
Assessing reliability of regional climate
projections: the case of Indian monsoon
K. V. Ramesh & Prashant Goswami

CSIR Centre for Mathematical Modelling and Computer Simulation, Wind Tunnel Road, Bangalore-560037, Karnataka, India.

Projections of climate change are emerging to play major roles in many applications. However, assessing
reliability of climate change projections, especially at regional scales, remains a major challenge. An
important question is the degree of progress made since the earlier IPCC simulations (CMIP3) to the latest,
recently completed CMIP5. We consider the continental Indian monsoon as an example and apply a
hierarchical approach for assessing reliability, using the accuracy in simulating the historical trend as the
primary criterion. While the scope has increased in CMIP5, there is essentially no improvement in skill in
projections since CMIP3 in terms of reliability (confidence). Thus, it may be necessary to consider
acceptable models for specific assessment rather than simple ensemble. Analysis of climate indices shows
that in both CMIP5 and CMIP3 certain common processes at large and regional scales as well as slow
timescales are associated with successful simulation of trend and mean.

C
limate projections are emerging as critical inputs for many applications and decision support. However,
assessment of reliability of climate projections remains a major challenge; the challenge is greater at
regional scales. At the same time, accurate projections of regional climate systems, like the Continental

Indian Monsoon (CIM), are critical for assessing the sustainability of a large section of the world’s population and
to determine the future of the global climate system. However, significant uncertainties still exist regarding the
reliability of the projections from the dynamical climate models, especially for regional systems like the south
Asian summer monson1–3. Conceptually, any assessment of reliability of projections has to be based on their
present-day (current-era) performance. The climate models today generally possess superior skill in seasonal
forecasting4 than statistical models, and can be evaluated in hindcast mode; however, evaluation of reliability of
climate projection will remain a challenge, especially over areas with contribution from natural climate variabil-
ity5, such as the Indian monsoon6. In spite of their common basic mechanism, monsoons over different regions
are subject to diverse forcings7; thus the responses of the various regional monsoons to a changing climate are
expected to vary2,3. Estimates of impacts from anthropogenic climate change rely on projections from climate
models. Uncertainties in the climate projections are a strong limiting factor in estimation of impacts and hence
policy design, especially at regional scales.

An important issue in our approach is to assess climate projections based on the accuracy of trends for the
current climate. Many climate-modelling groups around the world have participated in the Coupled Model Inter-
comparison Project phase 5 (CMIP5). Under CMIP5, a series of simulations including the twentieth century
historical simulation and the twenty-first century climate projections with four different representative concen-
tration pathway (RCP) scenarios were performed8; most CMIP5 models include both direct and indirect effects of
aerosols. In the earlier phase (CMIP3) also twentieth century simulations and twenty-first century climate
projections were carried out with three different climate scenarios9. Several works report that the CMIP5
multi-model mean is more skillful than that from the CMIP3 models10. The CMIP5 models simulated mean
precipitation varies from 500 mm to 900 mm and coefficient of variation from 3 to 13%11. Studies have reported
an increase of global monsoon area and precipitation intensity under the RCP4.5 scenario of CMIP512,13.

An evaluation of the Indian summer monsoon rainfall for the period 1850 to 2100 in 20 CMIP5 models
showed14 a consistent increase in summer monsoon mean rainfall; essentially all models were reported to simulate
stronger seasonal mean rainfall in the future compared to the historic period under different RCP scenarios, with
the highest increase under strongest warming scenario RCP8.5. However, a consensus among models does not
necessarily imply reliability of the projections. Similarly, analysis of regional monsoonal rainfall and their changes
in the 21st century under RCP4.5 and RCP8.5 scenarios from 29 CMIP5 climate models showed7 that the global
monsoon precipitation intensity and the global monsoon total precipitation are also projected to increase.
However, as noted7, the limited ability of the models to reproduce the current monsoon climate, along with
the large scatter among the simulations, imply only low confidence in the projections.
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An evaluation of simulations of Asian summer monsoon from 25
CMIP5 and 22 CMIP3 simulations of the late twentieth Century was
reported in terms of time-mean, climatological annual cycle, inter-
annual variability, and intraseasonal variability10. However, no com-
parative evaluation in terms of trends was reported. Besides, as noted
earlier, the characteristics for CIM can be very different from those
for a larger system like the Asian monsoon. Certain improvements,
such as in simulation of seasonality, have been reported in CMIP5
over CMIP315, with most CMIP5 models correctly simulating very
low rainfall rates outside of the monsoon season.

An analysis of expected future pulse of the Indian monsoon cli-
mate based on observational and CMIP3 projections was used to
claim16 that the Indian monsoon rainfall in the latter half of the
21th century may be very similar to the current monsoon in terms
of amount. However, the analysis was based on only CMIP3 simula-
tions; nor were trends, nor any other measure, considered to ascer-
tain reliability (or confidence). It has been already noted that
projected global temperature change in CMIP5 is remarkably similar
to that from those from CMIP317; in spite of substantial effort in
model development and improved computational capacity, there
has been no significant change in the local model spread.

It is known that the trends in rainfall over the continental India are
quite different (often opposite) to those over the neighboring
oceans18,19; thus, only consideration of the continental rainfall can
provide meaningful inputs to assessment and planning of sustain-
ability20. Most of the models now simulate the annual cycle of rainfall
over India fairly accurately; the spread in the simulations20–26 is not
unacceptably high. However, these results do not necessarily guar-
antee accurate simulation of the trends for the recent past, and hence
do not imply reliability of the projections.

