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DNA methylation plays an important role in regulating cell growth and disease development. Methylation
profiles are examined by bisulfite conversion; however, the lack of markers for bisulfite conversion efficiency
and appropriate internal control genes remains a major challenge. To address these issues, we utilized two
bioinformatics approaches, coefficients of variances and resampling tests, to identify probes showing stable
methylation levels from several independent microarray datasets. Mass spectrometry validated the
consistently high methylation levels of the five probes (N4BP2, EGFL8, CTRB1, TSPAN3, and ZNF690) in
13 human tissue types from 24 cell lines. Linear associations between detected methylation levels and methyl
concentrations of DNA samples were further demonstrated in three genes (N4BP2, EGFL8, and CTRB1). To
summarize, we identified five genes which may serve as internal controls for methylation studies by
analyzing large-scale microarray data, and three of them can be used as markers for evaluating the efficiency
of bisulfite conversion.

I
n recent years, epigenetic changes have been extensively studied, and many studies have demonstrated their
association with biological phenomena such as genomic imprinting, immune response regulation, and devel-
opmental programming1–4. Epigenetics is the study of the connections between genotype and phenotype and

one of its unique revelations is that gene expression patterns can be regulated without altering DNA sequences5,6.
Different types of epigenetic changes, such as DNA methylation, microRNA expression, and chromatin modi-
fication, have been reported as important players in many physiological functions6,7. Among them, DNA methy-
lation is the most studied mechanism and participates in the pathogenic processes of many diseases, such as
cancers, neurodevelopmental disabilities, and allergic diseases1,8,9. Thus, a growing body of research has been
devoted to dissecting the methylation profiles in patients and trying to identify potential methylation biomarkers.

In the mammalian genome, DNA methylation usually occurs in a cytosine within a CpG dinucleotide and
occasionally is found outside of CpG10. With the advancement in experimental technologies, several methods,
including Illumina Infinium microarray and whole genome shotgun bisulfite sequencing, can be used to invest-
igate genome-wide methylation profiles in tissue samples11. An important feature of these methods is that most of
them need to perform bisulfite conversions on DNA samples in order to distinguish methylated and unmethy-
lated nucleotides. Bisulfite conversion transforms cytosine residues into uracil residues but leaves 5-methylcy-
tosine residues unchanged, which allows researchers to quantify the methylation levels. Challenges arise,
however, when trying to treat DNA samples with bisulfite. A critical question is how to determine whether input
DNA samples are completely converted by bisulfite or not. Although Illumina methylation microarrays do have
quality control probes for assessing the efficiency of bisulfite conversion, such information was usually not
available in the public datasets. An arbitrary threshold between the intensity ratios of bisulfite-treated and
untreated DNAs was used to indicate whether the bisulfite conversion was completed or not, which cannot fully
and quantitatively reflect the level of bisulfite conversion. However, incomplete bisulfite conversions lead to
overestimation of the methylation levels, since only a portion of cytosine is converted. Alternatively, over-
treatment of bisulfite causes degradation of DNA samples and increases the probability of converting a methy-
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lated cytosine to a thymine11. Consequently, identification of gene
markers associated with the efficiency of bisulfite conversion may
help to overcome this challenge.

High-throughput technologies, such as microarrays and next-gen-
eration sequencing, facilitate the identification of genes with altered
methylation levels, and other experimental methods are usually per-
formed to validate the results. For example, mass spectrometry has
been widely used in methylation analyses12–14. However, few studies
have explored genes with consistent methylation levels across differ-
ent samples. Similar to the concept of ‘‘housekeeping’’ genes showing
consistent and stable gene expression levels15, appropriate internal
controls for methylation studies can not only help to reduce the
experimental bias from artificial effects, but also provide a better
baseline to compare data from distinct biological samples.
Therefore, we aimed to perform a large-scale analysis of methylation
data in order to identify potential housekeeping genes with stable
methylation levels across multiple human tissues.

In this study, we analyzed a total of 682 methylation microarrays
generated from Illumina Infinium HumanMethylation27 BeadChips
and used a bioinformatics approach to identify 27 genes showing
consistent methylation levels across all samples. The top five genes
were validated using mass spectrometry in 24 human cell lines, and a
linear association between detected methylation levels and methyl
concentrations of DNA samples was demonstrated in three genes,
suggesting their potential role as markers for the efficiency of bisulfite
conversion.

