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To gain insights into the pathogenesis of influenza A virus (IAV) infections, this study focused on
characterizing the inflammatory network and identifying key proteins by combining high-throughput data
and computational techniques. We constructed the cell-specific normal and inflammatory networks for
H5N1 and H1N1 infections through integrating high-throughput data. We demonstrated that better
discrimination between normal and inflammatory networks by network entropy than by other topological
metrics. Moreover, we identified different dynamical interactions among TLR2, IL-1b, IL10 and NFkB
between normal and inflammatory networks using optimization algorithm. In particular, good robustness
and multistability of inflammatory sub-networks were discovered. Furthermore, we identified a complex,
TNFSF10/HDAC4/HDAC5, which may play important roles in controlling inflammation, and
demonstrated that changes in network entropy of this complex negatively correlated to those of three
proteins: TNFa, NFkB and COX-2. These findings provide significant hypotheses for further exploring the
molecular mechanisms of infectious diseases and developing control strategies.

I
nfluenza A virus (IAV) is an important human pathogen that causes respiratory tract infections, and these
infections are a worldwide public health1–3. Inflammation is a hallmark of many serious human infectious
diseases caused by a wide variety of viruses4–6. Numerous studies have demonstrated that IAV infections can

trigger severe inflammatory diseases6–8. Therefore, investigating molecular mechanisms of the inflammatory
responses resulting from an IAV infection is of great significance in controlling the appearance of complications
and reducing the associated tissue damage7,9. However, many biological experiments have shown that IAV
infection-induced inflammatory responses are extremely complex and regulated by a complicated network10–12.
Therefore, elucidating the network properties that distinguish inflammatory disease from the normal cellular
state has critical importance for gaining systems-level insights into the pathogenesis of IAV infections and
ultimately for developing novel therapeutic strategies.

In recent years, network-based systems biology approaches emerged as powerful tools for studying the complex
behavior of biological systems, including complex diseases13–17. More recently, an integrated network approach
has been implemented to predict conserved regulators related to high and low viral pathogenicity, suggesting that
the utility of systems approach to find therapeutic targets for intervention18. To elucidate the molecular mechan-
isms of inflammatory responses during IAV infection and the pathogenesis to prevent influenza A and pan-
demics, characterizing and quantifying the inflammatory network permit one to understand the hallmark of
inflammatory responses. In this study, we investigated and compared the IAV-induced inflammatory regulatory
networks and normal cellular networks by integrating the data from the highly pathogenic avian H5N1 virus A/
Vietnam/1203/2004 (VN1203) and the pandemic H1N1 virus A/CA/04/2009 with protein-protein interaction
(PPI) networks. The aim of this study is to provide new knowledge of both normal and inflammatory states and
identify key proteins by integrating high-throughput data and computational techniques from systems-biology
approaches. The workflow for our study is presented in Figure 1. Through network construction, quantitative
measures and dynamical analysis, we focused on characterizing the inflammation and normal networks from
network structures and dynamics and identifying key protein complex that was important for controlling the
inflammation. Our studies will provide a multidimensional view for underlying molecular mechanisms of
inflammatory response, which contribute to the development of targeted interventions for the prevention and
control of IAV infections.
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Results
Construction of IAV infection-induced cell-specific normal and
inflammatory networks. Constructing regulatory and biochemical
networks from multidimensional data is a key step in systems biology
for analyzing network properties. In the present study, we developed
a model-based framework for constructing networks by integrating
gene expression profiles with a prior knowledge of PPI network (Step
#1 in Fig. 1 and Supplementary Figure S1). First, the rough PPI
network containing 90 nodes and 412 edges was constructed using
PPI databases (see Methods). Next, based on the rough PPI network
and the H5N1 and H1N1 datasets, the Pearson correlation coeffi-
cients (PCCs) that measured the dependence between paired nodes
were applied to filter the highly noise-induced interactions. We thus
obtained the refined normal and inflammatory networks induced by
H5N1 and H1N1. To construct cell-specific regulatory networks and
further remove the redundant (indirect) regulations in the refined

networks, we then built the ordinary differential equation (ODE)
models for the refined networks and used an improved conjugate
gradient method (ICG) to identify the parameters in the models (see
Methods). Finally, Akaike Information Criterion (AIC) was
employed to determine whether the interactions between two
proteins were significant or just false positives (see Methods). The
constructed normal and inflammatory networks during H5N1 and
H1N1 infection are displayed in Supplementary Figure S4. For both
H5N1 and H1N1 infections, the average relative errors (AREs) of the
99% nodes are less than 0.1 and those of the 1% nodes are within the
interval [0.1, 0.2] in normal networks. In inflammatory networks,
AREs of all nodes are less than 0.1 (Figure 2). The results showed the
accuracy and reliability of the constructed networks.

Inflammatory networks are characterized by an increase in net-
work entropy. Recently, information theory, measuring uncertainty

Figure 1 | Workflow for characterization and control of the inflammatory networks. Step 1: Network construction. The framework of the network

construction was shown in Supplementary Figure S1. Step 2: Characterizing the inflammatory networks from network structures. Network metrics

explored in this study were summarized in Supplementary Figure S2. Step 3: Construction of nonlinear dynamical models for two sub-networks. The

problem that identifies the kinetic parameters in the nonlinear models can be converted into an optimization problem by defining a cost function. Step 4:

Characterizing the inflammatory networks from dynamics. The procedure for dynamical analysis of the networks was clearly depicted in Supplementary

Figure S3. Step 5: Identification of important protein complexes for controlling inflammation.
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or variability, has been widely adopted to understand complex
biological networks19,20. Previous studies have shown that increased
entropy is a hallmark of cancer systems21,22, thus we here attempt to
determine whether the network entropy can also discriminate the
inflammatory network from the normal network. To test this
hypothesis, we proposed a definition of network entropy (see
Methods). Through calculation and comparison, we found that the
local entropies in the inflammatory networks exhibited significantly
higher values than those in the normal networks for H5N1 and H1N1
infections (Figure 3). The global network entropies of inflammatory
networks are also higher than those of normal networks (For H5N1
infection, 8.5891 vs. 7.7276; for H1N1 infection, 8.2584 vs. 7.6487).
By performing a significance test for the difference in global network
entropy of inflammatory and normal networks (see Methods), we
found the global network entropy of inflammatory networks is also
significantly higher than that of normal networks (Bootstrap 1000
times, P-value 5 0). Moreover, the number of increased differential
entropies is significantly greater than that of decreased differential
entropies (Supplementary Figure S5). These results indicated that the
network entropy provided good discrimination between normal and
inflammatory networks.

