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Substitutional hydrogen at oxygen site (HO) is well-known to be a robust source of n-type conductivity in
ZnO, but a puzzling aspect is that the doping limit by hydrogen is only about 1018 cm23, even if solubility
limit is much higher. Another puzzling aspect of ZnO is persistent photoconductivity, which prevents the
wide applications of the ZnO-based thin film transistor. Up to now, there is no satisfactory theory about two
puzzles. We report the bistability of HO in ZnO through first-principles electronic structure calculations.
We find that as Fermi level is close to conduction bands, the HO can undergo a large lattice relaxation,
through which a deep level can be induced, capturing electrons and the deep state can be transformed into
shallow donor state by a photon absorption. We suggest that the bistability can give explanations to two
puzzling aspects.

S
ince ZnO-based oxide semiconductors are promising materials for transparent oxide electronics and blue
LED, the oxides have been extensively investigated1,2. Hydrogen is an ubiquitous element, and in semi-
conductors, hydrogen-related problems have always been important subjects, since hydrogen shows com-

plicated properties and plays a role as either carrier-generating or trapping center. Generally, oxide materials are
easily contaminated by hydrogen impurities due to the strong bonding of the H atoms to an O atom, and
hydrogen contamination is believed to be an important source of the natural n-type conductivity of ZnO3,4.
Hydrogen impurities are suggested to have two kinds of donor-like states in ZnO: (i) interstitial hydrogen (Hi) at a
bond-center (HBC

1) or at an antibonding (HAB
1) site4–7 and (ii) substitutional H at an O site (HO)8. The interstitial

H can be easily removed through thermal annealing due to its high mobility5, and thus, HO is suggested to be
robust source for n-type conductivity8. However, there is a long-term unresolved puzzle. The maximum available
free carrier concentration (ne,max) in H-rich ZnO is limited to only about ,1018 cm23 9–11, even if the H concen-
tration in ZnO can be as high as ,1020 cm23 12 and the O-deficiency is simultaneously serious13. Since a heavier n-
type doping can be achieved (,1020 cm23) in Al-doped ZnO14, the formation of acceptor-like native defects such
as Zn-vacancy is not considered to be the main reason for compensation15,16.

There is another puzzling aspect in ZnO, which is persistent photo-conductivity (PPC) in ZnO17. Since the PPC
is a source of the light-induced instability of ZnO-based active device in flat panel display18, many researches are
now invested to prevent it. Generally, the PPC is suggested to be explained by the presence of bi-stable centers
such as DX center in AlGaAs:Si19. Lany and Zunger have suggested an interesting mechanism by considering that
VO level in ZnO is sensitively lowered by electron occupancy due to the strong electron-lattice coupling20.
Normally, the VO is a deep donor, but the fully-ionized VO

21 state can be a metastable shallow donor state, since
the defect level of VO

21 is located above the conduction band minimum (CBM), and thus an electron at CBM may
not be easily excited into the defect level. However, the metastability of VO

21 1 2e has not yet been proven
explicitly. Later, the more direct calculations showed that bi-stability of VO does not exist for all (0), (1), and
(21)-charge states, although the breathing type of atomic relaxation depending on charge state is quite large,
which is not enough to explain the room-T PPC21. Therefore, up to now, there is no satisfactory theory to explain
the puzzles in ZnO.

In this paper, we report the bistability of shallow donor HO in ZnO, which has never been discussed yet. We find
that the bistability of O-vacancy can be realized, when it is coupled by a hydrogen. We show that as Fermi level is
close to the conduction band, the HO can undergo a large lattice relaxation (LLR), capturing electrons at a deep
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level which is created by the LLR. It is shown that the bistability can
give clear explanations to the microscopic mechanisms of long-term
puzzling phenomena in ZnO: the persistent photo-conductivity in
ZnO and the low doping limit of H-rich ZnO.