Results
Identification of consistently methylated probes. After the quality
checks of samples and probes, a total of 668 samples (Table 1)
containing 7,829 probes remained for further analyses. These 668
samples were comprised of more than 10 different cell types from 8
independent experimental batches and ethnicities. The following
analysis procedures were all carried out using R version 2.9. For
each gene, the coefficient of variance (CV) value and stability
score16 were calculated to estimate the consistency of methylation
levels among all samples, and the top 100 probes with the lowest CVs
and highest stability scores were recorded as list A and A9,
respectively. To remove false-positive probes identified by
coincidence, resampling tests were performed by randomly
splitting the 668 samples into halves with equal sample sizes, i.e.,
334 samples each. Similarly, the top 100 probes with lowest CVs
were recorded as list B and C, and the top 100 probes with highest
stability scores were recorded as list B9 and C9. Detailed information
about the resampling test is described under Methods. The results of
the random trials are summarized in Table S1, which shows that the
mean CVs and stability scores of the top 100 probes were generally
larger than 80 and even approached or attained 90 among the six
lists. Among the 10,000 trials, the number of probes identified in list
B at least once was 224, and the number of probes identified at least

once in any of the 6 lists was only 295. Such high concordance
suggested that both CV value and stability score approaches were
stable and their findings were generally very similar. In addition,
these two approaches identified 69 common probes out of the
top 100 probes in lists A and A9, which further demonstrated
the consistency of the results. Therefore, we focused on the
intersecting set of probes (n 5 27) among all six lists for the
following analyses.

Methylation levels of the selected 27 probes across different
datasets. The 27 candidate probes consistently appearing in all six
lists are shown in Table 2. As shown in Figure S1, all of these 27
probes (red dots) displayed high methylation levels and relatively
very low CVs. For example, the highest CV value of the 27 probes
was only 0.1347, whose rank was 36th among 7,829 probes. To be
more specific, we further examined the methylation levels of the 27
probes in all samples from different datasets (Table 2). In general,
their b values of methylation were very stable across all 668 samples,
independent of different experimental batches, and all of them were
higher than 0.8, and even 0.9. For instance, as shown in Figure S2, the
M-values of N4BP2 and EGFL8 in distinct datasets did not vary
much. Therefore, these results suggested that our approach was
able to successfully identify probes with consistent methylation
levels. The 27 selected probes showed consistent methylation levels
across samples with different diseases, tissue types, and ethnicities.

Validation of selected probes using mass spectrometry. To narrow
down the target probes for validation, we repeated the same
procedures shown in Figure 1, except that only the top 20 probes
were tallied. Among the 10,000 resampling trials, only 1.09% of
probes (n 5 85) were identified at least once in all six lists,
indicating that our proposed approach to identify probes with
stable methylation levels is not sensitive to a change in the number
of probes selected. Next, an average number of appearances in the
lists B–C9 was ranked for experimental validation. The top 5 probes
(N4BP2, EGFL8, CTRB1, TSPAN3, and ZNF690) were selected
(Table S2), and all of them were identified more than 9,885 times
out of the 10,000 trials, suggesting they had stable methylation levels
across different biological samples.

Twenty-four cell lines derived from 13 different cell types were
investigated using mass spectrometry (Table 3). After DNA was
extracted and bisulfate converted, mass spectrometry experiment
was performed according to the standard protocols provided by
the manufacturer (Sequenom, San Diego, CA). The results of the
mass spectrometry are illustrated in Figure 2, and all of the five genes
generally showed consistent and stable methylation levels among all
cell lines. N4BP2 and EGFL8, for example, had methylation levels
higher than 0.75 in all cell lines, which demonstrated that these
two genes were highly methylated independent of tissues type
(Figure 2A–B). In addition, CTRB1, ZNF690, and TSPAN3 showed
high b values (.0.75) in 24 (96%), 23 (92%), and 19 (76%) cell lines.

