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Complex network approaches have recently been applied to continuous spatial dynamical systems, like
climate, successfully uncovering the system’s interaction structure. However the relationship between the
underlying atmospheric or oceanic flow’s dynamics and the estimated network measures have remained
largely unclear. We bridge this crucial gap in a bottom-up approach and define a continuous analytical
analogue of Pearson correlation networks for advection-diffusion dynamics on a background flow.
Analysing complex networks of prototypical flows and from time series data of the equatorial Pacific, we
find that our analytical model reproduces the most salient features of these networks and thus provides a
general foundation of climate networks. The relationships we obtain between velocity field and network
measures show that line-like structures of high betweenness mark transition zones in the flow rather than, as
previously thought, the propagation of dynamical information.

C
omplex networks allow to study underlying interaction structures of dynamical systems, where a detailed
description of structure and dynamics may be impossible due to chaotic or otherwise complex beha-
viour1–3. In recent years complex networks have also found fruitful application in climate science, where

the reduction of an inaccessibly complex continuous system to a discrete complex network helps to find large-
scale interaction structures, that can not be found with conventional methods. Climate networks have provided
important insights regarding various questions in climate sciences, ranging from the impact of the El Niño
Southern Oscillation on global climate4–6, to the dynamics of the Asian monsoons7,8, ocean9,10 and atmospheric
dynamics11,12. Usually, these spatially embedded climate networks are constructed from nodes corresponding to
(geographical) locations, and links corresponding to statistical interdependence between climate time series
observed at the locations of the node4,8,13–15. The strength of statistical dependence is often9,6,10,15 quantified using
Pearson correlation16. Such statistical interdependences between climatic variables can occur due to a common
driver (i.e. solar forcing) or be the result of a physical connection, which can be direct (i.e. ocean flows) or more
indirect (i.e. teleconnections17). In our model, we focus on direct local and causal connections, where statistical
interdependences imply the existence of dynamical exchanges of energy and matter mediated by the underlying
flow field. In the real-world application on the Pacific ocean we choose a region and time window, such that
common drivers and indirect connections are unlikely to play a dominant role.

While physical mechanisms were indicated in some studies11,7,9, the dynamical processes behind the obtained
networks, and the relationship between the underlying flow’s dynamics and the network measures, have
remained largely unclear. Donges et al.9 observed in the climate network of global surface air temperature a
striking resemblance between line-like structures of high betweenness and the locations of major ocean currents.
They hypothesized that this ‘‘backbone of the climate network’’ resulted from atmospheric-oceanic coupling and
the fact that ‘‘surface ocean currents play a major role in the energy and information transfer in the climate
system’’. In this letter, we propose a fundamental analytical model to study transport mechanisms in synoptic
currents with which we test this hypothesis and bridge the gap in reasoning between the system’s dynamics and
network results.

Instead of reconstructing the network from observations as in previous climate network studies, we compute
the network directly and analytically from the underlying flow field and thus connect flow dynamics to the
topology of networks. In spirit, this bottom-up approach from a model to the network, is similar to18,19, but applies
to very different systems. We provide a general framework that allows the inference of the topology of networks
based only on the velocity field in the fluid. This way, the network approach can be used to compare the network
imprint of the dynamics of the real-world climate system to that of a model system displaying an idealized flow
with controlled dynamics.
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In climate, advection and diffusion in atmospheric and oceanic
flows are amongst the most important mechanisms by which
dynamics are mediated. Temperature dispersion in such flows is
governed by the advection diffusion equation (ADE). As an abstrac-
tion of local random fluctuations in the temperature field on such a
flow, we compare the decay of temperature d-peaks over time
throughout the flow. We use them to define a cross-correlation ana-
logue (CCA), given in equation (3), as the continuous normed scalar
product between the temperature development of a tracer peak,
evaluated at locations x1 and x2. We apply this method to derive
networks i) analytically for a homogeneous and a circular flow, ii)
from two more complex paradigmatic flows (using an appropriate
approximation for the solution of the differential equation) and iii)
from observed surface temperature data from the equatorial Pacific
(using Pearson correlation) and investigate the relationships between
the properties of the velocity field of the underlying flow and the
observed network.