Network entropy performs better than other network metrics in
charactering the inflammatory network. To investigate whether
other topological metrics of the network can also discriminate
inflammatory networks as well as the network entropy does, we
first calculated six global metrics of these two networks in
topological properties with respect to network diameter, density,
centralization, average path-length, average number of neighbors
and clustering coefficient, using the Network Analyzer plugin in
Cytoscape23. Detailed comparisons of these two networks are
displayed in Supplementary Table S1. We found that network
diameter in the inflammatory networks is the same as that in the
normal networks and that the average path-length in the inflam-
matory networks is smaller than that in normal networks. In
contrast, four other metrics in the inflammatory networks were
slightly larger than those in the normal networks. Furthermore, we
performed a significance test for the differences in eight local metrics

(degree, betweenness centrality, bottleneck centrality, closeness
centrality, clustering coefficients, Maximum Neighborhood Com-
ponent (MNC), Density of Maximum Neighborhood Component
(DMNC) and Eccentricity (Ecc)) for describing the topological
properties of networks. Supplementary Fig. S6 shows that there are
not significant differences in these common network metrics
between the normal and inflammatory networks. Taken together,
these data demonstrated that the network entropy performs better
than other topological network metrics in characterizing the
inflammatory networks.

Biological significance of increased network entropy. Although we
have observed the increased entropy in the inflammatory network, it

Figure 2 | Average relative errors (AREs) of the networks. The y-axis represents the number of nodes in networks whose AREs are fall into the

corresponding bins. (a) and (b) are the distributions of the AREs for the H5N1 and H1N1 datasets, respectively.

Figure 3 | Comparison of the local network entropies (S) between the
inflammatory (I) and normal networks (N) for all nodes with degree $2
for H5N1 and H1N1 infections. P-values are from an one-tailed Wilcoxon

rank sum test.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 3799 | DOI: 10.1038/srep03799 3



is important to further elaborate the real biological mechanisms
associated with such changes. We would expect that proteins
exhibiting the increases in entropy may (1) show more disorder in
protein expression, and (2) be enriched among signaling pathways
that are critical to the inflammatory response. To address the first
point, we calculated the variances in the protein expression levels of
the two networks (Supplementary Figure S7). The results indicated
that the inflammatory networks exhibited significantly higher
variances than those in the normal networks. Therefore, we
interpret the increased network entropy as increased uncertainty
or variability of protein expression from the viewpoint of
information theory. In other words, the disorder expression of
proteins may drive the changes in entropy.

To address the second point, we performed a functional enrich-
ment analysis using the Database for Annotation, Visualization and
Integrated Discovery (DAVID24) on the genes (separately for
increased and decreased entropy). The functional annotations ana-
lysis revealed that genes with increased entropy were significantly
enriched in several biological pathways, but no enrichment of any
pathways among the genes showing decreases in entropy (Table 1).
Among them, the Toll-like receptors (TLRs) and NOD-like receptors
(NLRs) are the main pattern-recognition receptors (PRR), which can
trigger the intracellular signaling cascades regulating inflammatory
mediators against invading pathogens25. Recent studies have high-
lighted the importance of cytosolic DNA in the innate immune host
defence by the production of type I interferon and inflammatory
cytokines, which is a powerful pathogen-associated molecular pat-
tern (PAMP) arising from intracellular bacterial or viral infec-
tions26,27. T cells are key effectors of the adaptive immune response.
T Cell Receptor (TCR) activation promotes a number of signaling
cascades that ultimately determine cell fate, which is an intricately
branching network28. The cytokine-cytokine receptor (CCR) inter-
action and Chemokine signalling pathways are also well known
inflammatory related pathways. Highly elevated levels of various
cytokines and chemokines are the hallmarks of inflammatory res-
ponse29. Therefore, the fact that entropy changes can retrieve known
inflammatory signaling pathways indicates that real biological
mechanisms can be extracted from the network entropy.

Free energy and network entropy reveal network complexity.
Biological systems utilize energy to maintain dynamic homeostasis.
How do biological systems compromise between maximizing
entropy and minimizing energy, which is an important theme in
cellular physics and biochemistry30,31. In this work, the Helmholtz
free energy was applied to quantify the networks (see Methods). The
free energies of the inflammatory networks were lower than those of
the normal networks (For H5N1 infection, 223.4483 vs. 221.6804;
for H1N1 infection, 222.5151 vs. 221.0976). To test the significance
of the difference in free energy, we permuted the virus-infected
sample labels randomly (performed bootstrap 1000 times) (see
Methods). We found that the free energy of two inflammatory

networks for H5N1 and H1N1 infections was significantly lower
than that of the normal networks (P-value 5 0).

To further explore the thermodynamic features in networks, we
used Erdos-Rényi models, which were the simplest ensemble of ran-
domized networks, to evaluate the evolution of networks32. We gen-
erated random networks with the same number of nodes but a
different average degree as the constructed network and recalculated
the thermodynamic measures of the random networks. The global
network entropies of the random networks were calculated using
datasets under normal and inflammatory conditions. We found that
the free energy and the internal energy of a network have a negative
correlation, but the network entropy has a positive correlation with
the average degree of the network (Figure 4). These results indicate
that the network entropy, free energy and internal energy are closely
correlated with the network complexity33,34. Specifically, a network
with higher complexity possesses higher network entropy and lower
energy and internal energy.

