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A difficult problem in quantum network communications is how to efficiently transmit quantum
information over large-scale networks with common channels. We propose a solution by developing a
quantum encoding approach. Different quantum states are encoded into a coherent superposition state
using quantum linear optics. The transmission congestion in the common channel may be avoided by
transmitting the superposition state. For further decoding and continued transmission, special phase
transformations are applied to incoming quantum states using phase shifters such that decoders can
distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos
synchronization via additional classical channels. Based on this design and the reduction of multiple-source
network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially
quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase
the transmission efficiency.

M
aximizing information transmission is very important concern when dealing with limited-resource
scenarios in large-scale networks. Network coding1, which allows multiple messages to be encoded
before transmission in common channels, may provide a solution for single-source networks. One

typical example is illustrated in Figure 1(a). With linear encoding, the source node can simultaneously transmit
two messages to all receivers from two edge-disjoint paths1, even if two receivers share one common channel CD.
The key is that two incoming messages {x, y} are encoded into a new message x 1 y, at the node C. Each receiver
can recover {x, y} using {x, x 1 y} or {y, x 1 y}. This task cannot be successfully performed using the trivial
transmission scheme [store-forward routing for each node2] because in this scheme, only one message, x or y, may
be transmitted in the common channel CD each time. Generally, transmission conflicts in common channels
[network congestion] become serious problems [congestion collapse] in large-scale networks [Internet]3.
Fortunately, network coding can achieve the optimal Shannon capacity of single-source networks1,2. Network
coding is considered to be an important technology for next-generation communication to achieve network
multicasts4–6 [the sender simultaneously sends multiple messages to all receivers on a single-source network] or k-
pair transmissions7,8, i.e., multiple unitcasts [each sender transmits messages to its corresponding receiver simul-
taneously over multiple-source networks].

When classical networks are quantized with quantum nodes and quantum channels, one may wish to optimize
the transmission efficiency over large-scale quantum networks, as illustrated in Figure 1(b). Because of the
quantum no-cloning theorem, the source node O may be replaced with two source nodes S1 and S2. Thus, the
multicast over the Butterfly network is reduced to the 2-pair problem on the reduced quantum network with
common channels9. However, perfect quantum k-pair transmissions have been proved to be impossible in the
absence of any additional resources10–12. They require all incoming states jwiæ be encoded into a coherent
superposition Si ajwiæ at the node C, and decoded at the node D. This is a rather difficult task. The situation
may be changed if classical communications are freely allowed13,14. This assumption is reasonable because
classical communications are much cheaper and more readily available than quantum communications. These
results are dependent on the linear encodings14 or the nonlinear encodings15 applied in the enlarged encoding
space, and give rise to three natural questions. The first question (Q1) is whether the enlarged encoding space is
necessary for large-scale quantum network communications. The second question (Q2) is what amount of
classical communication is sufficient. Classical two-way unlimited channels have been assumed to exist between
any two nodes14 or only between two quantum nodes connected by quantum channels15. The third question (Q3)
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is whether the linear encoding is sufficient for large-scale quantum
network communications. These problems are related to the optim-
ization of the transmission capacity of multiple-source quantum
networks.

In this paper, based on the achievements of quantum information
theory16–20 and quantum networking theory21–33, we investigate these
problems using similar ideas in classical network coding. Unlike the
entanglement quantization of a classical channel9–16, it may be quan-
tized with a continuous physical channel26–36, and the transmission
information may be quantized with quantized electromagnetic fields
of identical frequencies. To distinguish the decoded quantum states
for different nodes, special phase-shift operations may be designed to
index different incoming quantum states, using phase shifters [coup-
ling the optical fields to driven Duffing oscillators] or gauge trans-
formations33. This encoding can spread the spectral content of the
quantum information across the entire spectrum in order to encode
the information, and can distinguish different senders with their own
phase factors. Unfortunately, the added phase information is not
easily decoded, and doing so requires the ability to precisely control
the remote chaotic systems during the communication. To solve this
problem, free classical communications are assumed between two
quantum nodes with common channels, and are used to synchronize

the remote phase shifters. This is classical chaos synchronization and
may be achieved using the nonlinear coupling between the optical
fields and Duffing oscillators37–40 or semiconductor lasers41–44. The
key is the nonlinear Kerr interaction, which can be used to couple the
classical chaotic light with the information-bearing quantum light45.
Recently, electrooptic modulators (EOMs) have also been used for
chaos synchronization46–48. Moreover, all encoded quantum
information may be combined into a coherent superposition state,
and decoded using paired multiport beam splitters49–51. Based on our
transmission schemes in common channels, using the network
reduction shown in the supplementary information (SI), we can
identify the optimal transmission scheme for quantum multiple-
source networks assuming restricted maximum-flow. Our scheme
is beyond both the quantum k-pair transmissions13–15 based on the
classical solvability and classical network transmissions52–54 via net-
work coding. These results may be beneficial for large-scale quantum
network communications.