Results
Application to paradigmatic flows. We constructed flow networks
analytically for homogeneous and circular flows and found that the
links are longer in flow direction than perpendicular to it (in the
supplementary material (SM)). For more complex flows ~v ~xð Þ we
have to use an approximate solution to the ADE, as a direct
analytic derivation is not possible any more. We assume that these
stationary flows vary slowly over space, +~v ~xð Þj j=x (we have used
throughout this paper x 5 1), and all derivatives of the velocity field
are ignored in the following. This is necessary to ensure the
applicability of the approximation. In d dimensions this gives us
the approximated temperature field

Tappr ~x,t;~x0ð Þ~ e{
~x{~x0{~v ~xð Þtj j2

4xtffiffiffiffiffiffiffiffiffi
4pxt
p d , ð1Þ

where x is the diffusivity of the fluid. To evaluate the validity of this
assumption for a given velocity field~v ~xð Þ, we compute a diagnostic
residual R from:

R ~x,tð Þ~ LTappr

Lt
{xDTapprz+: ~v ~xð ÞTappr

� �
: ð2Þ

R ~x,tð Þ is zero for a perfect solution, which is the case if +~v ~xð Þj j~0. If
the maximum of this function is small compared to the other terms

in equation 2, R ~x,tð Þ= LTappr

Lt
, the approximation is considered to be

good. For the velocity functions used in this paper this is indeed the
case. The spatial integration for the norm is a simple Gaussian
integration (SM).

Then the correlation function takes the form (derivation in the
Methods section):

C ~x1,~x2ð Þ~

Ðt1

t0

ÐÐ
R2

1
4pxtð Þ2

1
t tztlð Þ e

{ B
4xtd~x0dt

1
8pxt log t1ð Þ{log t0ð Þð Þ , ð3Þ

where

B~~x1{~x0{~v ~x1ð Þtj j2z t
tztl

~x2{~x0{~v ~x2ð Þ tztlð Þj j2

and tl is defined in equation (9). We now compute the correlations in
a grid and connect any pair of sites with a correlation larger than a
with a ‘‘link’’. We determine the threshold a such that the link density

r is constant, r~
Lnet

Lfull
, where Lnet denotes the number of links in the

flow network and Lfull denotes the number of links in the fully con-
nected graph with the same nodes. We choose a value for r such that

the network has almost no isolated nodes and is sufficiently far from
being fully connected. We find this to be the case in a large range of
values for r and, out of those, we choose r 5 0.2. Our results are
robust for a large range of link densities (see section S3 in the SM).

We compute networks for the analytically homogeneous case
(SM) and, using numerical integration, for two basic, low-gradient
velocity fields given in Fig. 1, where i) one is composed of three
narrow parallel flows, with alternating directions, and ii) the other
flow is made up of two narrow flows intersecting in the middle. The
resulting networks and underlying flows are illustrated in Fig. 1.
Please note that the image resolution is equal to the grid resolution
in all network figures. In areas of the flow with a higher velocity, the
resulting networks show a higher density and length of links than in
slower regions. We analyze these networks using the network mea-
sures degree ki (equation (14)) and betweenness centrality bi (equa-
tion (15)), in order to find relationships between them and the
underlying velocity field. The network measures are given in
Figs. 2 and 3.

We mainly find that high absolute velocity coincides with high
node degree. For low velocities, degree and flow speed are approxi-
mately proportional, for higher speeds a saturation occurs due to the
finite size of the grid (see Fig. S.2 in SM). High values for shortest path
betweenness occur in the transition zones between in our case oppos-
ing flow directions (Fig. 2), or regions of distinctly different flow
velocities (Fig. 3). In both cases, the regions of highest betweenness
outline the underlying velocity field. The position of the high
betweenness zone depends on the value of the threshold (link den-
sity), a lower threshold increases the size of the well-connected region
and pushes the transition zone further out.

Other network measures such as local clustering coefficient or
local assortativity3 yield structures similar to that of the node degree
(results not shown).

Application to ocean data. In the next step, we compute correlation
networks from sea surface temperatures (SST) in the tropical Pacific
and compare them with measured ocean currents velocity field (see
data description in Methods). Flow velocity, gradient, and the
obtained network measures are given in Fig. 4. To suppress
turbulent effects, we use only the longitudinal component of the
gradient. As for the paradigmatic flows we investigated earlier, also
here we find a reasonable agreement between the absolute values of
the velocity field and the degree in the correlation network (Fig. 4 (a)
and (b), also Fig. S.3 in SM). Again, the degree is maximal where the
current’s velocity is, and the betweenness shows large values in
regions with large values of the longitudinal velocity field’s
absolute gradient (Fig. 4 (c) and (d)), hereby confirming the results
obtained for the paradigmatic flows.