As noted earlier, quantification and assessment of reliability of any
projection is a challenge as the projection cannot be immediately
verified like a short-term forecast. This challenge is particularly
greater for climate projections due to the presence of (non-linear)
trends. In particular, variation of trends in different epochs due to
low-frequency variability introduces additional uncertainties.
However, it is reasonable and logical to expect that the model simu-
lations reproduce current trends with sufficient accuracy; this argu-
ment can be further strengthened through examination of
consistency between cross-epochal trends. For a quantitative mea-
sure of reliability of projection, we adopt accuracy in the simulation
of the historical trends. We have adopted a hierarchical approach to
identify reliability of trends, based on increasingly demanding met-
rics, than on a single parameter like absolute error. An objective here
is to assess the reliability of the projections at regional scale relevant
for application, specifically to CIM. To avoid any ambiguity due to
the selection of geographical coverage as well as to ensure relevance
of the results for application, we consider only continental Indian
monsoon (CIM) rainfall (June-September); this also allows a robust
analysis with multiple sets of observation (Table 1). Indian Institute

of tropical Meteorology20 (IITM) and Indian Meteorological
Department21 (IMD) provide the all India summer monsoon rainfall
index. The gridded data averaged over continental India for rainfall
from different source like Indian Meteorological Department22

(IMDG), Climate Research Unit23 (CRU), Global Precipitation
Climatology Project24 (GPCP), Asian Precipitation - Highly-
Resolved Observational Data25 (APHRO) and National Centers for
Environmental Prediction26 (NCEP) are used to analyze differences
between observations.

Historical precipitation records over the monsoon regions around
the globe reveal a decreasing trend in the global land monsoon pre-
cipitation27,28 over the last half of the century (1948–2003), with
primary contributions from a weakening of the summer monsoon
systems in the Northern Hemisphere (NH). When the oceanic mon-
soon rainfall is combined with the land monsoon, the global mon-
soon precipitation is found to have increased for the 1979–2008
epoch, mainly due to an increase in the NH summer monsoon pre-
cipitation13,28. Thus the future trajectory for a given monsoon cannot
be in general inferred from the studies of the other monsoon systems.

One of the possible sources of error (difference) in simulations is
the model’s ability to simulate various regional and large-scale cli-
mate processes. Both CMIP3 and CMIP5 simulations exhibit large
spreads in simulations of average monsoon rainfall and their inter-
annual variability29, although the multi model ensemble mean mon-
soon rainfall is found within the observational uncertainty. In terms
of the seasonal cycle of rainfall, the CMIP5 models were reported29 to
generate relatively more realistic features than CMIP3. However,
these analyses did not involve analysis of trends, and thus cannot
be used to assess reliability of projections in our framework.

An analysis of the Indian summer monsoon-ENSO relationship
showed over persistence of ENSO events in many CMIP models,
while the relation between Indian Ocean Dipole (IOD) and the
Indian monsoon-IOD was not found to be significant in the simula-
tions29. These analyses were used as a basis for a methodology for
selecting (12) ‘‘best’’ models to analyze projections in the RCP8.5
scenario29. However, the objective criteria did not include the quality
of the simulation of the trends.

There have been several works on evaluation of CMIP3 projec-
tions in different contexts30, and sometimes with limited number of
models31. It is generally noted that the confidence in the projections
of rainfall is lower than that in temperature30,31. The similarity in the
projections of global temperature changes from CMIP3 and CMIP5
models was also noted16. However, rarely the question of reliability of
the projections (in terms of accuracy in simulating current trends)
has been addressed; at the same time, as noted earlier quality of
simulation of mean and variability does not imply accurate simu-
lation of trends. We address this issue with a hierarchical evaluation.
An equally important question addressed here is whether, and how
much, progress has been achieved in CMIP5 in projecting regional
systems like CIM; this question has not been unambiguously

Table 1 | List of observed datasets with symbols used, along with the climatological (1951–2005) mean, standard deviation, linear trends
and their significance levels for seasonal (June-September) rainfall over continental India (land only: 70-85E, 5-30N). Cases with insig-
nificance trends (,90%) are highlighted

Symbol Source/Name

Mean (mm) Standard deviation (% of mean) Trend (mm/year)

1951–2005 1951–1975 1975–2005 1951–2005 1951–1975 1975–2005 1951–2005 1951–1975 1975–2005

O1 IITM 892 906 884 10.6 11.4 9.9 21.1 20.9 21.9
O2 CRU 773 797 797 12.7 13.3 11.8 21.8 22.3 23.7
O3 GPCP 839 846 846 12.0 13.1 11.3 20.8 22.0 23.2
O4 IMD 892 906 884 10.6 11.4 9.9 21.1 20.9 21.9
O5 IMDG 851 867 867 12.8 13.6 12.1 21.3 22.6 23.8
O6 APHRO 726 736 736 12.9 14.0 12.1 21.2 22.5 23.8
O7 NCEP 772 795 757 12.5 13.4 11.3 22.3 24.5 25.6
Composite (all) 821 836 824 12.0 12.9 11.2 21.4 22.2 23.4
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addressed due to arbitrary choice of monsoon domains in many
studies. The results are expected to identify methodology and direc-
tions for more reliable, and applicable5 climate projections.

