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The unusual tunneling effects of massless chiral fermions (mCF) and massive chiral fermions (MCF) in a
single layer graphene and bilayer graphene represent some of the most bizarre quantum transport
phenomena in condensed matter system. Here we show that in a two-dimensional semiconductor with
Rashba spin-orbit coupling (R2DEG), the real-spin chiral-like tunneling of electrons at normal incidence
simultaneously exhibits features of mCF and MCF. The parabolic branch of opposite spin in R2DEG crosses
ata Dirac-like point and has a band turning point. These features generate transport properties not found in
usual two-dimensional electron gas. Albeit its 7 Berry phase, electron backscattering is present in R2DEG.
An electron mimics mCF if its energy is in the vicinity of the subband crossing point or it mimics MCF if its
energy is near the subband minima.

hen a massless chiral fermion (mCF) encounters a potential barrier, reflection is completely sup-

pressed due the forbidden spin-flipping transition, a phenomenon known as Klein tunneling’. The

conservation of spin therefore leads to a perfect transmission of electrons through a high and wide
potential barrier at normal incidence [Fig. 1(a)]. The ‘Klein tunneling’ was first described by Klein as a paradoxical
behavior of relativistic electrons’. In single layer graphene (SLG), electrons in the vicinity of K-point follow linear
energy dispersion and are chiral in the sense that the pseudospins, which represents the relative contribution from
the sublattices, are locked to the direction of electron motion'. The low energy electrons in SLG are equivalent to a
spin-1/2 mCF in relativistic quantum mechanics®. Due to the relativistic description of the Dirac quasiparticle,
SLG serves as an ideal scaled-down platform to demonstrate the anomalous Klein tunneling in condensed matter
systems*°. In bilayer graphene (BLG), the low energy electrons mimic spin-1 massive chiral fermions (MCF). In
contrast to SLG, electrons in BLG are reflected perfectly by a potential barrier at normal incidence [Fig. 1(a)].
Since such a perfect reflection of electrons is chiral in nature, it can be regarded as a ‘Klein reflection’ effect which
has no counterpart in relativistic quantum mechanics.

So far the chiral tunneling in condensed matter systems is mostly focused on the pseudospin systems such as
SLG, BLG and other graphene-related structures where electrons exhibit exotic and relativistic dynamics”"". The
exotic tunneling effects of massless chiral fermion and massive chiral fermions (MCF) are expected to be
completely absent in non-relavistic Schrodinger systems. In this work, we shall demonstrate that the real-spin
chiral-like tunneling in Schrédinger systems can exhibit both mCF-like and MCF-like tunneling behaviors. We
consider a two dimensional semiconductor with Rashba spin-orbit coupling (R2ZDEG)"*"** which is described by
the following Hamiltonian,

2
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H=-"—
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(oxp)e.. (1)
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Here ¢ is the Pauli spin matrix, A is the Rashba spin-orbit coupling parameter and m* is the electron effective
mass. The eigenvalue is given as E(k) = K2 /2m"* + slk (s = *1). The band structure of R2DEG is shown in
Fig. 1(b). The parabolic band of electrons with opposite spin are left-right shifted by kso = m* A /h? in phase-space,
giving rise to a subband crossing point (X-point) at k = 0. The energy difference between the X-point and the
subband minima is given by Eso = m* 2% /2. The chirality of the quasiparticle in SLG and BLG is loosely defined
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Figure 1| Klein effect in condensed matter systems at normal incidence. (a) perfect transmission of massless chiral fermion in SLG and perfect reflection
of massive chiral fermion in BLG. (b) Band structure of R2DEG. (c) Simultaneous mixture of massless and massive chiral fermions transport across a
potential barrier V(x) in R2EG. The tunneling process (outlined by solid box) mimics massless chiral fermion while the reflection process (outlined by
dahsed box) mimics massive chiral fermion. In (a)—(c), the arrows denote the direction of motion of the quasiparticles and electrons. The blue and red
branches denote the decoupled branches of opposite pseudospin [(a) and (b)] and real-spin [(c)] at normal incidence. (d) Fermi contours at the

incident side (x < 0) and at the transmitted side (x > 0).