Table 1 | Characteristics of analyzed Illumina Infinium Human Methylation27 microarray datasets

Data Seta Sample Number Description

GSE17648 44 Colorectal cancer, tumor vs. adjacent normal
GSE17769 10 Breast cancer, tumor cell lines vs. normal line
GSE20067 195 Irish patients with type 1 diabetes mellitus
GSE20080 48 Normal and preinvasive cervical smear samples
GSE24087 4 HPV(1) and HPV(2) SCC cell lines
GSE26133 160 HapMap Yoruba lymphoblastoid cell lines
GSE27284 10 Primary NSCLC fibroblast and normal cell lines
In-house studies 211 Lung adenocarcinoma; SLE, case vs. control; Cord blood samples with atopic dermatitis
total 682 - -
aAccession number is from Gene Expression Omnibus.
HPV: human papillomavirus; SCC: squamous cell carcinoma; NSCLC: non-small cell lung cancer; SLE: systematic lupus erythematosus.
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Thus, the results indicated that our approach can successfully
identify genes that are stably and highly methylated across different
cell types.

Lastly, we evaluated the sensitivity of detecting methylation levels
in the top three genes showing stable methylation levels, including

N4BP2, EGFL8, and CTRB1, using different concentrations of
methylated samples. Two standard DNA samples, which were fully
methylated (100%) and unmethylated (0%), were purchased from
Qiagen (Valencia, CA) and used to make DNA samples with 0%,
25%, 50%, 75%, and 100% methylation levels. Subsequently, these

Figure 1 | Flowchart for identification of genes with consistent methylation levels across different samples.

Table 2 | Information on the 27 probes commonly identified in the six lists

Gene Description TargetID Chromosome Coordinate M-value b value

ADMR G protein-coupled receptor 182 cg24167841 12 55675308 3.320 0.909
APOL1 Apolipoprotein L, 1 cg08775793 22 34978638 2.874 0.880
C1orf38 Thymocyte selection associated family member 2 cg27573888 1 28078930 4.218 0.949
C2orf18 Solute carrier family 35, member F6 cg24248317 2 26839883 3.046 0.892
CSH1 Chorionic somatomammotropin hormone 1 (placental lactogen) cg11880211 17 59327200 2.48 0.848
CSH2 Chorionic somatomammotropin hormone 1 (placental lactogen) cg27178345 17 59304304 3.002 0.889
CTRB1 Chymotrypsinogen B1 cg16863382 16 73810196 3.604 0.924
DAZL Deleted in azoospermia-like cg06429195 3 16621586 3.286 0.907
EGFL8 EGF-like-domain, multiple 8 cg16282679 6 32242288 3.235 0.904
F11R F11 receptor cg07883333 1 159276377 4.743 0.964
FLJ45684 FLJ45684 locus cg03410718 19 598423 3.543 0.921
FAM83H Family with sequence similarity 83, member H cg20519035 8 144883226 3.624 0.925
GDF11 Growth differentiation factor 11 cg00344358 12 54421960 3.466 0.917
GPS2 G protein pathway suppressor 2 cg11181795 17 7160695 4.075 0.944
HTRA3 HtrA serine peptidase 3 cg24105933 4 8321695 3.604 0.924
IL13 Interleukin 13 cg14523284 5 132021513 2.847 0.878
ITGA2B Integrin, alpha 2b (platelet glycoprotein IIb of IIb/IIIa complex,

antigen CD41)
cg17749520 17 39822093 3.202 0.902

N4BP2 NEDD4 binding protein 2 cg13107169 4 39774633 3.219 0.903
PPP2R2A Protein phosphatase 2, regulatory subunit B, alpha cg10207787 8 26204112 3.186 0.901
PRH1 Proline-rich protein HaeIII subfamily 1 cg13383572 12 10927484 2.888 0.881
RDBP Negative elongation factor complex member E cg04710641 6 32036236 3.107 0.896
RPS6KB2 Ribosomal protein S6 kinase, 70 kDa, polypeptide 2 cg23347911 11 66951485 3.286 0.907
SMARCA3 Helicase-like transcription factor cg21089667 3 150287952 4.585 0.960
TSPAN3 Tetraspanin 3 cg21377793 15 75151574 3.320 0.909
TUBA3D Tubulin, alpha 3d cg02774486 2 131949903 3.732 0.930
ZNF142 Zinc finger protein 142 cg04970994 2 219234087 3.524 0.920
ZNF690 Zinc finger and SCAN domain containing 29 cg12784172 15 41449249 3.303 0.908
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samples were investigated in the MassARRAY system, and the
methylation levels of N4BP2, EGFL8 and CTRB1 are shown in
Figure 3. For each gene, a linear relationship (R2 $ 0.98) was
observed between its methylation level and the methyl concentration
of DNA samples. In addition, these three genes all showed low (,0.2)
and high (.0.8) methylation levels in the 0% and 100% methylated
samples, respectively. This suggested that the methylation levels of
these three genes were highly associated with the methylated con-
centrations of DNA samples. Therefore, these genes can serve as
potential methylation markers for bisulfate conversion.