Results
The assessment of the simulated trends is made further complex by
the fact that the observed trend itself has a degree of uncertainty;
different observed data sets show appreciable differences among
them (Table 1). The differences in the basic statistical quantities like
the mean and the standard deviation in different observations are
quite high (Table 1). To avoid any bias in the evaluation, we have
considered six data sets from different sources (Table 1). Further, a
multi-epochal analysis (Table 1) was carried out to examine variation
in trends due to low-frequency variability for three separate epochs:
1951–2005, 1951–1975 and 1976–2005. We have also considered an
ensemble formed through an equal-weight averaging for both obser-
vations and simulations. The epochal trends for 1951–2005 and
1976–2005 as % of standard deviation of the respective period are
of the same signs (Table 1); this suggests that success in simulation of
trend in an earlier epoch is indicative of skill for future projection. It
is worth noting that all the seven observations show similar (nega-
tive) trends (Table 1). Although the trend for 1951–2005 in GPCP is
negative but significant only at 86% level; all other trends are negative
and significant at more than 90%. In what follows, unless otherwise
mentioned, we shall consider the composite observation for evalu-
ation of the simulations. For gaining insight, we consider three
(equal-weight average) ensembles based on the levels of the statistical
significance of the trends: High significance (Probability, P , 0.01),
Low significance (P , 0.05) and all-average observations. For model
simulations, such as trends and correlation coefficients, we shall
adopt a value P , 0.2 as the acceptable level of significance in view
of inherent uncertainties in simulations. The trends for three epochs
had been used to examine and establish the consistency of the ana-
lysis; however, only long-term (1951–2005) trends are used to evalu-
ate the CIM simulations.

The results and the conclusions regarding monsoon can also
change depending on the selection of the domain14,15. To ensure
robustness of our results, we have considered five domains that
encompass relatively small case of CIM as well as larger domain that

also includes parts of Indian Ocean (Fig. 1). As expected, there are
small differences among the seasonal mean rainfall and the trends for
different domains even in observations (Fig. 1); however, the values
are generally consistent. We note that for D5 (continental India plus
ocean) the trends are opposite for 1951–2005 and 1951–1975; how-
ever, this could be a manifestation of low-frequency variability. For
our discussion, it is important to note that both CMIP3 and CMIP5
(all) ensemble reproduce the current (1976–2005) trends within the
margin of acceptability (Fig. 1).

It has been argued that an ensemble of all simulations may be the
best option as performance varies with metric30. In contrast, we look
for the best model(s) for a given metric (application). A highlight of
our methodology is a hierarchical evaluation in which certain criteria
(metrics) are considered more important than the others in evalu-
ating model performances. We organize our hierarchy of criteria (in
terms of increasing constraint) as follow:

(a) Higher/lower (more/less than 2s) mean & negative trend (not
necessarily significant)

(b) Comparable (in between 6 2s) mean & negative trend (not
necessarily significant)

(c) Higher/lower (more/less than 2s) mean & acceptable (signifi-
cant within 6 10% observed) trend

(d) Comparable (in between 6 2s) mean & acceptable (significant
within 6 10% observed) trend

Where s is defined as the dispersion in observation is defined as
the difference between maximum and minimum value divided by 2.
A comparison of the trends of the continental India (CIM: D3, 70-
85E, 5-30N, Fig. 2a) and CIM plus ocean (D5:60-94E, 10S-30N,
Fig. 2b) for the period 1951–2005 shows that all the seven observa-
tions show significant negative trends for CIM seasonal rainfall
(Fig. 2a, middle panels) but positive trends for the larger domains
(Fig. 2b, middle panels). Thus the decreasing trend in the seasonal
rainfall is highly regional effect, as also earlier noted15. These negative
trends are well captured by some of the simulations in both the
CMIP5 (Fig. 2a, left panel) and CMIP3 (Fig. 2a, right panels). The
symbols A-U/a-x used to represent the individual CMIP3/CMIP5
climate model simulations as described in Table S1. However, while
all-member ensemble shows show insignificant negative trends as

700

750

800

850

900

950

600

800

1000

1200

1400

1600

−4

−2

0

2

4

−4

−2

0

2

4

6

Li
n

e
a

r 
tr

e
n

d
s 

 (
%

 o
f 

S
D

)

Annual 

June-september 

M
e

a
n

 r
a

in
fa

ll 
(m

m
)

IITM  IMD  D1   D2   D3    D4    D5 IITM  IMD  D1   D2   D3    D4    D5

1951-2005                

1951-1975        

1976-2005

D1 -  [70:85E, 10:35N]

D2 -  [70:85E, 10:32N]

D3 -  [70:85E, 10:30N]

D4 -  [70:85E, 15:35N]

D5 -  [60:95E, 10S:30N]

(a)

(b)

(c)

(d)

M
e

a
n

 r
a

in
fa

ll 
(m

m
)

Li
n

e
a

r 
tr

e
n

d
s 

 (
%

 o
f 

S
D

)

June-september 

Figure 1 | Seasonal (June-September) observed (composite of multiple observations) mean rainfall and the trends over different regions in the
summer monsoon region are compared with the simulated mean and trends from CMIP3 and CMIP5 models. D1–D4 is the rainfall average over

continental India and D5 shows the rainfall over the continental India plus ocean. The region D2–D4 clearly shows the observed mean rainfall and the

trends over continental India don’t show much variation, as they indicate the core monsoon region.
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observed, the CMIP3 ensembles show opposite trends (Fig. 2a right
panels), essentially due to a few simulations with large positive
trends. In terms of the larger domain, both CMIP5 and CMIP3
ensembles show positive trends as observed, but not significant as
the observed trends. For the CMIP5 models, however, Fig. 2a (top
left) shows that, out of the 21 models considered, only nine reproduce
the negative trend as observed; only five of these trends (Fig. 2a, top
left panel) are of statistical significance (P , 0.2) and comparable to
the observed trend (Fig. 2a, top middle, P , 0.05). In particular, none
of the CMIP5 ensembles (thick arrows, Fig. 2a) satisfies the criterion
of even negative trend. The result is no different for the annual

rainfall; thus, the lack of skill for CIM rainfall cannot be attributed
to shifts in the seasonal rainfall in the simulations (Fig. 2a, bottom
left).