Results
Consider an acyclic directed quantized network Gq~ Vq,Eq

� �
, as

shown in Figure 2(a)). Vq and Eq are the node set and the edge
set, respectively. Each node in Vq is quantized with a quantum
participant that can perform all quantum operations and classical
operations. The transmission information is quantized with electro-
magnetic fields aj and bj of the same frequency. Each channel in Eq is
quantized with a continuous-time physical channel and has a unit
transmission rate [one quantum state]. Each pair (Si, Rj) has lij $ 1
edge-disjoint paths. Our task is to allow efficient transmissions in
large-scale quantum networks: All source-sink nodes pairs commun-
icate simultaneously, subject to restricted maximum-flow. Although
quantum multiple-source networks have no uniform network topo-
logy, based on the network reduction shown in the SI, the optimal
quantum multiple-source transmission may be reduced to the trans-
mission in the primitive network, as shown in Figure 2(b). Thus,
special encoding and decoding operations should be designed to be
suitable to the quantum task.

Restricted maximum-flow. In the optimization theory, the maximum-
flow problem [unit capacity for each channel] is equivalent to
identifying the maximal number of edge-disjoint paths between the
source and the sink, under the assumption unit capacity of per edge.
Our interest is in the case of restricted maximum-flow, i.e., no
common channels for different source-sink node pairs are outgoing
edges of source nodes or incoming edges of sink nodes. This
assumption is reasonable because of the quantum non-cloning
theorem.

Motivated by network coding1–6 and quantum network theory21–33,
a schematic illustration of quantum transmission over a common
channel is presented in Figure 3. The information-bearing field aj

originating from the node Aj is first shifted at the node C using a
chaotic phase shifter (CPSj) with the Hamiltonian dj tð Þa{j aj and the
time-dependent classical chaotic signal dj(t), j~1, � � � ,n. This phase
shift corresponds to the gauge transformation in the nearest nodes30.
All new quantum information is encoded using a multiport beam
splitter (MBS1), and transmitted over the common channel CD. The
combined quantum information is amplified using a phase-insens-
itive linear amplifier (LA) at the node D to compensate for the
information losses induced by MBS1, and then decomposed into n
different components by MBS2. The amplifier gain of the LA is n 1 1.
All decomposed information may be decoded using CPS0 j [the

inverse of CPSj] with the corresponding Hamiltonian {d0j tð Þb{j bj,
j~1, � � � ,n. Each decoded information-bearing field bj is sent to the
subsequent node Bj, j~1, � � � ,Bn.

Note that each pair of CPSj and CPS0 j induces phase shifts with the
phase exp(ihj(t)) and the inverse phase exp(2ihj(t)), respectively,

Figure 1 | Schematic network transmission over the Buttery network. (a)

The classical network multicast with network coding. Each channel has

unit transmission capacity. Each node Ri has two edge-disjoint paths

originating from the source node O, i 5 1, 2. CD is a common channel for

two receivers. The input messages {x, y} are encoded into x 1 y at the node

C, and forwarded to the node D. x 1 y is copied [unit fidelity], and each

message is forwarded to one node Ri. Each receiver can recover {x, y} from

{x, x 1 y} or {y, x 1 y}. (b) The quantized network without the node O. All

nodes and channels may be quantized with quantum participants and

quantum channels, respectively. The node O is canceled because of the

quantum no-cloning theorem at the node Si. Thus, the quantum task is for

each Si to multicast an unknown state to all receivers simultaneously. (c)

The reduced quantized network. The transmissions over the channels S1R2

and S2R1 are trivial and reduced. The remaining task is to design the

transmission over the common channel CD.
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where hj tð Þ~
ðt

0
dj tð Þdt. To achieve faithful transmission, these

transformations must be precisely controlled during the process of
quantum communication, i.e., it must be ensured that the two cha-
otic systems have the same parameters, initial values, and evolutions
such that dj tð Þ~d0j tð Þ for each j~1, � � � ,n. However, this precise
control is impractical for remote participants because the chaotic
system is unstable in system parameters and initial values.
Therefore, additional classical channels are assumed to exist for
common channel CD, and used to synchronize each pair of CPSj

and CPS0j , j~1, � � � ,n, as shown in Figure 3(b). These classical chan-
nels are cheap and readily available compared with quantum
channels.