Discussion
Changes in methylation have been shown to be an important player
in regulating cell growth, normal cellular functions, and even the
development of diseases17,18. Thus, how to effectively and accurately
measure the methylation levels of multiple genes simultaneously has
become a critical issue. Although some experimental technologies,
such as enzyme-based gel electrophoresis and affinity-enrichment
methods, can be used in methylation studies without performing
bisulfite conversions, most of the popular techniques still require
treating samples with bisulfite in advance11. However, inappropriate
bisulfite conversion may easily introduce systematic errors and lead
to incorrect conclusions. A previous study has demonstrated that the
rate of cytosine deamination to uracil highly depends on temperature
and incubation time19. Therefore, identification of internal controls
for assessing the conversion efficiency of DNA samples is necessary.
In addition, internal controls can provide a baseline for comparison
of the quality of input DNA samples and provide a stable reference
line to normalize methylation data among different samples. For
example, the delta-delta cycle threshold (ddCt) method has been
widely used in analyzing PCR data for mRNA expression values20,21,
and internal controls, such as ACTB and 18s rRNA, which have high
and stable expression values in different tissues types, are essential
for interpreting the results. In this study, we demonstrated that
N4BP2, EGFL8, and CTRB1 were highly methylated not only in
samples detected by microarrays (b values . 0.9, Table 2), but also
in 24 cell lines across 13 tissue types examined by mass spectrometry
(b values . 0.75, Figure 2). Therefore, the results of two independent

techniques both showed that these genes had high methylation levels
in several tissue types. In addition, a linear relationship (R2 $ 0.98)
was demonstrated between the methylation levels of three identified
genes and the methyl concentration of DNA samples (Figure 3).
These data further suggested their capability for serving as internal
controls because their methylation levels can be used to reflect the
efficiency of bisulfite conversion in input samples. In conclusion,
N4BP2, EGFL8, and CTRB1 were possible internal controls for
methylation studies since their methylation levels were not only
consistent in many different human tissues but also proportional
to the methyl concentration of DNA samples.

Two approaches, CVs and stability scores, were performed in this
study to identify probes showing consistent methylation levels
(Figure 1). For a given gene, the CV was used to evaluate consistency
across different samples, whereas the stability score approach16 uti-
lized a rank product method to estimate its suitability in serving as a
control in distinct datasets. Interestingly, the results of these two
approaches were very similar and identified 69 probes in common
out of the top 100 probes, motivating us to use both approaches. Also,
moderate to high Pearson correlation coefficients (r 5 0.62–0.76)
were observed between the rankings of genes obtained from CV and
stability score approaches, further suggesting their concordance.

Resampling tests were used to exclude probes identified by ran-
dom chance, and high similarities were observed in the results (Table
S1). In addition, although selecting the top 100 probes is an arbitrary
threshold, the results showed minimal variation when the threshold
number was changed to 20. To summarize, the results suggest that
our procedures were not sensitive to the chosen parameters and were
able to reproducibly identify probes by integrating two different
approaches.

The expression levels of hypermethylated genes are down-regu-
lated, if these genes are subject to the regulation of DNA methyla-
tion18. Such an epigenetic regulation mechanism is observed in
several genes related to embryonic development22. For instance,
DAZL. one of the top 27 probes, is an important regulator particip-
ating in spermatogenesis and oogenesis, and its demethylation is
only observed in germ cells but not somatic cells23. GDF11 is a growth
factor involved in the formation of mesoderm and neurogenesis24,
and its gene expression level can be induced by a histone deacetylase
(HDAC) inhibitor and inhibited by HDAC325. Accordingly, the
results suggest that these identified genes have biological relevance.