Figure 1 | The correlation network (black) computed from the given
velocity field (red arrows) for two flow fields for: (a) Counter-currents, (b)
Crossing currents, for better visibility, a low link density of 2 percent was
chosen. The networks display longer links in flow direction and a higher

link density in regions with higher velocity.
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Discussion
In this paper we have established a connection between data net-
works and the underlying physical system. The approach can
easily be generalized beyond 2D static flows and to flow systems
outside of climate science, as temperature can be replaced by any
quantity described by the heat equation such as density or chem-
ical concentrations. In multivariate settings, reaction, advection
and diffusion processes could be studied simultaneously. Given
sufficient computing resources, non-stationary flows ~v ~x,tð Þ could
be treated similarly, using a time offset for integration range and
peak appearance, as the ADE can still be solved analytically for
time dependent velocity fields. This could give new insights in the
dynamics of evolving flows, highly valuable not only in the ana-
lysis of changing climates.

The line-like structures in the betweenness fields of global climate
networks9 were previously attributed to ‘‘information flow’’ in
underlying ocean currents. We found that regions of high between-
ness outline the flow rather than tracing it. Our results therefore
suggest some corrections concerning the former interpretation and
suggest that a high betweenness occurs in transition zones between
regions of different magnitude or direction of the underlying velo-
city. This qualitative observation can be seen when comparing the
betweennes with the absolute gradient. Physically, this could be due
to the fact that advection dominates in fast flowing regions, which
results in a higher parallel but lower perpendicular link density com-
pared to the stagnant case. At the same time, we observe a correlation
between regions with a high node degree and high average current
velocity. Considering the advective-diffusive nature of these surface
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Figure 2 | Flow field and network measures for the counter-currents in Fig. (1a). (a) The normed degree, relates to (b) the absolute value of the

flow’s local velocity; (c) The maxima of the normed betweenness are co-located with (d) the maxima of the absolute value of the gradient gradient of the

absolute current velocity. See equations (14) and (15) for definitions of the network measures.
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Figure 3 | Flows and network measures for the crossing currents, see captio of Fig. 2.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4119 | DOI: 10.1038/srep04119 3



currents, a physical explanation could be that a fast flow transports
the signal farther.

We find that both, the degree and the betweenness increase mar-
ginally along the flow direction. This can be understood as the signals
from the slow flowing region first travel through diffusion, once they
hit the fast region their main peak will travel downstream (the tra-
jectory approximately follows the red arrow in Fig. 5). This leads to
points downstream in the fast flowing area to have connections even
to points in the slow region upstream from them, leading to increased
degree and betweenness there.

In future research, such idealized case studies may be highly useful
to study the influence of spatial embedding, and to test hypotheses

concerning the dynamics of observed correlation networks. Given
sufficiently low-gradient flow data, this method can be used to con-
struct correlation networks from observed oceanic or atmospheric
flows.

We have shown how correlation networks can be constructed
directly from flow fields and given an example of how to use these
networks to interpret network measures. We thereby provide a
foundation for climate network analysis and bridge the gap between
the dynamics of underlying flows and climate network interpretation.

Methods
Definition of continuous cross-correlation analogue. For the model system we
assume stationary two-dimensional flows in a square area in a two-dimensional
boundaryless fluid of constant diffusivity x described by the velocity field~v ~xð Þ. The
ADE states how the change of temperature over time is governed by the spatial
temperature change and the velocity:

LT
Lt

~xDT{+: ~v ~xð ÞTð Þ, ð4Þ

and is obtained by inserting the advective and diffusive flux

~j~~jdiff z~jadv~{x+Tz~vT ð5Þ

into the sourceless continuity equation for temperature

LT
Lt

~{+:~j: ð6Þ

Here, T ~x,tð Þ is the value of the temperature in position~x at time t. We use a d-peak as
a tracer of the flow, analogous to local temperature fluctuations. It is inserted at an
arbitrary point~x0 in the fluid as the initial condition, so, in other words, we solve the
Cauchy problem of equation (4) with the initial condition

T ~x,0;~x0ð Þ~d ~x{~x0ð Þ: ð7Þ

Analogous to the commonly used Pearson correlation16, we define the continuous
cross-correlation analogue (CCA) as the normed scalar product of solutions of the
Cauchy problem of the ADE at two points~x1 and~x2