Identifying the different dynamically interactions between normal
and inflammatory networks. To better understand the regulatory
mechanisms of the inflammatory response induced by IAV
infections, the different dynamical properties of two networks must
be investigated. In this study, we constructed a differential network
(Supplementary Fig. S8) and selected 7 potential target proteins
(TNFa, IL-1b, TLR2, NFkB, CXCL10, IFN-c and IL10) to form a
sub-network (see Methods). We combined nonlinear dynamical
models with optimization to obtain the dynamical interactions of
these potential target proteins (see Methods). The detailed models
for the two networks were presented in Supplementary Text.

Because there are only six sample points (0 h, 3 h, 7 h, 12 h, 18 h
and 24 h) in the experimental time-series data for the H5N1 infec-
tion, cubic spline interpolation (using Matlab toolbox) was used to
obtain the interpolated time points at each hour between 0 h and
24 h. We used the data from 23 time points as the simulation data
and data from the final time point (24 h) as the prediction data. We
determined all kinetic parameters in the two models by using our
newly developed optimization algorithm, i.e., diversity-maintained
differential evolution based on gradient local search (DMGBDE35).
The DMGBDE algorithm was performed five times, and the optimal
parameter sets that minimized the error between the experimental
data and the simulation values were obtained (Supplementary Tables
S2 and S3).

For the normal sub-network model, the average simulation error
and prediction error were 0.26 and 0.55, respectively, and the average
error bar in the experimental data was 0.25. For the inflammatory
sub-network model, the average simulation error and prediction
error were 0.21 and 1.08, respectively, and the average error bar in
the experimental data was 0.66. Based on the optimal parameters, the
dynamical processes of these seven proteins were simulated and
comparisons with the experimental data were plotted in Figure 5.
These results showed that the numerical simulations agreed with the
experimental data, which indicates the reliability and predictability

Table 1 | KEGG pathway enrichment analysis of genes with increased (DS . 0) and decreased (DS , 0) entropy. The enrichment p-value is
from a modified Fisher’s Exact Test (EASE Score) and then corrected for multiple hypothesis testing by calculating false discovery rate (FDR).
The common enrichment pathways among genes with altered entropy in H5N1 and H1N1 infections were considered, and the maximum of
the two FDRs was shown. The threshold for FDR was set to 0.05. ‘-’ indicates no enrichment

KEGG pathway FDR (DS . 0) FDR (DS , 0) Representative genes

TLRs signaling 1.10E-23 0.9 TNFa, TOLLIP, NFkB1, TLR4, IFNB1
CCR interaction 3.02E-22 1 CCR1, CXCL10, CXCR4, CCR7, CCR3
Chemokine signaling 3.33E-13 - CCL2, CCR1, NFkB1,CXCL10, CXCR4
NLRs signaling 4.95E-10 - NLRP3, NOD1, MEFV, MAPK14, RIPK2
Cytosolic DNA-sensing 0.002 - IFNB1, PYCARD, NFkB1, IKBKB, CCL5
TCR signaling 0.003 94.7 FOS, IKBKB, NFkB1, NFATC4, MAPK14
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of our models. From the nonlinear dynamical models, we investi-
gated two important features.

First, we simulated the dynamical evolution of these proteins over
96 h. This simulation demonstrated that all these proteins reached
steady-states in both the inflammatory and normal sub-networks
(Supplementary Figure S9). Interestingly, most of these proteins
reached much higher steady states in the inflammatory network than
those in the normal network. Only IL-1b and TLR2 reached lower
steady-states after IAV infection, which were in accordance with the
previous experimental studies reporting that the IAV encoded non-
structural protein NS1 can inhibit IL-1b production36. These data
indicated that upregulation of many inflammasome components
may contribute to IAV-induced inflammatory responses.

Next, we compared the regulatory relations for two sub-networks.
The common parameters (regulations) that appeared in both models
were displayed in Fig. 6 and opposite regulatory relations were
marked. Network structures from the dynamical models are shown
in Supplementary Figure S10. In addition to more complex interac-
tions in inflammation networks, these results showed that the reg-
ulatory interactions are changed after the IAV infection. The
regulatory relationships among TLR2, IL-1b, IL10 and NFkB were
different from those in the normal networks. After IAV infection,
IL10 positively regulated NFkB, NFkB inhibited TLR2 and TLR2
positively regulated IL-1b. In contrast, in the normal network,
IL10 inhibited NFkB (which was consistent with the experimental
observations that IL-10 attenuates acute lung inflammation via
inhibition of the NFkB activation in lung epithelial cells)37, NFkB
activated TLR2 and TLR2 negatively regulated IL-1b. Together, these
results may reveal pathogenic strategies in the induction of an
inflammatory response during IAV infection.

Sub-networks achieve good dynamical robustness through coor-
dinated interactions. Robustness is one of the fundamental pro-
perties of complex biological systems, which allows the system to
maintain its behavior against random perturbations. To investigate

the dynamical robustness of the sub-networks that were composed of
differential network proteins, three metrics of robustness (the local
robustness (LR), global robustness (GR) and ratio robustness (RR))
were proposed according to the dynamical steady states of the
proteins in the sub-networks (see Methods). We perturbed the para-
meters 1000 times. The computational results of LR for the 5%, 10%
and 20% perturbations of both proteins’ initial concentrations and
kinetic parameters in models were displayed in Supplementary Figs.
S11 and S12 and Tables S4–S15. Supplementary Fig. S11 and Tables
S4–S9 showed that both sub-networks are very robust to the
perturbations of the proteins’ initial concentrations. The perturba-
tions of most kinetic parameters in models have slight or almost no
influences on local robustness, but the perturbations of some kinetic
parameters were quite different (Supplementary Fig. S12 and Tables
S10–S15).

The fact that the sub-networks are sensitive to the perturbations of
some kinetic parameters drives us to determine whether the system
did not reach a steady-state or the system entered into other steady-
states when the parameters were perturbed. Therefore, we calculated
another measure of robustness (RR). Table 2 indicated that the good
RR was achieved. Together, these results indicated that the biological
system may enter into other steady-states when the parameters
varied.

Furthermore, the GR for the two sub-networks were also calcu-
lated for perturbations of 5%, 10% and 20%, respectively (Fig. 7 and
Supplementary Tables S16–S19). The results indicated that both sub-
networks are very robust to the simultaneous perturbations of the
proteins’ initial concentrations or kinetic parameters. Together,
these results suggested that coordinated interactions among differ-
ential network proteins are very beneficial for stabilizing the steady-
state behaviors and maintaining the homeostasis of both the inflam-
matory and normal networks.