Although we used gene symbols to denote the CpG islands show-
ing high methylation, readers should keep in mind that methylation
levels are dependent on the specific chromosome coordinates (Table
S2), because different methylation statuses of distinct CpG loci in the
same gene could be observed. For example, methylation changes
were observed in the first exon of HTRA3 in smoking-related lung
cancer, but such alterations were not detected in its promoter
region26. However, gene symbols were chosen to represent the
CpG islands in this study, since such methylation changes in CpG
islands may affect the overall function of the corresponding gene. To
date, the literature has rarely reported methylation changes in the top
five genes identified by our analysis (N4BP2, EGFL8, CTRB1,
TSPAN3, and ZNF690). A single study has shown that TSPAN3
was down-regulated in relapsed Wilms tumor; however, such gene
expression changes were not controlled by methylation27. Therefore,
additional studies of the methylation status of these five genes are
required to evaluate their functional roles in relationship to
methylation.

In this study, we have demonstrated the consistent methylation
levels of N4BP2, EGFL8, and CTRB1 in many human tissues and cell
lines; however, one caveat is that methylation profiles in each cell line
may be affected by in vitro cell culture procedures28,29. Epigenetic
changes in cells are sensitive to their growth conditions, and thus
subtle differences in environment may lead to huge differences in
methylation profiles. Two previous studies showed that some varia-

Table 3 | Characteristics of the 24 cell lines investigated using the
MassARRAY system

Cell line Feature

T98 Brain glioblastoma
U87 Brain glioblastoma
SH-SY5Y Neuroblastoma
GM8680 Fibroblast
GM8402 Fibroblast
TK6 Lymphoblast
WTK1 Lymphoblast
CE81T Esophageal cancer
MCF7 Breast cancer
CL1-0 Lung cancer
A549 Lung cancer
BEAS2B Lung normal
PANC-1 Pancreatic cancer
DLD1 Colon cancer
HT-29 Colon cancer
HELA Cervical cancer
BPH1 Prostate normal
OVCAR3 Ovarian cancer
SKOV3 Ovarian cancer
JH514 Ovarian cancer
OVTOKO Ovarian cancer
OVTW59_P0 Ovarian cancer
TOV-112D Ovarian cancer
OVEM Ovarian cancer
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Figure 2 | Methylation levels of the five genes detected by mass spectrometry across 24 cell lines. The X-axis denotes the names of the different cell lines,

and the Y-axis represents the average beta value of the methylation level.
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tions in the methylation profiles existed between cell lines and tis-
sues, even if they were from the same organ28,29. Therefore, a prelim-
inary test in different cell lines is prerequisite before utilizing the
methylation markers identified in this study.

In conclusion, we have identified five genes with stable hyper-
methylation across different human tissue types. Among them,
N4BP2, EGFL8, and CTRB1 not only can serve as internal controls
for methylation studies, but also are markers for the efficiency of
bisulfite conversion.

Methods
Sample collection. All methylation microarrays analyzed in this study were
investigated by using Illumina Infinium HumanMethylation27 BeadChips,
containing probes to interrogate 27,578 CpG loci covering more than 14,000 genes.
Methylation levels in Illumina methylation assays were quantified by the b value
using the ratio of methylated alleles over all alleles for a given CpG locus. Most of the
microarray samples were retrieved from the Gene Expression Omnibus website30,
with the accession numbers of GSE17648, GSE1776931, GSE2006732, GSE2008032,
GSE24087, GSE2613333, GSE2728434, and the other microarrays were collected from
our in-house studies. The details of analyzed microarrays are summarized in Table 3.

Processing and filtering of microarray data. The protocol used to identify probes
with high and consistent methylation levels is illustrated in Figure 1. First, to remove
microarray samples with low quality and intensity, the mean signal of every probe
within each slide was calculated in all 682 samples. Samples were excluded for
subsequent analyses if the following condition was met: the mean of average b value
across all probes was #0.335. In addition, individual probes were filtered out if they
displayed a missing value in any one of the samples. Consequently, 14 samples were
excluded and approximately 20,000 probes were filtered out, which resulted in 7,829
probes as potential targets in the following approaches.