C ~x1,~x2ð Þ~ T ~x1,t;~x0ð Þ
T ~x1,t;~x0ð Þk k ,

T ~x2,tztl ;~x0ð Þ
T ~x2,tztl ;~x0ð Þk k

� �
: ð8Þ

The time lag tl is the difference in travel time of the peak from~x0 to~x1 and~x2, the norm
is defined in the SM in equation (S.1)

tl~tmax ~x1,~x0ð Þ{tmax ~x2,~x0ð Þ, ð9Þ

where tmax ~x,~x0ð Þ is the time when the temperature at~x reaches its maximum, with the
initial peak starting at~x0. The scalar product is then defined as the integral over time
and peak position~x0. The time integration is analogous to the sum over time steps, the

Figure 4 | Network measures of the correlation network of the equatorial counter-currents from 1997 daily anomaly SST data in comparison
with flow velocity and gradient. The region of highest degrees coincides with the region of highest flow velocity, while the regions of highest betweenness

coincide with the highest velocity gradient.

Figure 5 | Schematic illustration of flow properties, that result in
distinctive network properties: While advection dominates the transport
of temperatire fluctuations in regions of fast propagation, localized
diffusion dominates in stagnant regions. Signals that leave the stagnant

area by diffusion through the mixed region are subsequently transmitted

along the flow. This leads to the asymmetry seen in the betweenness, where

the betweenness values rise in flow direction.

www.nature.com/scientificreports
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integration over the peak position is an integral over realizations of the peak,
corresponding to stochastics in the time series, where peaks appear at random in
arbitrary places. So we define the CCA in this context as:

C ~x1,~x2ð Þ~
Ð t1

t0

Ð
R2 T ~x1,t;~x0ð ÞT ~x2,tztl ;~x0ð Þd~x0dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T x1,t;~x0ð Þk k

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T x2,tztl ;~x0ð Þk k

p , ð10Þ

where~x0 is the position of the peak. The lower limit of the integration, t0 is chosen
small but non-zero (here t0 , 1022) as the correlation function is not defined for t 5 0.
The upper limit is chosen such that all temperature profiles have decayed to a value
very close to zero (here: t1 5 5000).

Network construction. We evaluate the CCA on a regular grid between all pairs of
grid-points. This provides the correlation matrix Cij from which the adjacency matrix
A is constructed by choosing a fixed significance threshold a (see ‘‘results’’ section on
page three). This can be expressed with the Heaviside h function and Kronecker d as

Aij~H Cij{a
� �

{dij: ð11Þ

For any given flow field, we first have to solve the ADE (equation (4)) and use the
result to compute the correlation matrix using equation (10). The Cauchy problem of
the ADE in d dimensions can be solved as

T ~x,t;~x0ð Þ~ e{
~x{~x0{~vtj j2

4xtffiffiffiffiffiffiffiffiffi
4pxt
p d

zT0 ð12Þ

in the homogeneous case with the velocity field~v ~xð Þ~~v20. This solution takes its
maximum value at

tmax ~x,~x0ð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2z~vj j2 ~x{~x0j j2

q
~vj j2

: ð13Þ

Network measures. To analyze the networks, we used the basic network measures
degree and betweenness2, as normalized measures to account for grid size effects:

The degree ki of node i of a network with N nodes is given by the number of links
attached to it,

ki~

PN
j~1 Aij

N{1
, ð14Þ

and the shortest path betweenness bi of a node i is defined as the number of all
shortest paths that go through it,

bi~

P
j,k[1,...,N,j=k

njk ið Þ
njk

N{1ð Þ N{2ð Þ : ð15Þ

Where njk is the number of shortest paths connecting k and j and njk(i) is the number
of those paths, that go through i.

Data. The daily anomaly SST data is based on the optimum interpolation data (OI.v2)
as provided by NOAA/NCDC21,22 and the averaged monthly current’s velocity data
was provided by the OSCAR Project Office (Earth and Space Research, Seattle). We
used data from the region 120u–160uW, 15uS–15uN and for the time period August
1996 to August 1997. The chosen year is neither an El Niño nor a La Niña-year, and
the results we present in the following are largely robust against the choice of the
particular year. The network is calculated by standard cross-correlation and allowing
for a lag of up to one day.
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