Modeling quantum transmission over a common channel. Con-
sider the primitive quantum network shown in Figure 3(b). Each pair
of CPSj and CPS0j has been synchronized prior to the transmission of

quantum information, j~1, � � � ,n. The information-bearing fields
a1, � � � ,an with the same frequency vc are modulated using n
different pseudo-noise signals and pass through CPSj, MBS1, the
LA, MBS2, and CPS0j sequentially. The global quantum transmis-
sion can be described using the following linear relation:

bj~ajz
1
n

Xn

k~1,k=j

e
i hj{hkð Þak z

Xn

s~2

eihj bjsas3z

ffiffiffiffiffiffiffiffiffiffiffiffi
n2{1

n

r
eihj a{LA ð1Þ

for all j~1, � � � ,n. The matrices (aij)n3n and (bij)n3n denote the
transformations of MBS1 and MBS2, respectively, and satisfy
la11b11~ � � �~la1nbn1~1. as3 denotes the annihilation operator
of the auxiliary vacuum field entering MBS2, s~2, � � � ,n. For the
pseudo-noise chaotic phase shift hj(t) from the CPSs, one needs to
take an average over the broadband random signal, i.e.,

exp +ihj tð Þ
� �

<
ffiffiffiffiffiffi
Mj

p
, with Mj~exp {p

ðvuj

vlj

Sdj vð Þ
,

v2dv

 !

and the power-spectrum density Sdj vð Þ of signal dj(t). Here, vlj

and vuj are the lower and upper frequency-band bounds of dj(t),
respectively. Thus, the equation (1) is further reduced to

bj~ajz
1
n

Xn

k~1,k=j

ffiffiffiffiffiffiffiffiffiffiffiffi
MjMk

p
akz

Xn

s~2

ffiffiffiffiffiffi
Mj

p
bjsaBSsz

ffiffiffiffiffiffiffiffiffiffiffiffi
n2{1

n

r ffiffiffiffiffiffi
Mj

p
a{LA:ð2Þ

All Mj are extremely small with respect to the chaotic signal with the
broadband frequency spectrum, and thus can be ignored in equation
(2), therefore

bj<aj, ð3Þ

Figure 2 | Schematic acyclic directed quantum multiple-source network.
(a) S1, � � � Skf g, R1, � � � ,Rtf g5V are source and target nodes, respectively.

Each pair SiRj has lij edge-disjoint paths. CD is a common channel for

different pairs. No common channel is the outgoing edge of a source node

or the incoming edge of a sink node. (b) The primitive subnetwork of

quantum multiple-source networks. aj and bj are information-bearing

fields of quantum information [the original fields generated by the former

nodes]. The node C has n incoming edges, and the node D has n outgoing

edges. The transmission in the channel CD is the main concern for

quantum multiple-source transmission tasks. All incoming states

w1j i, � � � , wnj i should be encoded into a superposition state at the node C,

and decoded at the node D.

Figure 3 | Schematic quantum transmission over a common channel. (a)

Quantum transmission without additional classical channels. a{LA is the

creation operator of the auxiliary vacuum field entering the LA, and aj3

denotes the annihilation operator entering the second MBS (MBS2),

j~1, � � � ,n. The encoding at the node C is performed using CPSj and MBS1.

The decoding at the node D is performed using the LA, MBS2 and CPS0j
[the inverse of CPSj]. (b) Quantum transmission with additional classical

channels for the common channel. The encoding is identical to that shown

in Figure 3(a)), whereas the decoding is performed using the chaotic

synchronization of CPSj and CPS0j , j~1, � � � ,n.
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i.e., faithful transmission of quantum information is achieved from
the node Aj to the node A0j, j~1, � � � ,n.

