eð Þ. When the external
coupling is sufficiently weak, the smallest time scale in Eq. (11) is O(1). Therefore, the
explicit Euler scheme with the time step Dt 5 0.01, which we used for the sake of
simplicity and efficiency, is sufficiently accurate and stable under the parameter
condition.

Numerical method for Fig. 4. We applied an explicit Euler scheme with a time step
Dt 5 0.01 for Eq. (41). The phase of the j-th oscillator at time t in the s-th group was

obtained by w
sð Þ

j tð Þ~ arg W sð Þ
j tð Þ{c2 ln W sð Þ

j tð Þ



 


. The parameters are N 5 2, K 5 J

5 r cos(a), c1 5 c3 5 0, c2 5 tan(a), b1 5 c2 1 3r cos(a)/4, b2 5 c2, and E~0:001,
where r 5 0.01 and a 5 3p/8. The initial condition is given by

W sð Þ
j 0ð Þ~ exp iw sð Þ

j 0ð Þ
� �

, where w
1ð Þ

1 0ð Þ~ arcsin 3=4ð Þ, w
1ð Þ

2 0ð Þ~0, and

w
2ð Þ

j 0ð Þ^w
1ð Þ

j 0ð Þ.

We also note the accuracy and stability of the numerical method. On the right-
hand side of Eq. (41), the first and second terms represent the oscillator dynamics of
O(1), the third term represents the internal coupling of O(K), and the fourth term
represents the external coupling of O EJð Þ. When the internal and external couplings
are sufficiently weak, the smallest time scale in Eq. (41) is O(1). Therefore, the explicit
Euler scheme with the time step Dt 5 0.01, which we used for the sake of simplicity
and efficiency, is sufficiently accurate and stable under the parameter condition.
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