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Learning scheme is the key to the utilization of spike-based computation and the emulation of neural/
synaptic behaviors toward realization of cognition. The biological observations reveal an integrated spike
time- and spike rate-dependent plasticity as a function of presynaptic firing frequency. However, this
integrated rate-temporal learning scheme has not been realized on any nano devices. In this paper, such
scheme is successfully demonstrated on a memristor. Great robustness against the spiking rate fluctuation is
achieved by waveform engineering with the aid of good analog properties exhibited by the iron oxide-based
memristor. The spike-time-dependence plasticity (STDP) occurs at moderate presynaptic firing frequencies
and spike-rate-dependence plasticity (SRDP) dominates other regions. This demonstration provides a novel
approach in neural coding implementation, which facilitates the development of bio-inspired computing
systems.

O
ur brain performs various cognitive tasks and outperforms the state-of-the-art von Neumann-based
digital computer in many domains1,2. Brain inspired approach is one of the research directions to sustain
the continuous performance improvement when downscaling of CMOS technology approaches its

limits3–5. Despite the tremendous progress in VLSI technologies, it is still an insurmountable challenge to simulate
our brain at the scale of 100 billion neurons and 100 trillion synapses using purely silicon-based devices6–8. It is
widely agreed that the synapse - a biological connection between two neurons that allows information to flow
from one to the other - is essential in mediating the processes of memory, learning and cognition9. A ubiquitous
property of synapse is the ability to keep track of the activity history by shaping its plasticity, which is encoded via
various forms of activity-dependent learning rules. Though the biological mechanism underlying the synaptic
behaviors is still under debate, the identified parameters that influence synaptic plasticity including pre- and
postsynaptic spiking interval10–12, spiking rate13,14, postsynaptic voltage15,16, dendritic location17,18, and post-
synaptic depolarization19,20 have been reported. Generally, spiking-time-dependent plasticity (STDP), often
interpreted as the ‘‘first law’’ of synaptic plasticity, focuses on the spike timing differences between the pre-
and postsynaptic neurons in modifying the synaptic weight10–12,21. Apart from STDP, rate-dependent plasticity
learning rule, which is termed as spike-driven rate-based plasticity13,22–25 or spike-rate-dependent plasticity
(SRDP)26, expresses the dependence on spike frequency. Furthermore, in vivo experiments reveal that spike time-
and spike rate-dependent plasticity integrate together as a function of presynaptic firing frequency14,27. When
presynaptic neuron fires at moderate rates (10–20 Hz), STDP learning rule mostly occurs27. Outside of the
moderate frequency region, spike rate-based synaptic learning rule governs the plasticity induction and is
independent of pre- and postsynaptic spiking interval10,14,28. This integrated rate-temporal learning scheme is
widely believed to play an important role in neural signal processing and information storage29–31. However, to
our best knowledge, such learning scheme has not been realized on any devices.

Recent advancements in memristor (also termed as memristive device)32–34 have provided a strategic oppor-
tunity for advancing the development in neuromorphic engineering. This is attributed to the unique properties of
the memristor including non-volatile storage, nano scale size, analog behaviors, and its ability to remember the
history via the modulation of its internal state35,36. It sparks a new wave of enthusiasm in developing solid-state
analog synaptic devices37–43. In this paper, we propose a novel way to emulate the dual coding (rate and temporal)
learning scheme on a memristor by customizing the presynaptic spiking waveforms. This new proposal, relying
on analog properties of memristor, can be easily implemented into neural circuits.
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Compared with mass storage applications, neuromorphic applica-
tions set special requirements on the memristor. It desires reliable
analog properties, such as non-abrupt switching transition, continu-
ously distributed resistance states, and repeatable behavior. In this
paper, iron oxide is chosen as the resistance switching layer of mem-
ristor and its properties will be discussed first. The memristor, con-
sisting of a sandwich-like structure of Pt/iron oxide/Pt, as shown in
Fig. 1(a), was fabricated. The device size was patterned to be
0.25 mm2. The iron oxide layer (50 nm) was sputtered in a high
vacuum chamber from an iron oxide compound target and the
deposition temperature is below 300uC, which is compatible with
semiconductor backend process specification. Based on X-ray photo-
electron spectroscopy (XPS) analysis (Supplementary information),
the majority compound inside the sputtered film is FeO.