Inflammatory sub-networks show multistability. From the results
of robustness, we guesses that those sensitive parameters possibly

Figure 4 | Plot of the thermodynamic measures, including free energy (F), internal energy (U) and entropy (S) as a function of the average vertex degree
for networks generated using Erdos-Rényi models. (N) and (I) indicate the normal and inflammatory samples, respectively.
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made the system switch from one steady-state to another steady-
state, i.e., exhibit the bistability or multistability phenomenon38. To
verify this hypothesis, we performed the bifurcation analysis for
sensitive parameters in the normal and inflammatory sub-networks.

From Supplementary Fig. S12 and Table S13–S15, we observed that
in an inflammatory sub-network, the LR is most sensitive to the
perturbations for parameters a21 (TNFa R IL-1b), a31 (TNFa–
jTLR2) and a32 (IL-1b R TLR2). However, the RR showed that

Figure 5 | Comparisons between the numerical simulation results (S), prediction results (P) and experimental data (E) of TNFa, IL-1b, TLR2, NFkB,
CXCL10, IFN-c and IL10 in a normal network (N) and an inflammatory network (I). The blue dashed and red solid lines denote the simulation results

for N and I, respectively. The blue circles and red stars represent the experimental data for N and I, respectively. The blue and red pentagrams

indicate the predicted values at 24 h for N and I, respectively. The experimental errors are also plotted as short bars at each time point.

www.nature.com/scientificreports
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the inflammatory sub-network reached the steady states during the
small perturbations (Table 2). We performed bifurcation analysis for
these parameters in the inflammatory sub-networks and found
interesting bistability and tristability phenomena (Fig. 8 and
Supplementary Figure S13). The original values of a21, a31 and a32
were 1.2849, 21.4331 and 2.8533 (Supplementary Table S2),
respectively. These values caused the network to remain at one
steady state. When the values were perturbed within 20%, the
activity levels of TNFa, IL-1b, IFN-c and NFkB could either stay in
the same branch or continually jump into another branch of steady
states. In particularly, the activity level of IFN-c could switch between
three different steady states. These results showed that the
inflammatory sub-networks exhibited complicated dynamical
behaviors, such as the reversible bistability and tristability, which
provided a good explanation for the experimental observations in
variable clinical responses for infections with the H1N1 and H3N239.

We also performed bifurcation analysis for three sensitive para-
meters a32 (IL-1b R TLR2), a67 (IL10–jIFN-c) and a76 (IFN-c R
IL10) in the normal sub-network (Supplementary Fig. S12 and
Tables S10–S12). The original values of a32, a67 and a76 were
0.2264, 22.022 and 0.4647 (Supplementary Table S3), respectively,
which caused the network to remain at one steady state. From
Supplementary Fig. S14, we observed that the dynamics were quite
different, although two steady states also existed. When the para-
meters were perturbed within 20% (Domain I in each sub-graph in
Supplementary Fig. S14), the activity levels of TNFa, IL-1b, IFN-c
and NFkB always stayed in one branch of steady states. When the
perturbation was greater than 20%, except for IFN-c, the system may
could exhibit Hopf bifurcation and oscillation (Domain II in each
sub-graph in Supplementary Fig. S14). Therefore, a bistable switch is
impossible for continuous variations for parameters.

The results demonstrated the multistability in the perturbed
inflammatory network, but only monostability and oscillation
occurred in the perturbed normal network. These results indicate

that both the normal and inflammatory networks exhibited different
complicated dynamics and functional diversity.

Identification of an important protein complex, TNFSF10/HDAC4/
HDAC5, for controlling inflammation. Identifying protein complexes
and modules from PPI networks is of great importance for uncovering
the biological functions of proteins in networks40,41. In this study, we
first used an algorithm that was introduced in a previous study42,
namely, TSN-PCD, to identify protein complexes. For H5N1 and
H1N1 infections, 33 different protein complexes were detected, but
97% of these protein complexes appeared only once. Only one protein
complex, TNFSF10(tumor necrosis factor superfamily, member
10)and its partner proteins HDAC4 and HDAC5, denoted as
TNFSF10/HDAC4/HDAC5, was discovered to appear in both the
normal and inflammatory networks at the early stage of IAV
infections. More interestingly, the TNFSF10/HDAC4/HDAC5 com-
plex also appeared at the late stage in normal networks. However, this
complex disappeared in the inflammatory networks after 7 h with
H5N1 and H1N1 infections. The statistical results for this protein
complex are listed in Table 3. The results suggested that
dysregulation of the TNFSF10/HDAC4/HDAC5 complex and the
subsequent imbalance may be involved in inflammatory diseases. In
other words, the TNFSF10/HDAC4/HDAC5 complex may play
important roles in controlling inflammation.

Figure 6 | Optimal parameter values obtained using the DMGBDE algorithm (Only the common parameters that appeared in both the normal (N) and
inflammatory (I) sub-networks are shown). The white and black bars are parameters in the normal and inflammatory sub-networks, respectively. The

parameters with opposite regulations are marked by red ellipses. (a) and (b) represent the reaction rates for activation/inhibition and

degradation/basal activity, respectively.

Table 2 | Ratio robustness (RR) for the perturbed (1000 times) kin-
etic parameters

Networks Perturbations

5% 10% 20%

Normal sub-network 1 1 0.982
Inflammatory sub-network 1 0.979 0.838

www.nature.com/scientificreports
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The disappearance of the TNFSF10/HDAC4/HDAC5 complex in
the inflammatory network strongly correlated with sharp increase
in the entropy of TNFa, NFkB and COX-2. To investigate the
mechanisms for the disappearance of the protein complex TNFSF10/
HDAC4/HDAC5 in the inflammatory network, we selected 11
proteins including 7 differential proteins (TNFa, IL-1b, TLR2,
NFkB, CXCL10, IFN-c, IL10), 3 complex proteins (TNFSF10,
HDAC4 and HDAC5) and an important protein, COX-2, which
was shown to play a critical role in the H5N1-induced inflammatory

response5,12. We noticed that the local network entropies of three
proteins, TNFSF10, HDAC4 and HDAC5, in the complex were
reduced in the inflammatory networks but those of TNFa, IL-1b,
TLR2, NFkB, IL10 and COX-2 were increased (Supplementary
Figure S15).