Quantum state transmission over a common channel. Consider
pure qudit state transmission over the proposed model, as shown in
Figure 4. The transmitted states are dark states of general L-type d 1

1-level atoms wj

��� E~Xd{1

i~0
jij ij ij with jij g [0, 1], where the j-th

atom is located in the cavity CAj [see Figure 4(a)], j~1, � � � ,n. These
states are transferred to the cavities via Raman transitions,
transmitted over the quantum network, and stored in the new
cavities. Assume that 2n coupled atom-cavity systems have the
same parameters. By adiabatically eliminating the highest energy
level jdæj, the atom j will always lie in the lowest d energy levels
0j ij, � � � , d{1j ij. The neighboring transition ij ij. iz1j ij is driven

by a near-resonant laser field, and is coupled to the classical control
field and the quantized cavity field with a coupling strength Vij(t).
The Hamiltonian of the atom-cavity systems can be expressed as

Hj~
Xd{1

i~0

gij tð Þ cj iz1j ij ih jzc{j ij ij iz1h j
� �

, ð4Þ

where cj is the annihilation operator of the j-th cavity mode; gij(t) 5

gVij(t)/D is the coupling strength tuned by the classical control field

Vij(t), j~1, � � � ,n; and D is the atom-cavity detuning. cj is related to
the traveling field aj as follows:

aj~
ffiffiffi
l
p

cjzaj,in, ð5Þ

a0j,out~
ffiffiffi
l
p

c0jza0j, ð6Þ

where l is the decay rate of the cavity field.
CPSj and CPS0j are realized by coupling the optical fields to Duffing

oscillators37–44, as described by the Hamiltonian

HD,j~v0p p2
j zq2

j

� �
{mq4

j {c cos vdtð Þqj, ð7Þ

where pj and qj are the normalized position and momentum of the
Duffing oscillators, respectively; v0 is the frequency of the fun-
damental mode; and m, c, and vd are constants. The interaction
between the field aj and Duffing oscillators is given by the
Hamiltonian Ĥj~fjxja

{
j aj, where fj is the coupling strength between

the field aj and the oscillators. By choosing a suitable interaction, a

phase factor exp {i
ðt

0
fjxj tð Þdt

� 	
can be generated for the field aj.

Moreover, the chaotic synchronization between CPSj and CPS0j may
be achieved by using the harmonic potential coupling

V xj,x
0
j

� �
~gj xj{x0j

� �2
, j~1, � � � ,n.

To show the quantum transmission efficiency, let us calculate the

fidelity Fj~ wj

D ���r0j wj

��� E, where r0j is the quantum state received by the

atom j9. From equation (2), the fidelity Fj can be approximated as 1
when M < 0, i.e., when Duffing oscillators enter the hard chaotic
regimes37–44. This result means that qudit states can be faithfully
transmitted over this primitive network via a common channel.

Quantum transmission in a multiple-source network. Note that
according to the network reduction shown in the SI, the number of
incoming channels for one common channel is equal to the number
of outgoing channels. Thus, each common channel CD is equivalent
to m distinct quantum channels C1D1, � � � ,CmDm [not common
channels] aided by additional classical channels, where m denotes
the number of incoming channels, as shown in Figure 5. By replacing
all common channels with equivalent quantum channels, an

equivalent multiple-source network Ĝq~ V̂q,Êq

� �
can be

constructed, which satisfies that all pairs (Si, Rj) have no common
channels under the assumption of restricted maximum-flow. Here,
the source nodes and the sink nodes are unchanged. The resultant
quantum transmission can be easily achieved via forward routing on
the equivalent network with the aid of chaotic synchronization on
the auxiliary classical channels. Thus, we identify and implement the
optimal quantum transmission under the assumption of restricted
maximum-flow in a multiple-source network, and partially answer
the questions Q1–Q3. More specifically, the un-enlarged linear
encoding [encoding operations such as those represented by
equation (1)] is sufficient for large-scale quantum network
communications under the assumption of restricted maximal-flow,
and unlimited classical one-way channels corresponding to the
common quantum channel are assumed. Of course, classical
synchronization should be applied prior to the transmission in the
common channel and requires some classical communication.