The iron oxide memristor was first investigated under DC mode.
When inputting a triangle-wave shape DC voltage to memristor, the
I–V curve in each sweeping cycle appears a banana-shape like hys-
teresis loop in both positive sweep (left plot) and negative sweep
(right plot), as shown in Fig. 1(b). As the number of cycles increases,
the conductance increases or decreases monotonically and consecu-
tively. Compared to other reports of analog memristors37,40, the iron
oxide memristor exhibits two main differences. First, the adjacent
sweeping curves just coincide with each other at the low voltage
region and there is no overlapping, indicating improved data reten-
tion. This coincidence region also shows a square law relationship
between current and voltage (Supplementary information), which
indicates a space-charge-limited current (SCLC) conduction mech-
anism44. Second, there is no fluctuation or abrupt change in I–V
curves during sweeping, implying a continuous distribution of res-
istance states.

The programming characteristics of the set and reset operation
were investigated under pulse mode. When the pulse amplitude is
fixed during the set operation, as shown in the left plot of Fig. 2(a), a
logarithmic relationship between the changes of conductance and
pulse width is observed. On the other hand, when the pulse width
is fixed, it exhibits an approximate linear relationship between the
pulse amplitude and the change of conductance when the pulse
amplitude above the threshold, as illustrated in the right plot of
Fig. 2(a). In summary, voltage amplitude has more impact on the
weight change of memristor than pulse width.

It is also found that the threshold voltage of the iron oxide mem-
ristor is pulse-width dependent. When varying the pulse width, the
onset of conduction change is varied. By linearly fitting the measure-
ment points, as shown in the inset of Fig. 2(b), the threshold voltages

under different pulse widths can be extracted. A higher threshold
voltage is accompanied by a shorter pulse width. The threshold vol-
tages are compiled in Fig. 2(b). The figure shows an inversely linear
relationship between threshold voltage and logarithm of pulse width.
This indicates that if the pulse width is shrunk to nanosecond scale, a
much higher voltage is required in order to move the built-in con-
ductance, which makes the memristor robust to circuit glitches. In
addition, if the memristor is heavily stressed, the memory window
can be as large as 19 folds.

The memristor takes more than 4 months to decay to half of the
memory window and several years to return to the starting point, as
shown in the inset of Fig. 2(c). The strong retention loss reported
from WOx memristor37 has not been observed in the iron oxide
memristor. Based on the exponential decay function proposed by
Hermann Ebbinghaus R~Ae{t

S, the relative strength (S) of iron
oxide memristor is fitted to be 8.9, as shown in Fig. 2(c), and the
decay curve is not related to the pulse numbers. In addition, accord-
ing to the report from Wickliffe C. Abraham in 2003 that ‘‘LTP (Long
term potentiation) can last for hours, days or even months, and usually
follows an exponential decay’’45, the iron oxide-based memristor that
retains the resistance for months can act as a long-term synapse in a
neuromorphic circuit.

In order to form the analog memristor, a high voltage forming
process is required, as illustrated in Supplementary Fig. S2. After the
forming process, the memristor devices all exhibit similar memory
window, despite the device size varying from 0.25 mm2 to 16 mm2,
which implies a formation of conducting filament46. Besides, the
non-linear I–V curve at low electric field region discussed above
suggests that the memristor works under the condition of filament
rupture. The condition of rupture point determines the resistance
changing behavior.

Thus far, the characteristics of the iron oxide memristor have been
analyzed. With proper initialization, the memory device can be repeat-
edly switched back and forth, as shown in Fig. 2(d). Compared to other
reported memristors40,47,48, the iron oxide-based memristor demon-
strates improved controllability during programming and improved
repeatability between different pulse trains. By fully utilizing these
analog behaviors, the iron oxide memristor can be used to emulate
the synaptic learning rules.

Unlike STDP synaptic learning rule, the SRDP synaptic learning
rule has not been demonstrated using memristor. Several papers
reported frequency dependence of memristor that different pro-
gramming frequencies lead to much different decay curves38,49–51.
This behaviour is used to mimic the transition of short-term memory

Figure 1 | (a) A schematic illustration of the iron oxide memristor device and cross-section view of a real device conducted in transmission electron

microscopy (TEM). (b) Current-voltage (I-V) curves of memristor under multiple triangle-shapes DC sweeps. A bipolar behavior and continuous

distribution of resistance states are demonstrated.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4755 | DOI: 10.1038/srep04755 2



to long-term memory. However, it cannot be used to emulate the
SRDP learning rule. Because SRDP requires bidirectional changing
plasticity at different frequency region - low frequency induces LTD
(decrease of plasticity) and high frequency induces LTP (increase of
plasticity). In order to realize this bidirectional changing behaviour,
we propose a novel way by engineering the input waveforms, which
not only realizes SRDP, but further integrates with STDP together as
a whole to achieve a bio-plausible integrated learning scheme.