Furthermore, we calculated the local network entropies of these
proteins at each time point in the inflammatory network that was
induced by the H5N1 infection. Interestingly, the evolution processes
of TNFa, IL-1b, TLR2, NFkB, CXCL10, IFN-c, IL10 and COX-2 are

Figure 7 | Global robustness with respect to the initial values and kinetic parameters in the normal (N) and inflammatory (I) networks, respectively. (a)

Initial values. (b) Kinetic parameters.

Figure 8 | The bistability phenomenon in the inflammatory network for H5N1 infection. (a) The distribution of the IL-1b steady-state levels with 1000

perturbations for parameter a21. (b) The bifurcation graph of IL-1b for parameter a21. The original value of a21 is 1.2849, which is marked by a

pentagram. When perturbed to near 1.1286, the steady-state of IL-1b then switched from 5.8846 to 1.4126. SNs indicate saddle nodes.

www.nature.com/scientificreports
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very similar but are exactly opposite to the evolution process of
HDAC4 (Figure 9a). The local network entropy of HDAC4 reached
the smallest value at 12 h, while that of all other proteins reached the
largest value at 12 h. Moreover, the fastest changes in the local net-
work entropy occurred for all the proteins that varied from 7 h to
12 h. Noticed that the protein complex disappeared after 7 h, there-
fore, we may guess that the disappearing protein complex is possibly
correlated with the change in other proteins’ entropies. To further
evaluate the effect of the entropy changes of these proteins on
HDAC4, we calculated the Spearman correlation for paired proteins
at the i-th (i 5 3, 4, 5, 6) time point by using the first i experiment
data. Table 4 showed that strong negative correlations exist in the
local network entropies between HDAC4 and other proteins. There
are also specific correlations between local network entropies of
HDAC5 and TNFSF10 and that of NFkB.

To further assess the correlation between the disappearance of the
protein complex and the change in the proteins’ entropy, the
Spearman correlations for the rate of change of the entropies between
HDAC4 and other proteins were computed. Supplementary Table S20
showed the rate of change for the entropies of HDAC4 is much more
negatively correlated with those of three proteins TNFa, NFkB and
COX-2. In addition, their linear regressions were depicted in Fig. 9b,
which further verified these negative correlations. Taken together,
these data suggested a potential mechanism in which the disappear-
ance of protein complex TNFSF10/HDAC4/HDAC5 in inflammatory
networks is likely associated with coordinate interactions among
TNFa, NFkB and COX-2. These results also showed that interesting

biological mechanisms can be retrieved from the entropy changes.
However, whether the sharp increase in the entropy of these three
proteins is the cause or the consequence needs to be determined by
further biological experiments.

Discussion
Influenza A virus (IAV) infection-induced inflammatory responses
are often regulated by a complicated network. Therefore, character-
ization and better knowledge of virus-induced inflammatory res-
ponses are of great importance for understanding the mechanisms
that contribute to pathogenesis and controlling the appearance of
complications associated with IAV from a systems-level43.
Combining ODEs-based optimization with AIC, in this study, we
constructed the normal and inflammatory networks for H5N1 and
H1N1 infections. We demonstrated that increased network entropy
and lower free energy in the network, both of which are related to the
network complexity, are significant features of an inflammatory net-
work, but other topological metrics did not provide good discrim-
ination between the inflammatory and normal networks. Moreover,
the dynamical interactions and multistability among TLR2, IL-1b,
IL10 and NFkB showed the obvious differences between the normal

Table 3 | Time points at which the TNFSF10/HDAC4/HDAC5 pro-
tein complex appears for both H5N1 and H1N1 infections

Inflammatory network Normal network

H5N1 0 h, 3 h, 7 h 0 h, 3 h, 7 h, 18 h, 24 h
H1N1 0 h, 3 h 0 h, 3 h, 7 h,12 h,18 h, 24 h

Figure 9 | Sharp increase in the entropy of TNFa, NFkB and COX-2 negatively correlated with the changes in the entropy of HDAC4. (a) Evolution

process of the local network entropy (S) of TNFa, IL-1b, TLR2, NFkB, CXCL10, IFN-c, IL10, COX-2 and HDAC4. (b) Linear regression to show the

correlation between the rate of change of S for TNFa, NFkB, COX-2 and that for HDAC4. The results show that the change in S of HDAC4 is much

more correlated with the change in S for TNFa, NFkB and COX-2.

Table 4 | Spearman correlations of the local network entropies
between HDAC4, HDAC5, TNFSF10 and other proteins

HDAC4 HDAC5 TNFSF10

TNFa 21 20.4 20.4
IL-1b 21 20.4 20.4
TLR2 21 20.4 20.4
NFkB 20.8 20.8 20.8
CXCL10 20.8 20.2 20.2
IFN-c 21 20.4 20.4
IL10 21 20.4 20.4
COX-2 21 20.4 20.4

www.nature.com/scientificreports
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and inflammatory networks. These important differences in inflam-
matory networks may likely contribute to the severity and lethality of
diseases associated with the highly pathogenic influenza infection.
Subsequently, we discovered a protein complex TNFSF10/HDAC4/
HDAC5 in maintaining the normal cellular state. Finally, we demon-
strated that the drastic reductions in the network entropy of this
protein complex during an H5N1 infection after 7 h strongly corre-
lated with those of three proteins TNFa, NFkB and COX-2.

The main results of this study were summarized in Figure 10. Each
individual protein of three proteins TNFa, COX-2 and NF-kB has
been extensively studied on the literature. However, recent discov-
eries have revealed that a plethora of complex diseases, such as
cancer, inflammation, diabetes and cardiovascular disease, are con-
trolled by multiple genes rather than a single gene in a specific
molecular networks13,44,45. We obtained the new hypotheses that
the combination of these three proteins, which are associated with
the disappearance of protein complex TNFSF10/HDAC4/HDAC5,
may lead to inflammation. To our best knowledge, the related studied
and results have not been reported in the literature.