In the next step of hierarchical assessment, we have considered the
simulations with significant (P , 0.2) negative trends in CIM rainfall
(Fig. 3a) that fall in an acceptable error band in the seasonal and
annual rainfall (within the dispersion in the observations). While all
the ensembles are within or near the box of acceptability (with the
observed ensemble at the center by definition), only a few simula-
tions from either CMIP3 or CMIP5 are within the box; many simu-
lations show as much as 60% difference with the observed values
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(Fig. 3a), although, the ensemble average of CMIP5 is closer to the
observed composite than the CMIP3 composite (Fig. 3a). In terms of
the spread around the observed values, the CMIP5 models show
wider spread than the CMIP3 simulations. As per our hierarchical
evaluation, nine (E,F,H,J,K,L,P,R,U) CMIP5 simulations and eight
(h,i,j,k,l,o,s,u) CMIP3 simulations satisfy weaker twin criteria (a) and
(b) however, there are only two CMIP5 simulation (L, U) that satisfy
the twin criteria of simulating the acceptable range of observed trend
and the seasonal/annual rainfall over the period 1951–2005; there are
two CMIP3 simulations (h, s) that satisfy these criteria. In what
follows, we shall focus on seasonal (CIM) rainfall. The area-averaged
seasonal rainfall from the selected CMIP5 and CMIP3 ensembles
shows decreasing trend as observed (Fig. 3b); however, CMIP5 indi-
cates a weaker trend while CMIP3 produces a stronger trend. It is
interesting to note that in terms of absolute error in trends, CMIP5
and CMIP3 are comparable.

To further examine the robustness and the consistency of the
results, we have analyzed trends in different epochs. Multi-epochal
analysis of trends for CMIP ensembles as well as the selected models
shows (Table 2) that both CMIP composites and the selected models
provide epochal trends consistent with the observed trends. Both
CMIP ensembles (except for CMIP5 ensemble for 1951–1975) show
only weak and often positive trends for all the three epochs against
significant observed negative trends (Table 2). In contrast, the
ensembles of selected models show significant negative trends for
each epoch (Table 2). Similarly, four selected models show generally
significant negative trends for each epoch consistent with the cor-
responding observed trends. In particular, epoch-wise trends are
consistent with the long-period (1951–2005) trends (Table 2). This
strengthens our argument that epochal trends provide a measure of
reliability of simulation of future trends; however, epochal trends
cannot be used readily as evaluation criteria due to various
uncertainties.

However, a large number of physical processes, both regional and
larger scales, are known to play important role in the dynamics of
CIM1,32–34; it is thus a difficult task to assign exact reasons for the
failure in simulating satisfying the twin criteria. While aerosol and
other anthropogenic forcings35 may be major drivers of the trends,
the roles of the dynamical processes need to be investigated first. We
have next considered the following indices (Fig. S1, Table 3) in terms
of correlation coefficients (CC) between CIM rainfall and (a) sea
surface temperature (SST) anomalies over NINO3.4 region
(ENSO-CIM index), (b) Land equator thermal gradient over South
Asia (LETG-SA index), (c) deep tropospheric thermal difference
(DTTD index), (d) Land equator thermal gradient over India
(LETG-IND index) and (e) difference in east-west SST difference
(IOD index). The 1ve/2ve index means the relationship between
interannual variability of CIM rainfall and regional/large-scale cli-
mate indicators.

Comparison of the large-scale indices (ENSO index and the
LETG-SA) from the simulations (Fig. 4a, brown and green bars,
respectively) with the corresponding observed values (Fig. 4a, middle
panel) shows that while many (16) of the CMIP3 simulations repro-
duce observed negative CC (Fig. 3a, top panel) at 99% significant
level, only a few (10) CMIP5 simulations show this observed char-
acteristic (Fig. 4a, bottom panel). In particular, the CMIP3 ensemble
shows a negative ENSO-CIM index at more than 99% significance
level; for the CMIP5 ensemble this significance is ,95% (Fig. 4a,
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Figure 3 | (a) Distribution of historical (1951–2005) simulations in
seasonal and annual rainfall over continental India (D2) for CMIP5 (red,
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observed composite. The dispersion in the observations (green) is shown in
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observed values, centered at the observed composite; the inner shaded box
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(b) Inter-annual variability in Continental Indian Monsoon (CIM) rainfall
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Table 2 | Epochal trends in observation are compared with climate
simulation composite in both CMIP3 and CMIP5; the significant
negative trends are in bold. The ‘‘ALL’’ represent all models com-
posite and ‘‘SEL’’ refers to the composite based on the selected
CMIP3/CMIP5 climate model simulations. The selection criteria
are based on the simulation of annual and seasonal mean within
12 2 observed standard deviation along with the simulation of
significant negative trend in seasonal rainfall for the period 1951–
2005

Data composite

Epochal trends in CIM rainfall (mm/year)