Results
In ZnO, a H atom is suggested to be strongly captured by an O-
vacancy, which is a substitutional impurity at O-site (HO), as shown
in Fig. 1(a). The HO state is known to be a robust state, and normally
positively charged, as suggested by Janotti et al.8, since the highest
occupied state from the hydrogen state is located above the CBM.
However, here we find that HO can be negatively charged and capture
electrons through a large lattice relaxation (LLR). We find that in the
negative charge state, the H atom can be significantly displaced into
an interstitial hollow (H)-site22,23. The LLR structure is described by
Fig. 1(b).

Through the LLR, the H is separated from O-vacancy site, and thus
the LLR structure can be considered as a pair of Hi

2 and VO
0, that is a

Frenkel defect. In this respect, it is similar to the well-known DX
center in AlGaAs19. Thus, we call the LLR structure as ‘‘H-DX’’. The
present H-DX is slightly different from DX center. In the former, two
H-O bonds are broken by LLR [see Fig. 1(b)], while in the latter, only
one bond is broken. In the H-DX, as shown in Fig. 1(b), the H couples
with three Zn atoms which are located altogether at a same layer of
ab-plane. Electronic structure calculations indicate that a deep level
within gap is created by the LLR and it captures two electrons, as
shown in Fig. 2(a). The more detail will be discussed below. We
examined another metastable LLR structure, which is described as
H-DX* in Fig. 1(c), where the displaced H is located between two ab-
layers. This state is less stable by 0.26 eV than H-DX, and the H-DX*
is less probable to be formed, compared to the H-DX. We also exam-
ined another LLR: only one Zn atom is separated from the H, simi-
larly to conventional DX center, but we find that these states are
unstable, the deep level is not formed by the LLR.

As shown by Figs. 2(a) and 2(b), electronic structure calculations
indicate that two deep levels are created by H-DX2. The lower a level
is located at 0.49 eV above the VBM, and the upper a* level is located
at 1.06 eV below the CBM. As shown by Fig. 2(d), the a level is found
to come mainly from the H atom and the nearby H-coupled Zn
atoms ((Zn(1), Zn(4), Zn(5) in Fig. 1(b)), and, as shown by
Fig. 2(e), the upper a* level comes mainly from the O-vacancy site,
i.e., from the Zn(2) and Zn(3) atoms separated from H. The two

defect levels are fully occupied. The electronic energy reduction by
the capture of two electrons at a* level contributes to the stabilization
of the H-DX.

In the isolated point defect VO, four nearby Zn atoms are relaxed
inward by the electron capture of VO. In the VO

0, the Zn atoms are
relaxed inward by about 0.24 Å from ideal positions (ideal Zn-O
bond lengths: dZn-O 5 1.97 and 1.99 Å)21. Similarly, in the H-DX2,
Zn(2) and Zn(3) atoms are inward relaxed by 0.28 Å and 0.32 Å,
respectively. Three Zn host cations coupled to the H move towards
the H by about 0.12 Å (0.10 Å for Zn(5)), from ideal locations. For the
H-DX2 LLR structure, the H atom is largely displaced by 1.92 Å from
the original location of HO.

In the neutral state, the H-DX structure becomes unstable, since
the electronic energy reduction by one electron trap is not enough to
stabilize it. Similarly, in the positive charge state, the H-DX structure
is unstable. The H-DX2 structure is stable only in the negative charge
state, having two electrons at a* level, and it is more stable than the
HO in the negative charge state, which is actually HO

1 1 2e (at CBM),
since the donor level of HO is located much higher than CBM.