To prove the conclusion to be specific to the pathogenesis of IAV
disease, we used another viral strain infection, i.e. hepatitis C virus
(HCV), to perform the comparative study (Supplementary Text).
Both network entropy and other network metrics exhibited no sig-
nificant differences between the normal and inflammatory networks
(Supplementary Figs. S16 and S17 and the detailed description in
Supplementary Text). The protein complex (TNFSF10/HDAC4/
HDAC5), which was predicted to be important for controlling
IAV-induced inflammation, has not been identified in the normal
and inflammatory networks with HCV infection. Moreover, the stat-
istical analysis did not find the strong correlations between the entro-
pies of TNFSF10, HDAC4, HDAC5 and those of the three proteins
TNFa, NFkB and COX-2 (Supplementary Table S22). These results
clearly demonstrated that the pathogenesis of HCV diseases is quite
different from that of IAV disease.

In this study, we used two different optimization algorithms
to handle different optimization problems. The first optimization

problem, which was derived from the construction of refined regu-
latory networks, was simplified into a linear programming problem;
this problem was easily solved using an improved conjugate gradient
algorithm (ICG). Because the interactions among the proteins are
nonlinear, the second class of optimization problems, which were
derived from the dynamical models in the differential networks, are
two nonlinear optimization problems with constraints; these pro-
blems were difficult to solve using classical optimization approaches.
The design and selection of effective algorithms are essential for
obtaining the accurate dynamical models. We proposed DMGBDE
to handle this class of complex high-dimensional challenging pro-
blems. The obtained predictive precision and reliability further verify
the effectiveness of the models and algorithm.

In addition, we focused on the comparisons between the inflam-
matory and normal networks to generate testable hypotheses of
pathogenic mechanisms for inflammatory diseases. Therefore, we
did not specifically compare the differences between the highly
pathogenic H5N1 and H1N1 strains in the inflammatory responses.
In fact, we have found that there are some structural and dynamic
differences between the H5N1 and H1N1 strains. Recently, a system
approach has been employed to identify a chemokine-driven feed-
forward inflammatory circuit responsible for lethal influenza
infection, suggesting that a nonlinear process was involved in distin-
guishing lethality from mild infections46. Therefore, in future work,
we will provide network-based comparisons of various virus strains
to determine the commonalities and differences in the host response
and to develop effective countermeasures9.

In summary, our investigation supports the quantitative analysis
of applying network-based approaches to elucidate the characteris-
tics of inflammatory networks and provide a rationale for developing
specific intervention strategies to reduce the risk of acute inflam-
mation. Although experimental validation of these network predic-
tions and hypotheses will be required to further estimate their
potential value, our findings in this study can serve as a significant
foundation for further exploring the molecular mechanisms of infec-
tious diseases and developing control strategies.

Figure 10 | The summarization of the main results. Compared to normal networks, the inflammatory networks are characterized by higher network

entropy, multi-stability (i.e. multi-attractors) and non-existed protein complex. Their high correlations are used to identify the key proteins. The solid

and dashed lines between three proteins TNFSF10, HDAC4 and HDAC5 indicate that they form and do not form a protein complex, respectively. This

figure was designed and drawn by Jin and Zou.
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Methods
Data collection. Two gene expression datasets were retrieved from the Gene
Expression Omnibus (GEO) database47,48 using the GEO accession number
GSE28166 and GSE37571. For the GSE28166 dataset, donated by H5N1 dataset, gene
expression in Calu-3 cells (a human bronchial epithelial cell line) was determined at 0,
3, 7, 12, 18, and 24 hours post infection with the highly pathogenic avian H5N1 virus
A/Vietnam/1203/2004 (VN1203). The other dataset, donated by the H1N1 dataset,
was also obtained in Calu-3 cells, which were infected with pandemic H1N1 virus A/
CA/04/2009 influenza virus and profiled at 0, 3, 7, 12, 18, 24, 30, 36 and 48 hours post
infection. Both datasets contain 36 samples in total, with 3 mock and infected
replicates for each time point.

Protein selection. Differential expression analysis was performed by comparing
VN1203-infected replicates to mock replicates for each time point using the GEO2R
tool48. The following criteria were used to define differential expression: an absolute
log2 fold change .1.5 and a False Discovery Rate adjusted p-value , 0.05 for a given
time point. Proteins were selected based on their corresponding gene differential
expression and GO annotation (GO:0006954, ‘‘inflammatory response’’). In addition,
we also selected some proteins that were verified to play important roles in IAV-
induced inflammatory responses4,11,12,47,49,50. In summary, we selected 90 proteins
related to the IAV-induced inflammatory response to construct protein-protein
interaction (PPI) networks. The descriptions of these proteins are presented in
Supplementary Table S21.

Network construction. The framework of the network construction was shown in
Fig. 1 (Step #1) and Supplementary Fig. S1, which mainly included three steps.

Construction of a rough network. Interactions between these 90 proteins were collected
from four PPI databases, including the Biomolecular Interaction Network Database
(BIND)51, Human Protein Reference Database (HPRD)52, Biological General
Repository for Interaction Datasets (BioGRID)53 and Search Tool for the Retrieval of
Interacting Genes/Proteins (STRING)54. Finally, we obtained a PPI network with 90
nodes and 412 edges (Supplementary Figure S18).

Filtering the highly noise-induced interactions. Two interacting proteins always have a
positive or negative temporal relationship between their expression profiles. To filter
the highly noise-induced interactions, we calculated their Pearson’s correlation
coefficients (PCCs) based on their gene expression data and then deleted any PPI
pairs with a PCC rank in the bottom 10% rank. Because the correlation value was only
the first discrimination parameter in the overall procedure of gradual refinement, it is
necessary to avoid missing any possible PPI pairs at this early stage. The primary aim
in this step is to delete only the highly unlikely PPIs. After selecting possible PPIs, we
obtained the refined network.