1951–2005 1951–1975 1976–2005

OBS 21.4 22.2 23.4
CMIP5 ALL 20.07 21.52 20.07
CMIP3 ALL 10.27 20.01 10.43
CMIP5 SEL 20.82 20.66 21.81
CMIP3 SEL 21.80 24.00 22.59
INMCM4 (L) 20.74 22.23 21.10
NORESM1-M (U) 20.90 10.91 22.51
GFDL_CM2_1 (h) 22.35 25.36 21.41
MPI_ECHAM5 (s) 21.26 22.64 23.76
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thick brown bars). With respect to LETG-SA, the CMIP3 ensemble
produces a positive CC as observed, but with low significance; for
CMIP5 ensemble, this CC is zero (Fig. 4a, thick green bars). Further,
only CMIP3 ensemble shows LETG-SA index of the same sign and
significance as that of the observed (Fig. 4a). Thus the CMIP5 simu-
lations have in general poorer quality than the CMIP3 simulations in
reproducing the observed association between large-scale processes
and CIM. Similar conclusions also hold for distribution of simula-
tions for the regional process (Fig. 4b). In terms of the IOD index,
eight of the CMIP3 models simulate values similar to the observed

and the negative trend in the seasonal rainfall; five CMIP5 simula-
tions satisfy these twin criteria (Table S2 and S3).

As noted earlier, the acceptability of the simulation in terms of
mean or variability and that with respect to trend needs to be con-
sidered separately. We next consider the difference between the
observed and the simulated seasonal rainfall and difference between
observed and simulated correlation coefficients (Fig. 5). Distribution
of the simulations in this plane shows most of the CMIP5 simulations
to have either positive or negative bias; however, the average bias is
quite small (10% of the observed composite). In contrast, CMIP3

Table 3 | Models from CMIP3 and CMIP5 that satisfy the condition of significant negative trend in CIM seasonal rainfall and seasonal (CIM)
and annual rainfall within the acceptability band, are shown along with correlation coefficients between CIM rainfall and large-scale and
regional scale climate indices. The models that agree with the observed correlations (same sign and significant) are highlighted; the observed
values of the CC are given in the parenthesis. The acceptable ranges (620% of the observed composite; i.e., the observed dispersion) in the
ratio of seasonal and annual rainfall to the observed are highlighted. CIM rainfall projection for next 25 years (2006–2030): Linear trend (%
of SD/yr) in CIM seasonal rainfall. The numbers highlighted represent significant (P , 0.1). The climate models simulations within
acceptable limits are highlighted

Model Name (symbol)

(Simulated/
observed) seasonal

rainfall (%)

Correlation Coefficients (CC) between CIM rainfall and
CIM rainfall projection for 2006–2030

ENSO

P , 0.05

(20.54)

LETG-SA

P , 0.05

(0.27)

DTTD

P , 0.05

(20.33)

LETG-IND

P , 0.05

(20.23) RCP2.6/A1B RCP4.5/B1 RCP6.0/A2

INMCM4 (L) 86 20.30 10.17 20.39 20.71 - 23.4 23.2
NORESM1-M (U) 108 20.67 20.28 20.56 20.61 0.0 1.35 21.4
GFDL_CM2_1 (h) 100 20.64 20.49 20.72 20.69 21.02 20.73 21.82
MPI_ECHAM5 (s) 91 20.61 20.32 20.53 20.74 1.0 3.37 3.56
Ensemble: CMIP3 75 20.44 20.05 20.56 20.69 10.94 10.28 11.03
Ensemble: CMIP5 85 20.25 20.11 20.42 20.45 10.04 10.52 10.59
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simulations show distinct negative bias (underestimation) in sea-
sonal mean rainfall (Fig. 5, left panels); while this may be related to
the basic design (forcings) of CMIP3 and CMIP5, a clear interpreta-
tion is not available. With respect to the linear trend in the observed
CIM (Fig. 5, right panels) CMIP3 simulations (blue) are nearly
equally distributed about the zero line, while the CMIP5 simulations
show clear positive bias. In general, more CMIP3 simulations are
found within the acceptability bands, with the CMIP3 ensemble
closer to the observed ensemble than the CMIP5 ensemble (Fig. 5).
One of the possible sources of error (difference) in simulations is the
model’s ability to simulate various regional and large-scale climate
processes. A large spread exists in both Indian and Australian aver-
age monsoon rainfall and their interannual variability in CMIP3 and
CMIP529. Most CMIP5 simulations generally produce weaker than
observed ENSO-CIM index, and stronger than observed LETG-SA
index (Fig. 5). With respect to regional processes, both CMIP5 and
CMIP3 simulations show stronger than observed LETG-IND index
with comparable IOD index (Fig. S2).

It is important to note that all the simulations that satisfy the
condition of significant negative trend in the historical simulation
of CIM rainfall also possess LETG-IND index similar to that in the
observation (Table 3); no such consistent signal is seen for the other
two regional indices DTTD (Table 3) and IOD (Fig. 4b). Indeed all
the simulations that satisfy some acceptability criteria also show
LETG-IND index close to observation (Table S2), although some
models are found with weaker acceptability criteria (2D) in terms
of annual and seasonal mean rainfall. In terms of large-scale indices,
all the seven simulations that satisfy the criteria in terms of seasonal
and annual mean as well as significant negative trend in the historical
simulation of CIM rainfall show significant (99% in five cases, 95% in
two cases) ENSO index as observed, while no consistent signal
emerges for the LETG-SA index (Table 3). It appears that successful
simultaneous simulation of some indices is necessary for repro-
ducing accurate trend in the historical data and acceptable
annual and seasonal mean; overall, the importance of the land-ocean

contrast is consistent with earlier results36. However, while these may
provide necessary conditions, they are clearly not sufficient. An
important feature is that there is no simulation that shows significant
negative trend in seasonal rainfall without simulating the LETG-IND
index and ENSO index similar to the observed values (Table 3).