The presynaptic spike is customized by drawing inspiration from
the firing behavior of biological neurons. A typical biological neural
firing curve is shown in the bottom left of Fig. 3(a)52. Based on this
biological firing curve, a similar shape of presynaptic spike is con-
structed. As shown in the bottom right of Fig. 3(a), the presynaptic
spike consists of two pulses. One is a short and high-amplitude pulse,
followed by a relatively wide and low-amplitude pulse in the opposite
direction. Construction of both negative and positive pulses in one
presynaptic spike aims to realize bidirectional weight change when
the presynaptic firing frequency varies. Using a simple circuit (sup-
plementary document), this tailored presynaptic spike can be easily
realized with a normal pulse input.

In order to match the plasticity changing direction that low fre-
quency induces long-term depression (LTD), the presynaptic spike
shape used during the test is upside-down. That is, the short pulse has
negative amplitude (21.8 V), followed by the positive low amplitude
(0.5 V), as shown in Fig. 3(b). This large negative amplitude
(21.8 V) decreases the memristor conductance greatly and the other
half of the spike - low-amplitude positive pulse (0.5 V) has negligible
impact on the memristor because it is below the threshold voltage.
Thus, the overall effect of presynaptic spike decreases the conduc-
tivity, which realizes LTD at the low spike rate condition (,5 kHz).
When the spike rate is above 5 kHz, the positive and negative pulses
of presynaptic spikes overlap each other, thus cancelling the negative
amplitude, resulting in a smaller decrease in conductance. Even

higher presynaptic frequency, such as 20 kHz, further cancels the
negative amplitude, as well as accumulates the positive pulses to be
far above positive threshold voltage, causing a significant increase in
memristor conductance. An illustration of the above discussed wave-
forms is shown in Fig. 3(b), using 2.5, 10 and 20 kHz presynaptic
spike frequency as examples. When these presynaptic spikes are
input into the iron oxide memristor, a frequency dependent plasticity
behavior is demonstrated, as shown in Fig. 3(c), that low frequency of
presynaptic spikes decreases the conductivity (LTD), and high fre-
quency spikes increase the conductivity (LTP). This frequency
dependent behavior matches the biological report of SRDP26, which
is redrawn in Fig. 3(d).

Furthermore, the spiking-time-dependent plasticity (STDP)
learning rule is also demonstrated using the same presynaptic spike
trains. Similar to literature reports39–41,51,53,54, a special tailored pulse
train (termed as STDP pulse train) with varying voltage amplitudes is
constructed in order to correlate the change of conductance with pre-
and postsynaptic firing interval (Dt 5 tpre 2 tpost), as shown in
Fig. 4(a). The reason of using various pulse amplitudes in construct-
ing the STDP pulse train instead of pulse widths is due to the higher
sensitivity of the pulse amplitude of the memristor. The STDP pulse
train consists of 8 pulses: 4 positive pulses followed by 4 negative
pulses. All pulses have the same pulse width (4 ms) and the same
intervals (4 ms). The center point of STDP pulse train is aligned with
the rising edge of the presynaptic spike.

Besides, inspired by the refractory period and back-propagation
effect, an operational schematic of synapse is illustrated in Fig. 4(b) to
realize the STDP learning rule. The refractory period refers to the
biological information block period that is caused by the sodium ion
channels inactivation. During this period, neuron does not fire again
irrespective of incoming stimulus and resets itself to resting poten-
tial52. A switch (K1 switch) is used to realize and emulate the refract-
ory period in our proposal. Unless the post-neuron fires, the iron

Figure 2 | (a) The impact of built-in conductance under varying pulse width and pulse amplitude. Left plot is under fixed positive amplitude

(,1.88 V) and right plot is under fixed pulse width (1 ms). The built-in conductance was read at 0.1 V after each pulsing. (b) The relationship

between threshold voltage and pulse width. Inset: threshold voltages extracted under linear fitting. (c) The decay performance of iron oxide-based

memristor. (d) An illustration of repeatability of iron oxide memristor under consecutive pulse trains. Each of positive/negative pulse train consists

of 15 pulses.

www.nature.com/scientificreports
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oxide memristor connects the pre-synaptic neuron and post-syn-
aptic neuron directly, enabling the information to pass through.
Once the post-synaptic neuron fires, this firing information back-
propagates to K1 switch and triggers it switching to STDP waveform
terminal for a short period (8 ms) – refractory period. During this
period, the information from presynaptic neuron will be blocked and
the postsynaptic neuron will reset its potential to initial condition. At
the same time, the presynaptic spike will overlap with the STDP
pulses to modify the conductivity of the memristor – inducing the
plasticity change.