Identification of probes with stable methylation levels across different samples.
Prior to performing subsequent statistical approaches, the average b values in all
microarrays were transformed into ‘‘M-values’’ based on the following equation.

M~log2 b= 1{bð Þð Þ

Du et al. reported that this M-value transformation is able to improve the
determination of methylation levels in statistical analyses by showing greater
consistency and robustness36. After the M-transformation, the coefficient of variances
(CV) was utilized to rank the investigated probes for suitability as ‘‘housekeeping’’
probes. Specifically, the CVs of the 7,829 probes were calculated over 668 samples and
sorted in ascending order. Based on the results, the top 100 probes having the smallest
CV values were reported as possible ‘‘housekeeping’’ candidates (list A). To establish a
null baseline for comparison, a resampling test was performed 10,000 times through
the following steps. First, the 668 methylation samples were randomly divided in half
(334 samples each in lists B and C), and the CV values were calculated. Similar to the
approach in identifying list A, the top 100 probes with smallest CV values were
recorded and compared with the members of list A. In addition, the top 100 probes
identified in list B were compared with the members in list C. Lastly, the matching
probes between list A and lists B and C created from 10,000 random trials were
recorded, and the common members in list B and C were also tallied for further
comparisons.

Verification of possible probes with consistent and stable methylation levels. To
evaluate the reliability of identifying housekeeping methylation probes by using CV
values, another established algorithm was utilized16. Briefly, this approach estimated
the stability score of each probe based on its methylation level. The formula to
calculate the stability score was:

si~a log2 maxfmi{b, 0gð Þ{si:

The symbols mi and si denote the expression level of gene i and the standard deviation
across all 668 samples, respectively. The coefficient a was set to its default value, 0.25,
as suggested by the authors16. Similar to the CV value approach, a gene was excluded
for further analyses if its mean b value was smaller than 0.3. This criterion was applied
in order to yield the same number of probes investigated in both methods to establish
a fair baseline for comparison. Moreover, since all samples used in this study were
Illumina Infinium HumanMethylation27 BeadChips, the rank product score
considering platform-independence, which was outlined by the original authors, was
not performed here16. The scoring scheme in this approach was similar to the previous
method implementing CV values, that is, lists of candidate probes over 668 samples
were examined and ranked by the stability score in descending order. Likewise, 10,000
random trials were carried out, and three gene lists were obtained for each trial.
Meanwhile, the three lists were also compared to each other and the numbers of times
that each gene was identified in the lists B9 and C9 were also tallied. Lastly, the
candidate probes with stable methylation levels were narrowed down to those
consistently found in all six lists after 10,000 random trials.

Figure 3 | Correlation between concentration and methylation levels of
EGFL8, N4BP2, and CTRB1. Five concentrations, including 0%, 25%,

50%, 75% and 100%, of the methylated DNA samples were investigated by

mass spectrometry.
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Validation of possible gene targets using the MassARRAY system. A total of 24 cell
lines were analyzed using the MassARRAY system to validate the methylation levels
of selected gene targets. The characteristics of the cell lines are summarized in Table 3.
First, genomic DNA was isolated from the cells by proteinase K-phenol/chloroform
extraction following standard protocols with 0.5% SDS and 200 mg/ml proteinase K.
The DNA concentration of each sample was adjusted to 50 ng/ml and total genomic
DNA (500 ng) underwent DNA bisulfate conversion using an EZ DNA
MethylationTM kit (ZYMO research, Orange, CA). Among the bisulfate treated DNA
products, 200 ng of the bisulfate treated DNA were used for PCR amplification. The
primers were designed by using the program EpiDesigner b (http://www.epidesigner.
com/start3.html). PCR conditions were optimized to preferentially amplify
fragments within a size range of 300 to 500 bp. Subsequently, 2 mL of Shrimp Alkaline
Phosphatase (SAP) enzyme was added into 5 mL PCR products to dephosphorylate
unincorporated dNTPs. Lastly, in vitro transcription and RNase A cleavage were
carried out, and the mass spectrum was obtained from the PCR reactions.
Quantitative methylation analysis software provided by the manufacturer
(Sequenom, San Diego, CA) was used to analyze the results.
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