It is interesting to note that the models L, U and h that satisfy the
criteria in terms of seasonal and annual mean as well as significant
negative trend in the historical simulation of CIM rainfall project
weak or significant negative trend for the period 2006–2030
(Table 2). In contrast, the three simulations (s) with low annual
and seasonal mean (but with significant negative trend in the histor-
ical simulation of CIM rainfall) project high and positive trend for
2006–2030 for most scenarios (Table 2).

The monsoon rainfall also exhibits prominent multi-decadal vari-
ability37; thus epochal trends are modulated by the phase of the
multi-decadal variability. The quality of simulations of multi-decadal
variability can be thus another important measure of quality of the
CMIP simulations. The multi-decadal climate variability in area
averaged (Land only: 70-85E; 10-30N) seasonal rainfall for the per-
iod 1901–2005, represented as Cramer’s t-statistic38,39 shows (Fig. 6)
that both CMIP3 and CMIP5 simulations (selected and ensemble)
exhibit multi-decadal variability with characteristics similar to those
in composite observation. It also clarifies the hazards of trying to
break up the inter decadal behavior with an arbitrary dividing date
such as 1975 (Fig. 3b and Fig. 6). The selected simulations show a
much higher degree of coherence (similar phase) than the rest of the
simulations; in particular, the all-simulation ensemble of CMIP3
does not exhibit the observed characteristics (Fig. 6); interestingly,
the all-simulation ensemble of CMIP5 shows a decadal variability
but with phases essentially opposite to those of observation or
ensemble of selected CMIP5 models (Figure 6). While 76% of
CMIP5 simulations simulate positive phase of slow time-scale vari-
ability during 1920–1955 and 67% show negative phase for the per-
iod 1956–2000, only 62% of simulations show both phases (Fig. 6d).
On the other hand, CMIP3 simulates ,50% of the simulations show
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the phases individually; it poorly simulates (25%) both the phases of
slow variability (Fig. 6c). While the epochal trends may have various
uncertainties such as due to low-frequency (decadal) variability, and
cannot be used readily for model evaluation, it is interesting, and
encouraging, that simulations that satisfy the other acceptability cri-
teria also perform well in terms of simulation of low-frequency
variability. In particular, the models selected based on hierarchical
assessment, one each from CMIP5 (L) and CMIP3 (s), simulate both
the phases and the amplitudes reasonably well, while others do not.

Discussion
An accurate simulation of the observed trends is a primary indicator
of reliability of projections for future climate. Our results show that
no significant progress has been achieved in our ability to simulate
basic quantities like observed seasonal mean and trend, and hence to

project the regional climate system, namely CIM, with reasonable
certainty. It is normally expected that an ensemble of simulations,
statistically, would provide a more reliable result than any of the
individual simulations; given that the (equal-weight) ensemble from
either CMIP3 or CMIP5 does not provide a more accurate simu-
lation, there is an urgent need for redesigning multi-model ensemble.
Given that CMIP5 have poorer quality than the CMIP3 in simulating
the observed features of CIM, a critical look at our strategy for model
improvement is also required. A silver lining is the consistency across
the large number of simulations in terms of association between
simulations and climate indices. Such consistency provides an
objective way of assessing reliability of climate projections based
on physical and mechanistic understanding; such approaches are
necessary to offset any effect of non-stationarity of observed trends
in assessing projections. However, while the quality of the simula-
tions in terms of various metrics might not have improved, the
CMIP5 simulations can be argued to be based on a more compre-
hensive and refined knowledge base17, implying large applicability.

A major aspect of hierarchical evaluation is based on validation of
simulated trends against observed trends in CIM rainfall for asses-
sing confidence in future-climate simulations. We should emphasize
that such a validation of simulated trends certainly provides a neces-
sary requirement; but not necessarily a sufficient condition. Analysis
of climate indices shows that in both CMIP5 and CMIP3 certain
common processes at large and regional scales show consistency with
skill in simulation (Table S2); in particular, these climate simulations
also simulate the observed relationship between CIM and ENSO/
LETG-IND. Similarly, other parameters in addition to phases of
multi-decadal oscillation and multi-epoch trend can be included
for enhanced confidence.

We have refrained from assigning any definite cause(s) for the
decrease in rainfall during 1951–1975 as there are many interacting
complex processes as well as a spectrum of natural variability at
different time periods. It could be argued, based on the similarity
of trends during 1951–1975 and those during 1975–2005, that aero-
sol or anthropogenic sources may not have significant contribution
to the declining trends in CIM in the current epoch; however, there is
some evidence40, that aerosols may have significant effects in the
recent epoch, 1951–1996. However, definitive attribution is difficult
as the precise amplitudes and the phases of the low-frequency vari-
ability are not known. The enhanced scope in the CMIP5 models
may enable addressing a wider spectrum of applications5,16. Although
we have considered CIM for a case study, arguments presented earl-
ier indicate that assessments are needed for other regional systems.

The current analysis is based on simulations with a single initial
condition from each model. However, use of multiple simulations
with different initial conditions, may not change the basic conclu-
sions, especially since the current simulations also use different initial
conditions; however, this issue needs to be explored. As against the
natural system, the correlations, trends etc in the simulations are a
result of the model dynamics that is not necessarily identical across
the models. Thus, each model will need independent analysis and
improvement. Finally, our results suggest a metric (application)
based evaluation of climate models rather than looking for a best
model that performs well for all metrics. Quite clearly, a metric for
CIM rainfall may not be adequate for comparing spatial patterns that
are more useful for application; however, more elaborate comparison
will require climate simulations of adequate skill. While these issues
are definitely challenging, they need to be properly addressed given
the importance of climate projections.