Optimization of the network

1) Building the ordinary differential equations (ODEs)-based model of the net-
work. The PPI network can be described using the following ODEs.

dyi

dt
~
XL

j~1

bijyj{diyizki,i~1,2,:::,n, ð1Þ

where yi~ y1
i ,y2

i ,:::,ym
i

� �T
represents the activity level of protein i, bij denotes

the interaction ability of the i-th interactive protein to j-th protein, L is the
number of proteins interacting with protein i, di indicates the degradation
effect of the protein, ki represents the basal activity level, n is the number of
proteins, and m is the number of samples.

1) The ODE model can be rewritten in the following form.

dyi

dt
~ y1 � � � yL {yi 1½ �

bi1

..

.

biL

di

ki

2
66666664

3
77777775
: ð2Þ

We applied the cubic spline method to interpolate the microarray data to
obtain data containing 49 desired samples. For convenience, we substituted
the derivative values with the central difference.

1) After defining Yi~
dyi

dt
, Wi~ y1 � � � yL {yi 1½ �, and

hi~ bi1 � � � biL di ki½ �T , we converted equation (2) into the following
linear model.

Yi~Wi
:hi,i~1,2,:::,n: ð3Þ

The problem of estimating parameters hi in the linear model can be trans-
formed into the following optimization problem.

min
hi

Ja(hi)~
1
2

Wihi{Y ( exp )
i

��� ���2

2
z

a

2
hik k2

b,

Ahiƒ0

ð4Þ

where Y expð Þ
i is the experimental data, a is a weight parameter and :k kb is 1-

norm or 2-norm, which is used to guarantee the stability and sparsity of
optimal parameters. A 5 diag(0,…0,21,21), which provides the constraints
to force the parameters di, and ki in the equations to always be nonnegative, in
accordance with the biological meanings.

2) Selection of the weight parameter a. Selection of the weight parameter a in the
optimization problem in equation (4) is very important. A large value of a will
result in a model with a large residual. In this study, we investigated the
relations between the model residual and the constant a, which was displayed
in Supplementary Figure S19. When the constant a is less than 0.0001, the
model residual is no longer significantly reduced. Therefore, we chose a value
of a of 0.0001.

3) An optimization algorithm for estimating parameters in the optimization prob-
lem. We proposed an improved conjugate gradient method (ICG) to solve the
optimization problem in equation (4). The main difference from the classical
conjugate gradient method is that we used the function fmincon in Matlab
toolbox to estimate the initialization point. The detailed procedure of the
algorithm was given (Algorithm 1 in Supplementary Text).

4) Akaike Information Criterion. To determine whether the interactions between
two proteins were significant or just a false positive, we used the Akaike
Information Criterion (AIC) to validate the model order (or the number of
model parameters) to determine the significance of our dynamic model para-
meters. The AIC, which attempts to include the estimated residual variance
and the model complexity in one statistic, decreases as the residual variance
decreases and increases as the number p of parameters increases. As the
expected residual variance decreases with increasing p for inadequate model
complexities, there should be a minimum around the correct number p of
network parameters. For a model with p interaction parameters to fit with data
from N samples, AIC can be written as follows55.

AIC pð Þ~ log
1
N

Y{ Y
^

� �T

Y{ Y
^

� � !
z

2p
N

, ð5Þ

where Y indicates the protein activity in samples, and Y
^

denotes the estimated
activity of the protein from the dynamic model.

4) This is a tradeoff between the residual variance and the model order. The
minimization of AIC will determine the true model order, i.e., the number of
interactions in the network. After minimizing AIC, we can easily determine
the significant interactions and then construct an optimized network.

5) Average relative error. The average relative error (ARE) is defined as follows.

ARE~
1
6

X6

i~1

Ysim tið Þ{Yexp tið Þj j
Yexp tið Þ

, ð6Þ

where Ysim(ti) and Yexp(ti) are the simulation and experiment expression values
of the protein at ti time point.

Characterizing networks from network structures. Network metrics, which were
used to compare the network features of the inflammatory network with those of the
normal network and to further characterize the inflammatory network, were explored
in this study. The metrics were summarized in Supplementary Figure S2.

Network entropy. The first network metric was network entropy. The local network
entropy of a node i, denoted Si, is defined as21,22

Si~{
1

log ki

X
j[N(i)

pij log pij, ð7Þ

where ki is the degree of node i, N(i) is the set of neighbor nodes of node i and pij

defines a stochastic probability matrix on the network, which is defined by

pij~
cij

�� ��P
k[N(i)

cik
, ð8Þ

where cij is the PCC between protein i and protein j.
The global network entropy, denoted S, is defined as follows:

S~
Xn

i~1

CiSi , ð9Þ

where n is the total number of nodes in the network, and Ci is the degree centrality of
node i, which is defined by56,
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Ci~
ki

n{1
: ð10Þ

The differential network entropy, denoted DSi , is defined as follows:

DSi~SI
i {SN

i , ð11Þ

where SI
i ,S

N
i is the local network entropy of node i in the inflammatory network and

the normal network, respectively.

Network energy. The second network metric was the network energy. The Helmholtz
free energy F of a network is defined as follows:

F~U{TS, ð12Þ

where T is the absolute temperature, which is set to be 1 in our study. S is the global
network entropy of the network, which is defined in the previous section. U is the
internal energy of the network, which is defined by57:

U~{
Tr AeAð Þ
Tr eAð Þ , ð13Þ

where A designates the adjacency matrix of the network, and Tr is the trace of the
matrix.

Other network metrics. Other common network topology metrics were also explored,
including eight local metrics (degree, betweenness centrality, bottleneck centrality,
closeness centrality, clustering coefficients, Maximum Neighborhood Component
(MNC), Density of Maximum Neighborhood Component (DMNC) and Eccentricity
(Ecc)), which were calculated using the CytoHubba58, and six global metrics (network
diameter, density, centralization, average path-length, average number of neighbors
and clustering coefficient) using the Network Analyzer plugin in Cytoscape23.