Now, we examine the stability of H-DX state relative to the normal
HO

1, depending on Fermi level (eF), by calculating the formation
enthalpies. Since two structures have different charge states, the rela-
tive stability should depend on Fermi level. The calculated results of
eF-dependent formation enthalpies of these states are shown in Fig. 3.
Here, we assumed O-poor and H-rich conditions (simulating the O-
deficient and H-rich case). Since HO is shallow-donor-like, only the
positive charge state is stable when Fermi level is inside the band gap.
The calculational results indicate that as Fermi level is located above
0.05 eV below the CBM, electron-capturing H-DX2 becomes more
stable than HO

1. We did not consider the interstitial H (Hi) state,
assuming that substitutional HO is much more dominant than inter-
stitial hydrogenic Hi state, since the Hi is suggested to be easily
removed through thermal annealing due to its high mobility.
These results indicate that when Fermi level is close to the 0.05 eV
below CBM, the concentration of the H-DX states becomes compar-
able to that of HO. These indicate that the pinning position of the
Fermi level is located at about 0.05 eV below CBM.

The results indicate that HO state can be self-compensated through
LLR transition. An electron can be generated by a shallow donor such
as HO, and the electron is captured by other HO:

HO
0?HO

zze ð1Þ

Figure 1 | Atomic structures of the various structures of hydrogen at an O-site in ZnO: (a) HO, (b) H-DX, and (c) H-DX*. The (red)-dashed arrow

lines in (b) and (c) indicate the direction of H-displacement for the formations of H-DX2 structures. (c) H-DX* is a meta-stable structure. The open

circles describe VO
0 site in the H-DX2 which is a complex defect of Hi

2 and VO
0.
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HO
0ze?H-DX{: ð2Þ

The overall process is found to be exothermic by 0.10 eV, when
Fermi level is located at CBM.

We estimated total energy profile for the structural transformation
between HO and H-DX. The H-DX structure in the neutral or (1)-
charge state is unstable. When the high concentration of electron
carriers is present at conduction band, two electrons can be captured
by the HO through the deformation toward H-DX structure, and the
H-DX2 state can be more stable than the HO

1 1 2e (at CB). We
calculated the variation of the total energy according to the structural
deformation, as shown in Fig. 4, and we find that there is the energy
barrier for the structural recovery: HO

1 1 2e R H-DX2. It is esti-
mated to be 0.36 eV.

We calculated the imaginary dielectric function [e2(v)]24 of the H-
DX2, as shown in Fig. 2(f), which describes the optical absorption
spectrum. The peak in the phonon energy spectrum was estimated to
be about 2.3 eV. The minimum optical excitation energy (Eopt) from
a* level to CBM in the H-DX2 was estimated to be about 1.06 eV.

We examined the binding energies of HO
1 and H-DX2 with

respect to well-separated Hi and VO. The binding energies of HO
1

and H-DX2 were estimated by comparing two states, i.e., by using
[E(Hi

1) 1 E(VO
0)] 2 [E(HO

1) 1 E(pure)] and using [E(Hi
1) 1

E(VO
0) 1 2e (at CBM)] 2 [E(H-DX2) 1 E(pure)], respectively. As

shown by (gray)-dashed lines in Fig. 3, the binding energy of HO
1 is

estimated to be 0.97 eV, which is largely exothermic, which is com-
parable to the previous large values of 0.80 eV (in LDA) and 3.8 eV
(in LDA 1 U) in other calculations. The binding energy of H-DX2 is
also estimated to be largely exothermic by 1.27 eV. Thus, this indi-
cates that substitutional H-DX2 is a thermally-stable complex defect.

Discussion
The electronic structure of H-DX, as schematically described by
Fig. 2(c), can be understood with respect to interaction between Hi

and VO. As Takenaka and Singh suggested, H itself in HO
1 is anion-

like, capturing two electrons25, indicating that HO
1 is rather a com-

plex defect composed of the Hi
2 and VO

21. The anionic behavior is
not a surprising one, since H electronegativity (f) is between those of
Zn and O [f(H) 5 2.2, f(Zn) 5 1.65, and f(O) 5 3.44]. The VO