Discussion
We have introduced quantum multiple-source networks based on
classical multiple-source networks and chaotic synchronization,
where quantum information can be simultaneously transmitted in
multiple subnetworks derived from source-sink node pairs. The
proposed quantum transmission attains the optimal transmission

Figure 4 | Quantum state transmission over a common channel. (a) The

circular symbols denote atom cavities. Vij(t) denotes the amplitudes of

classical driving fields in each cavity. Vij denotes the transition frequency

of | iæj to | i 1 1æj. The circle in the center denotes a general L-type d 1 1-

level atom. aj in [vacuum states] is the input field, j~1, � � � ,n. (b)

Schematic quantum transmission over a common channel. aj in denotes the

incoming information-bearing fields of nodes Aj, j~1, � � � ,n. aj1 and aj2 are

the incoming and outgoing information-bearing fields of MBS1,

respectively; and aj3 and aj4 are the incoming and outgoing information-

bearing fields of MBS2, respectively, j~1, � � � ,n. a{LA and �a13 are one of the

incoming and outgoing information-bearing fields of the LA, respectively.
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capacity under the assumption of restricted maximum-flow; in this
respect, it is superior to other proposed approaches9–15. Unlike
quantum k-pair tasks with enlarged linear encodings13,14 or nonlinear
encodings15, our encoding is linear and is not completed in an
enlarged space. And classical channels are assumed to exist only
for the common quantum channels and not all quantum channels15.
Moreover, the new scheme extends the solvability of the quantum
k-pair problem, and is more general than previous schemes13–15

which depend on the solvability of the classical k-pair problem.
One typical example is presented in the Figure 1(c); this example is
unsolvable52–54 in terms of the classical 2-pair problem using network
coding. Other examples are provided in the SI. Our result is also
different from continuous-time quantum walks33, these examples
break the time-reversal symmetry of the unitary dynamics for the
purpose of enabling directional control, enhancement, and suppres-
sion of quantum transport. However, it requires controlling the
chiral system for the gauge transformations, which may be difficult
in case of remote systems in large-scale quantum networks. We use
auxiliary classical channels to achieve similar transformations with
the aid of chaotic synchronization. The proposed scheme can avoid
to precisely controlling different chaotic phase shifts, and should be
useful for large-scale quantum networks. Furthermore, the linear
optical equipments are used to encode different quantum states
and solve the transmission congestion on common channels.
Generally, we can get the optimal transmission scheme in mul-
tiple-source network under the assumption of restricted max-
imum-flow. Of course, our proposal entails three important
experimental requirements. The first one is the quantum interference
of signals from different chaotic sources55,56. The second is the imple-
mentation of chaotic phase shifters and their synchronization, which
may be achieved using all-optical systems39 or optoelectronic44. The
third is the implementation of multiport beam splitters49–51. More
specifically, only the coefficients of the first column or row are rel-
evant to our proposal; this feature may reduce the design complexity.

These issues may not be far out of reach because of recent experi-
mental and theoretical developments. Our schemes may provide one
method for long-distance quantum network communications.

Methods
We calculate the linear mapping over the quantum network shown in the Figure 4(b).
The mapping relationships of the CPS01, � � � ,CPS0n may be represented as

a11

..

.

an1

0
BB@

1
CCA~

e{ih1

P

e{ihn

0
B@

1
CA

a1

..

.

an

0
BB@

1
CCA, ð8Þ

where ai1 and ai are the annihilation operators of the auxiliary vacuum fields entering
and output the CPSi respectively, i~1, � � � ,n. The mapping relationship of the MBS1

is defined as

a12

..

.

an2

0
BB@

1
CCA~

a11 � � � a1n

..

.
P

..

.

an1 � � � ann

0
BB@

1
CCA

a11

..

.

an1

0
BB@

1
CCA, ð9Þ

where a12, � � � ,an2 are the annihilation operators of the auxiliary vacuum fields
entering the MBS1. The mapping relationship of the LA is defined as

a13~la12z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
G{l2

p
a{LA, ð10Þ

�a13~
ffiffiffiffiffiffiffiffiffiffiffiffiffi
G{l2

p
a{

12zlaLA, ð11Þ

where a{LA is the creation operator of the auxiliary vacuum field entering the LA. The
mapping relationship of the MBS2 is defined as

a14

..

.

an4

0
BB@

1
CCA~

b11 � � � b1n

..

.
P

..

.

bn1 � � � bnn

0
BB@

1
CCA

a13

..

.

an3

0
BB@

1
CCA, ð12Þ

where ai3 and ai4 are the annihilation operators of the auxiliary vacuum fields entering
and outcoming the MBS2 respectively, i~1, � � � ,n. The mapping relationship of the
CPS01, � � �CPS0n are defined as

b1

..

.

bn

0
BB@

1
CCA~

eih1

P

eihn

0
B@

1
CA

a14

..