Significance test. To determine whether the distributions of the local network entropy
of the inflammatory and normal networks were significantly different, we used the
non-parametric one-tailed Wilcoxon rank sum test. We used the P-value of the test as
a measure of the degree of difference between the values in the two networks.

To test for a difference in the global entropy of the inflammatory and normal
networks, we used the following procedures. We first permuted the virus-infected
sample labels and recalculated the global entropy of the inflammatory network. This
process was repeated L times. The significance level (P-value) of the tests was then
calculated by #ljSI

l ƒSN
obs, for l~1, � � � ,L

� 	

L. This equation describes the pro-

portion of the observed global entropy of the normal network that exceeds the
recalculated global entropy of the inflammatory network. SI

l and SN
obs are the global

entropy of the inflammatory network at the l-th time point and of the normal network
before this test, respectively.

Significance tests for the difference in the free energy of the inflammatory network
and the normal network were performed using the same processes, as described
above.

Dynamical analysis of networks. The procedure for the dynamical analysis of
networks was presented in Supplementary Figure S3.

Protein selection in the differential network. Systematic identification of potential
target proteins can provide insights into the mechanisms underlying complex dis-
eases, and help to develop efficient therapies or effective drugs. To detect potential
target proteins in the inflammatory response, we constructed a differential PPI net-
work, which was obtained by removing the common edges that appeared in both the
inflammatory and normal networks. Therefore, this network included the edges that
appeared only in the inflammatory network. Only those proteins in the top 10% of the
degree distribution of this differential network were treated as potential target pro-
teins. The potential target proteins are further selected using the following criteria: (1)
Proteins are annotated with different immunological function, including receptor,
regulator and cytokines. (2) If several proteins have the same degree, the proteins with
higher betweenness centrality are selected.

Nonlinear dynamical models for two sub-networks. Generally, nonlinear dynamical
models for networks can be formulated as the following ODEs.

dxi

dt
~fi x1,x2,:::,xN ,aij
� �

{dixizki, i~1,2,:::,N, ð14Þ

where xi~ x1
i ,x2

i ,:::,xM
i

� �T
represents the activity level of the protein i, fi is a nonlinear

function, aijgK (the parameter set consisting of all the parameters) is the reaction
rate constant for the j-th protein to the i-th protein, di gK is the degradation rate of i-
th protein, kigK is the basal activity level of the i-th protein, N is the number of
proteins in the sub-networks and M is the number of samples.

The problem that identifies the kinetic parameters in K in the ODE models can be
converted into the following nonlinear optimization problem, which is the min-
imization of the error between the simulation results in our model and the experi-
mental data.

min
K

XN

i~1

XM

j~1

vi xsim
i tj,K
� �

{xexp
i tj
� �� �2

zcjjKjj22, ð15Þ

where xexp
i tj
� �

and xsim
i tj,K
� �

are the experimental data and simulation value of the i-

th protein at the tj time point, respectively. vi~1

,
max

j
xexp

i tj
� �� �2

, and c is the

regularization parameter, which can guarantee the numerical stability of this
optimization problem.

According to the interactions in both sub-networks (Supplementary Fig. S20), the
specific models for the inflammatory and normal sub-networks were presented in
Supplementary Text.

The DMGBDE algorithm for estimating parameters in the ODE models. To estimate
the kinetic parameters in the nonlinear ODE models, we applied our newly-developed
DMGBDE algorithm to solve the above optimization problem. The DMGBDE
algorithm embedded the gradient algorithm into the differential evolution (DE)
algorithm59 and introduced a diversity-maintained mutation (DMM) to slow down
the learning procedure from the searched best individual. Numerical experiments
have demonstrated that DMGBDE algorithm is a very powerful population-based
stochastic search technique for solving complex optimization problems. The pro-
cedure of DMGBDE algorithm was proposed in Supplementary Text (Algorithm 2).

Data used for simulation and prediction. Because there were only six time points (0 h,
3 h, 7 h, 12 h, 18 h, 24 h) in the H5N1 dataset, cubic spline interpolation (Matlab
toolbox) was used to obtain the interpolated time points at each hour between 0 h and
24 h. We used the data from 22 time points as the simulation data and the data from
the final time point as the prediction data.

Measures of robustness. To quantitatively describe the robustness of networks, we
proposed two measures of robustness. One measure is used to examine whether the
perturbed network reaches the same number of steady-states as the original network.
Another measure is used to determine whether two networks (the original network
and the perturbed network) remain in the same steady-states in which they started.

The first measure of robustness, which includes both local robustness (LR) and
global robustness (GR), reflects the relative change in the steady-state levels of pro-
teins in a network for variations in the parameters.

The LR of the i-th protein with respect to the parameter Pj, denoted LRij, is defined
as follows.

LRij~
1
N

XN

k~1

Oss
i PjzDPk

jð Þ{Oss
i Pjð Þ

�� ��
Oss

i Pð Þ
DPk

j

Pj

��� ��� , ð16Þ

where Oss
i (P) is the steady state level of the i-th protein in the model, DPk

j is the k-th
perturbation to the j-th parameter Pj, and N is the total number of perturbations.

The global robustness GRi of the i-th protein is defined as follows.

GRi~
1
N

XN

k~1

Oss
i (PzDP){Oss

i (P)j j
Oss

i (P)

DPk

P

�� �� , ð17Þ

where DPk is the simultaneous perturbations to all of the parameters in the parameter
set P for the k-th perturbation, and N is the total number of perturbations.

According to these definitions, an LR or GR 5 1 means that a small change of x% in
the parameters leads to the same change of x% in the steady state. Smaller robustness
values indicate greater robustness for the system against parameter variations60.

The second measure of the robustness (ratio robustness) is defined as the ratio of
the number of systems that can reach steady states to the total number of systems in
which parameters were perturbed, denoted as RR, is calculated as follows.

RR~
1
N

XN

k~1

sk, ð18Þ

where sk 5 1 if the system reaches a steady-state for the k-th perturbation and sk 5 0,
otherwise. N is the total number of the perturbations. The metric RR takes a value
between zero and one. An RR 5 1 means that all proteins can reach the steady-states
in all perturbations, and an RR 5 0 means there are no steady-states with any
variations.
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