Methods
In this study, we examine observed rainfall from a panoply of sources and the climate
model simulations (20th century simulations from CMIP3 and historical simulation
from CMIP5) from IPCC10. The climate model projections from CMIP5 (scenarios
B1, A1B, A2) and CMIP5 (scenarios RCP2.6, RCP4.5, RCP6.0, RCP8.5) are used in
this study. The climate model codes are shown in Table S1. The observed daily
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gridded (1u 3 1u) rainfall dataset is adopted from the India Meteorological
Department (IMDG) for the period 1951–2004 over India22. Monthly rainfall on a
2.5-degree global grid from 1979 to the present is adopted from Global Precipitation
Climatology Project (GPCP) based on over 6,000 rain gauge stations, and satellite
geostationary and low-orbit infrared, passive microwave, and sounding observa-
tions24; monthly rainfall is also adopted from CRU-Climate Research Unit23; NCEP
reanalysis rainfall26; APHRO rainfall24, All India averaged monthly rainfall from
IITM20 and IMD21.

In this study we use Cramer’s test is to examine the stability of a long-term record in
terms of comparison between the overall mean of an entire record and the mean of the
certain part of the record (WMO 1966). The statistical significance of the moving
mean as well as decadal averages was examined using the Cramer’s test statistics as
follows:

tk~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n(N{2)

N{n(1zr2
k )

� �s
rk where, rk~ Rk{R

� �
=s

R is the mean for the total number of years and s is the standard deviation of the
series for the total number of years (N) under investigation; Rk is the mean for each
successive n-year. The statistic tk is distributed as ‘Student’s t’ with N-2 degrees of
freedom. This test may be repeated for any desired number and choice of sub periods
in the whole record. The time plot of the t-value gives the pictorial representation of
variability.

1. Webster, P. J. et al. Monsoons: processes, predictability, and the prospects for
prediction. J. Geophys. Res. 103, 14451–14510 (1998).

2. Meehl, G. A. et al. Global Climate Projections. In Climate Change: The Physical
Science Basis. Contribution of Working Group I to the Fourth Assessment Report
of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.).
Cambridge University Press, Cambridge, UK, 747–845 (2007).

3. Turner, A. G. & Annamalai, A. Climate change and the South Asian summer
monsoon. Nat. Clim. Change. 2, 587–595 (2012).

4. DelSole, T. & Shukla, J. Climate models produce skillful predictions of Indian
summer monsoon rainfall. Geophys. Res. Lett. 39, L09703 (2012).

5. Deser, C., Knutti, R., Solomon, S. & Phillips, A. S. Communication of the role of
natural variability in future North American climate. Nat. Clim. Change 2,
775–779 (2012).

6. Goswami, B. N., Madhusoodanan, M. S., Neema, C. P. & Sengupta, D. A physical
mechanism for North Atlantic SST influence on the Indian summer monsoon.
Geophys. Res. Lett. 33, L02706 (2006).

7. Kitoh. et al. Monsoons in a changing world: A regional perspective in a global
context. J. Geophys. Res. Atmos. 118, 3053–3065 (2013).

8. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the
experiment design. Bull. Amer. Meteor. Soc. 93, 485–498 (2012).

9. Solomon, S. et al. IPCC Climate Change: The Physical Science Basis. Contribution
of Working Group I to the Fourth Assessment Report of the Inter- governmental
Panel on Climate Change. Cambridge University Press 1–996 (2007).

10. Sperber, K. R. et al. The Asian summer monsoon: An intercomparison of CMIP5
vs. CMIP3 simulations of the late 20th century. Clim. Dyn. 1–34 (Published online
2012).

11. Kripalani, R. H., Oh, J. H., Kulkarni, A., Sabade, S. S. & Chaudhari, H. S. South
Asian summer monsoon precipitation variability: Coupled climate model
simulations and projections under IPCC AR4. Theor. App. Clim. 90, 133–159
(2007).

12. Lee, J. & Wang, B. Future change of global monsoon in the CMIP5. Clim. Dyn.
1–19 (2012).

13. Hsu, P.-C., Li, T., Luo, J.-J., Murakami, H., Kitoh, A. & Zhao, M. Increase of global
monsoon area and precipitation under global warming: A robust signal? Geophys.
Res. Lett. 39, L06701 (2012).

14. Menon, A., Levermann, A., Schewe, J., Lehmann, J. & Frieler, K. Consistent
increase in Indian monsoon rainfall and its variability across CMIP-5 models.
Earth Syst. Dynam. Discuss. 4, 1–24 (2013).

15. Li, J.-L. F. et al. An observationally-based evaluation of cloud ice water in CMIP3
and CMIP5 GCMs and contemporary reanalyses using contemporary satellite
data. J. Geophys. Res. 117, D16105 (2012).

16. Krishna Kumar. et al. The Once and Future Pulse of Indian Monsoonal Climate.
Clim. Dyn. 36, 2159–2170 (2011).

17. Knutti, R. & Sedlacek, J. Robustness and uncertainties in the new CMIP5 climate
model projections. Nature Climate Change 3, 369–373 (2013).

18. Syroka, J. & Toumi, R. Recent lengthening of the south Asian summer monsoon
season. Geophys. Res. Lett. 29, L1458 (2012).