21 in

Figure 2 | Electronic structures and optical properties of H-DX2. Calculated (a) total and (b) partial densities of states for H-DX2 in ZnO are shown. The

total density of states for perfect (pure) ZnO is also shown (gray filled area) in (a). (c) A schematic diagram for the electronic structures of HO
1 and H-

DX2. The charge densities of (d) a and (e) a* states are shown with the isosurface value of 3.50 3 1025 Å23. (f) The imaginary dielectric function [e2(v)]

calculated for H-DX2 is shown. The dielectric function is calculated by using the Kubo formula based on the electric-dipole-approximation25 and

averaged over the x-, y-, and z-polarization vectors. Here, we used a 72 atom supercell.
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complex defect HO cannot trap the electron25, since the Zn-s-levels
around the H atom are pushed upward above the CBM by the strong
interaction between the upper Zn-s-level and the lower H-s-level8.
Therefore, the electronic property of the H atom is anionic either at
HO

25 or at H-DX state22,23 and the level of H-s orbital is located lower
than that of Zn-s-orbital.

In the HO, a H atom interacts strongly with four Zn atoms, while a
Zn atom with one H atom, and thus, the H-level is largely pushed
down to below the valence band maximum (VBM) and all of Zn-s-
levels are located above the CBM, as described in Fig. 2(c). On the
other hand, in the H-DX, the H atom at H-site interacts with just
three Zn atoms, so the hydrogenic level is less pushed-down and
becomes located above VBM (a level in Fig. 2b). Through the LLR
from HO to H-DX, the interaction between the H and the VO becomes
weaker and the VO level becomes deeper below the CBM [see
Fig. 2(a)]. Two Zn atoms (Zn(2) and Zn(3) in Fig. 1(b)) are separated
from H by the LLR, and the generated Zn dangling bonds can induce
a deep level (a* level), which becomes deeper through the interaction
between two Zn-dangling bonds, described by red lines in Fig. 2(c).
We, thus, suggest that the electronic energy reduction by the capture
of electrons at the deep a* level stabilizes the displaced H-DX
structure.

The fact that the H-DX structure is more stable than HO structure
in the negative charge state indicates that as eF becomes close to the
CBM, the HO can undergo a shallow-to-deep transition through a
LLR. Figure 3 indicates that H-DX structure can be stable only for the
eF close to CBM (eF . 0.05 eV below CBM). From the estimated
pinning position of Fermi-level, we can estimate maximum electron
concentration (ne,max) in H-rich ZnO, assuming the high concentra-
tion of HO, to be about 1018 cm23 at room temperature, which is
surprisingly in a good agreement with the experimental data9–11.
Therefore, we suggest that the present bistability can give an explana-
tion to the doping limit puzzle for H-rich ZnO. As the eF is close to
the CBM, HO can undergo the large lattice relaxation into H-DX2,
and the electrons generated by HO are trapped in the deep H-DX a*
level, i.e., the HO’s are self-compensated.

We find that the bistability of HO can give explanation to the
persistent photo-induced conductivity (PPC) reported for ZnO.
ZnO is well-known to be easily H-contaminated due to strong bond-
ing between H and O atoms. In the H-rich and O-deficient ZnO, the
concentrations of HO

1 and H-DX2 states can be comparable due to
the above-discussed self-compensation. The PPC effect can be

explained by next process: (i) Since the H-DX structure is stable only
in the negative charge state, the H-DX2 can be transformed into the
HO structure, when an electron at H-DX state is excited by light
illumination, and (ii) next it becomes spontaneously transformed
into the HO

1
. The process is described as H-DX2) H-DX0 1 e R

HO
1 1 2e (‘)’ indicates photo-excitation). Overall the deep H-DX2

state can be transformed into the shallow donor-like HO
1 structure

under light. By these processes, the concentration of free electrons
can be increased, that describes the photo-induced conductivity. (iii)
A larger energy barrier between HO and H-DX should prevent the
structural recovery transformation from HO to H-DX at room-tem-
perature. Thus, the photo-excited HO

1 state is metastable but per-
sistent, even in the presence of the high concentration of electron
carriers at CBM. These results can give a good explanation to the
metastable and persistent formation of shallow donor HO

1 (PPC).
The metastable HO

1 state can be transformed into the stable H-DX2

state at a temperature high enough to overcome the energy barrier of
0.36 eV. It can describe the thermal recovery process of the photo-
excited HO

1 state. The estimated energy barrier for the transition
from HO to H-DX is in a good agreement with the experimental value
of 0.3 eV17 for the energy barrier for thermal recovery of PPC state.