as the projection of the pseudospin on the particle’s group velocity™'?,

i.e. 06, where b and ¢ are the unit vectors of the group velocity and
pseudospin respectively. In R2DEG, the spin polarization lies in the
plane of the electron gas and is perpendicular to the electron wave-
vector. It is not possible to define ‘chirality’ using the same dot
product method. However, all electrons residing in a particular
Fermi circle do follow a fixed & x P relation where P is the direction
of real-spin and hence the electrons can be regarded as ‘chiral-like’.
Such a description allows us to link the real-spin chiral-like tunneling
phenomena in R2DEG directly with the pseudospin chiral tunneling
effect in SLG and BLG. Furthermore, the two branches of opposite
pseudospins cross and touch in SLG and BLG respectively. The
crossing and touching points are commonly known as the ‘Dirac
point’ due to the relativistic dynamics of the quasiparticles. In
R2DEG, the spin splitting, and hence the formation of the X-point,
has its root from the relativistic effect of the electrically confined
electrons (which manifests itself as a Rashba Hamiltonian linear in
k). This justifies the interpretation of the electron tunneling across
the Dirac-like X-point in R2DEG as a chiral-like tunneling
phenomenon.

The energy dispersion of electrons at the vicinity of the X-point is
nearly linear and therefore closely resembles the mCF dispersion in
SLG. Additionally, electrons at the vicinity of the subband minima
are furthest away from the linear X-point and exhibits the strongest
parabolicity. As a result, these electrons mimic the MCF in BLG. As
shown in Fig. 1(c), an incident electron can only be scattered by a
potential barrier to states lying in the same spin-split subband in
order to conserve real-spin. For transport of an electron of a given
energy with respect to the X-point, two possibilities arise: (1) electron
transmission to a spin non-flipping state below the X-point or (2)
electron reflection to a spin non-flipping state above the X-point.
Process (1) is in the same spirit as the Klein tunneling of mCF in SLG
while process (2) is more akin to the Klein reflection of MCF in BLG.
The electron quantum transport across a potential barrier in R2DEG
can thus exhibit both mCF-like and MCF-like behaviors.

Results

Transmission and reflection probabilities. The electron trans-
port across a potential barrier V(x) in R2DEG is governed by the
Hamiltonian,

Rk .
w + V(x) /l(ky + lkx)
_ n’k?
j.(ky—lkx) W +V(X)

H(x.k)= (2)

We model the potential barrier by V(x) = O(x)V, + 6(x)Z, where
O(x) is a Heaviside step function, d(x) is a Dirac delta function, V,
and Z denotes the height of the step potential and the strength of an
interface potential respectively [Fig. 1(c)]. In order to make parallel
comparison with the chiral tunneling of electrons in SLG and BLG,
we consider only the case where the incident state lies above the X-
point with E > 0 and the transmitted state lies below the X-point with
E < 0. This sets up an incident energy condition of Vo > E > V, —
Ego. For electrons incident from the left of the junction (x < 0), an E
> 0 constant energy surface intersects both s = *1 branches at two

concentric circles of radius k) = {/2m / 12(Eso 4 E) — skso. For the

transmitted electron in the region of x > 0, an E < 0 constant energy
surface intersects only the s = —1 branch. However, due to the
existence of a subband turning point (i.e. the subband minimum),
the constant energy surface again intersects two concentric circles of
radius g, =kso + oc\/Zm/hz(ESO +E— V) wherea = =1 [Fig. 1(d)].
Unlike SLG and BLG where s = —1 states are always hole-like in the
sense that the motion of electron is antiparallel to its wavevector, the s
= —1 branch states of R2DEG are electron-like in the outer circle «
= +1 and hole-like in the inner circle o = —1. The existence of hole-
like states in the s = —1 branch suggests that negative electron
refraction and electron focusing effect'®'”, previously reported in
SLG", BLG'® and topological insulator'>*, can also be realized in
R2DEG via transmission of electrons to o = —1 circle of thes = —1
branch.