19. Ramesh, K. V. & Goswami, P. Reduction in temporal and spatial extent of the
Indian summer monsoon. Geophys. Res. Lett. 34, L23704 (2007).

20. Parthasarathy, B., Munot, A. A. & Kothawale, D. R. All-India monthly and
seasonal rainfall series: 1871–1993. Theo. and Appl. Clim. 49, 217–224 (1994).

21. All India Monthly and Seasonal (June-September) Rainfall Series, Rainfall Data
for SW Monsoon (1901–2010). Indian Meteorological Department (IMD) http://
www.imd.gov.in/section/nhac/dynamic/Monsoon_frame.htm (Oct 18 2013).

22. Rajeevan. et al. High resolution daily gridded rainfall data for Indian region:
Analysis of break and active monsoon spells. curr. sci. 91, 296–306 (2006).

23. Mitchell, T. D. & Jones, P. D. An improved method of constructing a database of
monthly climate observations and associated high-resolution grids. Int. J.
Climatology 25, 693–712 (2005).

24. Huffman, G. J., Adler, R. F., Bolvin, D. T. & Gu, G. Improving the global
precipitation record: GPCP Version 2.1. Geophys. Res. Lett. 36, L17808 (2009).

25. Yatagai, A. et al. APHRODITE: Constructing a Long-term Daily Gridded
Precipitation Dataset for Asia based on a Dense Network of Rain Gauges. Bull.
Amer. Meteor. Soc. 93, 1401–1415 (2012).

26. Kistler, R. et al. The NCEP-NCAR 50-Year Reanalysis: Monthly Means CD-ROM
and Documentation. Bull. Amer. Meteor. Soc. 82, 247–268 (2001).

27. Wang, B. & Ding, Q. Changes in global monsoon precipitation over the past 56
years. Geophys. Res. Lett. 33, L06711 (2006).

28. Wang, B., Liu, Y., Kim, H.-J., Webster, P. J. & Yim, S.-Y. Recent change of the
global monsoon precipitation (1979–2008). Clim.Dynam. 39, 1123–1135 (2012).

29. Jourdain. et al. The Indo-Australian monsoon and its relationship to ENSO and
IOD in reanalysis data and the CMIP3/CMIP5 simulations. Clim. Dynam. 1–30
(Published online 2013).

30. Kodra, E., Ghosh, S. & Ganguly, A. R. Evaluation of global climate models for
Indian monsoon climatology. Env. Res. Lett. 7, 014012 (2012).

31. Knutti, R. & Sedlacek, J. Robustness and uncertainties in the new CMIP5 climate
model projections. Nature Climate Change 3, 369–373 (2012).

32. Li, C. & Yanai, M. The onset and interannual variability of the Asian summer
monsoon in relation to land-sea thermal contrast. J. Clim. 9, 358–375 (1996).

33. Webster, P. J., Moore, A., Loschnigg, J. & Leban, M. Coupled ocean-atmosphere
dynamics in the Indian Ocean during 1997–98. Nature 401, 356–360 (1999).

34. Ihara, C. et al. Indian summer monsoon rainfall and its link with ENSO and
Indian Ocean climate indices. Int. J. Clim. 27, 179–187 (2007).

35. Bollasina, M. A., Ming, Y. & Ramaswamy, V. Anthropogenic aerosols and the
weakening of the South Asian Monsoon. Science 334, 502–505 (2011).

36. Fasullo, J. A mechanism for land-ocean contrasts in global monsoon trends in a
warming climate. Clim. Dyn. 39, 1137–1147 (2012).

37. Kripalani, R. H. & Kulkarni, A. Climatic impact of El Nino/La Nina on the Indian
monsoon: A new perspective. Weather 52, 39–46 (1997).

38. World Meteorological Organization climate change. WMO Tech. Note No. 79,
WMO No. 195-TP-100, 1–53 (1966).

39. Trenberth, K. E. Decadal variability in ENSO an extratropical teleconnections:
Evidence of global warming? In: Proceedings of International Scientific
Conference on TOGA Programme, 2–7 Apnl 1995, Melbourne, Ausnalia WCRP
91,WMO/TD No. 717, 57–61 (1995).

40. Rotstayn, L. D. et al. Have Australian Rainfall and Cloudiness Increased Due to the
Remote Effects of Asian Anthropogenic Aerosols? J. Geo Phys Res. 112, D09202
(2013).

Acknowledgments
We thank the World Climate Research Programme and the modeling groups for making
available the CMIP model outputs. This work was supported by the project Integrated
Analysis for Impact, Mitigation and Sustainability (IAIMS) under CSIR, India.

Author contributions
P.G. and K.V.R. wrote the main manuscript text and K.V.R. & P.G. prepared the figure. All
authors reviewed the manuscript.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/
scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Ramesh, K.V. & Goswami, P. Assessing reliability of regional
climate projections: the case of Indian monsoon. Sci. Rep. 4, 4071; DOI:10.1038/srep04071
(2014).

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported license. To view a copy of this license,

visit http://creativecommons.org/licenses/by-nc-sa/3.0

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4071 | DOI: 10.1038/srep04071 9

http://www.imd.gov.in/section/nhac/dynamic/Monsoon_frame.htm
http://www.imd.gov.in/section/nhac/dynamic/Monsoon_frame.htm
http://www.nature.com/scientificreports
http://www.nature.com/scientificreports
http://creativecommons.org/licenses/by-nc-sa/3.0

	Assessing reliability of regional climate projections: the case of Indian monsoon
	Introduction
	Results
	Discussion
	Methods
	Acknowledgements
	References