Seghier and Gislason measured the photon energy spectrum for
PPC17. The calculated optical absorption spectrum for H-DX state is
found to be in a good agreement with the measured optical data17.
The peak in the calculated optical absorption spectrum of H-DX
around 2.3 eV agrees with measured peak in the photon excitation
spectrum for PPC effect at 2.15 eV. The minimum optical excitation
energy (Eopt) of H-DX2 at about 1.06 eV, which comes from the
electron excitation from a* level to CBM, also agrees with the mea-
surement indicating *v1:3 eV. Therefore, we suggest that the bist-
ability of HO should be an important source of persistent
photoconductivity in ZnO. These propose that in order to prevent
the light-induced instability of the ZnO-based devices, either hydro-
gen contamination or O-deficiency should be reduced. We would
note that the scenario of the PPC by metastable VO

20 suggested by
Lany and Zunger works in the VO coupled by an H atom, which is
HO.

In conclusion, we identify a bistability of shallow donor HO center
in ZnO. We find that when Fermi level is close to CBM, the HO can
undergo a large lattice relaxation and create a deep level, trapping
electrons. It gives an explanation to the low doping limit in H-rich n-
type ZnO. We find that H-DX2 is unstable against shallow-donor
state HO by light-induced electron ionization, and there is a large
energy barrier between HO

1 and H-DX2 states. Thus, we suggest that
the bistability of HO gives also a microscopic explanation for persist-
ent photo-conductivity in ZnO. The bistability of the H donor will

Figure 3 | Calculated formation enthalpies of HO
1 (blue lines) and H-

DX2 (red lines) in ZnO as a function of Fermi level, assuming H-rich and
O-poor condition. We also show those of the separated Hi

1 and VO defects

(HO
1 R Hi

11VO
0 and HO

1 R Hi
1 1 VO

0 1 2e by (gray)-dashed lines).

The vertical solid lines indicate the VBM and the CBM, and the vertical

(green) solid-line indicates the pinning position of Fermi-level (epin). The

calculational details are written in supplementary information.

Figure 4 | Total energy profiles of the structural transitions between HO

and H-DX configurations as a function of H displacement (Q) in the
(12), (0), and (11) charge states. The energy barrier (Eb) for the structural

transition from the HO
1 1 2e to the H-DX2 is indicated, and the optical

excitation energy (Eopt) for the transition from H-DX2 to H-DX0 is also

shown.
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provide a new way to consider the physics of hydrogen in oxide
materials.

Methods
We performed DFT calculations as implemented in the Vienna ab initio simulation
package (VASP) code26. The projector augmented wave (PAW) pseudopotentials27,28,
the plane wave basis set with a kinetic energy cutoff of 400 eV, and the hybrid
functional of Heyd-Scuseria-Ernzerhof (HSE)29 with a mixing parameter of 0.375 and
a screening parameter of 0.2 Å21 were used. The calculated lattice constants (a 5 3.24
Å and c 5 5.23 Å), the band gap (Eg 5 3.42 eV), and the heat of formation (DHf 5

23.13 eV) of ZnO were in good agreements with the other HSE calculations30,31 and
the experiments32. With a hexagonal 96-atom supercell, a 2 3 2 3 2 k-point mesh
including C was mainly used. All the atomic positions were fully optimized until the
Hellmann-Feynman forces were less than 0.01 eV/Å.
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