A typical STDP is demonstrated in Fig. 4(c) at 10 kHz presynaptic
frequency. Here, we assume nine-times firing of pre-synaptic neuron
results in one time firing of post-synaptic neuron and the voltage
drop on memristor is clamped to 2.5 V to avoid the breakdown of the
memristor device. As shown in Fig. 4(c), when pre-synaptic neuron
fires before post-synaptic neuron (Dt . 0), LTP is induced.
Otherwise, LTD occurs. Moreover, the smaller of the pre- and
post-synaptic firing interval results in a larger change of conduc-
tivity, and vice versa. However, when the pre-synaptic neuron fires
at other frequency region (e.g. 2.5 kHz, 20 kHz), the STDP behavior
is not observed regardless of the pre- and post-synaptic firing inter-
val. This is due to the canceling effect between the STDP pulse train
and presynaptic neural spikes (supplementary information). The
frequency-dependent behaviors are summarized in Fig. 4(d), show-
ing that STDP only happens at the moderate firing rate region (ran-
ging from 8 kHz to 10 kHz in our test, as highlighted in Fig. 3(c)).
Outside the moderate region, higher firing rates only lead to an
increase of conductivity (LTP) and lower firing rate causes a decrease
in conductivity (LTD). These observations are consistent with bio-
logical reports27, demonstrating a dual coding learning scheme on a

single nano device. It is necessary to point out that constant inputting
firing rates are used during the learning rule illustration which is to
simplify the analysis. However, the input neuron spikes can be incon-
sistent and discrete like reality. By using the waveform generation
block (supplementary information), the inconsistent and discrete
spikes can be easily transformed into the tailored waveform for the
learning rules implementation.

It should be noted that the response of biological neurons is not
uniform, but is variable and is often modeled by a statistical distri-
bution, i.e, Poissonian, in literatures55. Devices emulating synaptic
properties need to consider the robustness against non-uniform
neural stimulus. Our proposal of dual coding learning scheme is
robust to the variation of the presynaptic input. When the presynap-
tic firing frequency is slightly varied, or even one spike is missed or is
inserted owing to system instability, the learning scheme will tolerate
these fluctuations and output the similar results, as long as the errors
are not critical. (supplementary information).

The conductance variations from device to device also exist. For
example, under the same pulse width condition (0.1 ms), the thresh-
old voltages of most devices fall in the range of 0.9 6 0.1 V. Such
variations, we believe, would not be a great obstacle in neuromorphic
implementation because the variation of synapses has also been
observed in human brain which does not affect cognition56,57.
Currently, there are two ways to deal with such variations. Simeon
Bamford et al. reported that STDP is a homeostatic process which is
unsupervised and self-contained. It can reduce variations in per-
formance caused by both mismatch in fabrication and inhomogen-
eity in the electronic devices58. The other way proposed by Sadique
Sheik et al is a totally different way59. Rather than attempting to
reduce the device mismatch, he proposed to utilize these mismatches

Figure 3 | (a) A simple illustration of neuron, synapse and neural spike. The customized spike (bottom right plot) is inspired by the biological firing curve

(bottom left plot). (b) An illustration of spike waveforms at different presynaptic firing frequency. (c) An emulated of SRDP learning rule on iron oxide

memristor. (d) The reported biological SRDP curve26.

www.nature.com/scientificreports
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present in VLSI chips to model biological differences, such as the
variations of axonal propagation delays. In this novel approach, a
certain range of mismatches and variations is desirable.

It is known that different parts of the brain use different combina-
tions of learning mechanisms. For example, our visual recognition
uses spatio-temporal based learning rule and our aural recognition
uses frequency based learning rule. In the grand challenge of cognit-
ive systems, it is necessary to emulate a wide plethora of learning
mechanisms to facilitate the development of the whole spectrum of
cognitive functions. To this effect, we expect that our dual coding
learning scheme could provide a platform for the development of
neural coding technology in hierarchical structure. On the other
hand, from the engineering point of view, there arises the question
of whether the sole implementation of paired-based STDP learning
rule, which has been reported by several groups39–42,60,61, is enough to
build a functional neural circuit. We find there are two quandaries
that are hard to deal with. First, at the condition of high frequency,
the learning windows of LTP and LTD will overlap each other. The
post-synaptic spike located inside this overlapping region would
have difficulties in identifying the proper actions. Second, when a
neuron has multiple inputs, the disturbance of alien spike from dif-
ferent synapse may induce an undesired synaptic weight change
which is in conflict with its historical contributions. Therefore, the
paired-based STDP learning rule is not enough to alleviate these
quandaries and spike rate dependence should be considered. In
short, the dual coding learning scheme should be highly desired in
the implementation of neural circuits.

In summary, based on the good analog properties exhibited from
the iron oxide-based memristor, an integrated rate-temporal learn-
ing scheme is demonstrated. This emulated learning scheme is robust
to the input frequency variations as well as missing spikes. We expect

that the implementation of dual coding learning scheme may greatly
facilitate the development of neuromorphic circuits towards real
cognition.
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