.

an4

0
BB@

1
CCA, ð13Þ

where bj is the annihilation operator of the auxiliary vacuum field outcoming the
CPSj, j~1, � � � ,n. Then, combining these equations and the conditions l 5 n,
a11~ � � �~a1n~b11~ � � �~bn1~1=

ffiffiffi
n
p

, the total input-output relationship of the
quantum network is

bj~ajz
1
n

X
k=j

ei hj{hkð Þak z
Xn

s~2

eihj bjsas3z

ffiffiffiffiffiffiffiffiffiffiffiffi
n2{1

n

r
eihj a{LA, ð14Þ

where hj is independent chaotic noise, j~1, � � � ,n.

Averaging the chaotic phase shift. The chaotic signal dj(t) may be expressed as a
combination of many high-frequency components, i.e.,

dj tð Þ~
X

k

Ajk cos vjktzwjk

� �
, ð15Þ

where Ajk, vjk, wjk are the amplitude, frequency, and phase of each component,
respectively. Then the phase of the signal is defined as

hj tð Þ~
ðt

0
dj tð Þdt~

X
k

Ajk

vjk
sin vjktzwjk

� �
{ sin wjk

� �� �
:

Using the Fourier-Bessel series identity57 exp ix sin yð Þ~
X

nJn xð Þ exp inyð Þ
h i

with the n-th Bessel function of the first kind Jn(x)], we can write

exp {ihj tð Þ
� �

~P
k

X
nk

Jnk

Ajk

vjk

� 	
e
{inkvjk t{inkwjkzi

P
k

Ajk
vjk

sin wjkð Þ
" #

: ð16Þ

Take average over the random phase vik, the components related to the high-fre-
quencies is averaged out because of the energy dissipation. It means that the resultant
is only the near-resonance components, i.e, the lowest-frequency terms [nk 5 0]
dominating the dynamical evolution. Thus, we have

exp {ihj tð Þ
� �

~P
k

J0
Ajk

vjk

� 	
e

i
P

k
Ajk
vjk

sin wjkð Þ: ð17Þ

Figure 5 | Schematic illustration of quantum transmission in a multiple-
source quantum network. S1, � � � ,Sk are source nodes, and R1, � � � ,Rt are

sink nodes. The channel CD is a common channel for various source-sink

node pairs. C1D1, � � � ,CmDm are the equivalent m distinct quantum

channels, supported by additional classical channels. m denotes the

number of distinct quantum paths. All pairs (Si, Rj) have no common

channels in the equivalent network under the assumption of restricted

maximum-flow.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4571 | DOI: 10.1038/srep04571 5



Moreover, since the chaotic signal di(t) is mainly distributed in the high-frequency
regime, we have Ajk=vjk .

exp {ihj tð Þ
� �

<P
k

J0
Ajk

vjk

� 	
: ð18Þ

Using the approximations J0(x) < 1 2 x2/4 and log(1 1 x) < x for x=1, it easily
follows that

P
k

J0
Ajk

vjk

� 	
~ exp

X
k

log J0
Ajk

vjk

� 	" #

< exp {
1
4

X
k

A2
jk

v2
jk

 !

~ exp {
p

2

ðvuj

vij

Sdj vð Þ
v2

dv

 !

~
ffiffiffiffiffiffi
Mi
p

,

ð19Þ

where Mj~ exp {p

ðvuj

vij

Sdj vð Þ



v2dv

 !
.

Consequently, from equations (9) and (10), we obtain the approximation

exp {ihj tð Þ
� �

<
ffiffiffiffiffiffi
Mj

p
: ð20Þ
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RETRACTION: Efficient Quantum Transmission in Multiple-Source Networks

Ming-Xing Luo, Gang Xu, Xiu-Bo Chen, Yi-Xian Yang & Xiaojun Wang

The authors wish to retract this Article because the main improvements reported are invalid.

(1) The paper has not considered how to route quantum information. This is an essential problem in classical
network communication such as TCP/IP.

(2) In the presented quantum network, the quantum address or quantum IP address representation for each
quantum node has not been designed. In this point of view, different quantum signals going into one
common quantum channel cannot be distinguished for their different goal addresses.

(3) The synchronizations of the oscillators are only useful when different quantum signals may be distin-
guished. From (3), they cannot be completed for quantum network. For an example, see the following
figure, there are three incoming edges and three outcoming edges. The synchronizations of the oscillators
may be false if the nodes C and D do not know the outcoming paths of three incoming quantum signals. For
an example, our synchronizations are shown in Figure 1a while the real paths may be those shown in
Figure 1b. Even if one can synchronize them before the transmission, the transmission goals may be
different in each time.
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