The eigenstates of Eq. (1) for electrons in the x < 0 and the

SN T
x > 0 region are given as §(5> = 1/\/5(1,—51’614’()) and 5&”:

1 / V2 (l,ieied) T, respectively. Generally, an electron in s-state incid-
ent from the x < 0 region can be reflected to s and —s branches in the
region x < 0, or be transmitted to o = =1 states in the region of x > 0.
The reflected and transmitted angles, ¢’s and s, are related by the
conservation of momentum component parallel to the interface, i.e.
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Figure 2 | Transmission/reflection probabilites at normal incidence, (a) at different ) with Z=0, solid line: T®),(€=0.1), dashed line: R®,(€=0.1),
O: T¥,(£=10), O: RY,(£=10); and (b) at different Z with £=1, solid line: T®),(V=0.1), dashed line: R¥,(V=0.1), O: T¥,(V=0.9), ¢:

RY.(V=09).

k9sin ¢ =k(~9sin '~ = g,sin Hé_) where k¥ and ¢© are the
magnitude and direction of the incident wavevector. We construct
the total wavefunctions in the x < 0 region ¥'; and in the x > 0 region
Wr. The transmission/reflection probabilities can be obtained by
connecting ¥; and Wy via the boundary conditions Wi|,—y =
Wrli—oand Wylx—o— W} lx=0= (ZmZ/Flz)‘{’R|x:0. At normal incid-
ence, the probabilities are found as,

9 (9-0) =12, (4 =0

(45(5):0):( T+E—V1-V) 4422
(VIFE+VI—V) +422’ (3)

T(S (¢(S):O>: 4\/1+S\/1—V
* (VIFE+VI—V) +427

where we have defined dimensionless parameters &=E/Esp,
V=(V—E)/Espand Z=Z/ . RE,S ) denotes the reflection probability

of s — s’ reflection process and Ta(f> denotes the transmission of an s
incident state into an o state of s = — 1 branch. The spinors are states
of a spin component orthogonal to k so that the spin orientation
always points in a direction perpendicular to k. At normal incidence,
R and T¥) _are strictly zero since the cross-subband processes of s
— s reflection and s to o = s transmission requires reversal of spin
orientation. Therefore only the spin non-flipping transitions of s —
—s reflection and o = —s transmission are permissible, leading to
non-zero R@S and T(_S)S at normal incidence.

Eq. (3) reveals that the two parabolic branches of opposite spin are
decoupled. Such decoupling is also evident in SLG and BLG at nor-
mal incidence. In fact, the decoupling of branches of opposite pseu-
dospin is the most important condition for the Klein tunneling and
the Klein reflection. In SLG, the mCF energy spectrum decouples
into two independent linear branches of opposite pseudospin crosses
at the Dirac point whereas in BLG, the MCF energy spectrum decou-
ples into two independent parabolic branches touching at the Dirac
point. Due to this decoupling, the mCF must be confined in its own
pseudospin branch, leading to the Klein tunneling of mCF across a
potential barrier. In BLG, the decoupled pseudospin branch only
touches at the Dirac point without any band crossing. Since there
is a band turning in the parabolic pseudospin branch, the confine-
ment of electron within a decoupled pseudospin branch requires to
electron to be reflected. In R2DEG, the decoupled real-spin branches
are parabolic and has a band turning point (as in the case of BLG),
and they also cross each other at the X-point (as in the case of SLG).

0

The electron transport is therefore a hybrid of the tunneling phe-
nomena in SLG and BLG. In Eq. (3), it is seen that the transmission
and reflection within the same real-spin branches are both finite.
This further elucidates the hybrid between of mCF and MCF beha-
viours in R2DEG.

Whether an incident electron is preferentially transmitted or
reflected depends on the properties of the incident and transmitted
states in the R2DEG band structure and is influenced by £ and V. The
energy parameter £ characterizes the ‘Dirac-ness’ of the incident
electron, with £—-0 representing a mCF-like incident state at the
vicinity of the X-point. The potential parameter V), ranging from 0
to 1, characterizes the ‘Dirac-ness’ of the transmitted electron. In the
trivial case when V—0, the transmitted state is at the vicinity of the
X-point and the electrons mimic mCF in SLG. In contrast to V—0,
when V—1, the transmitted state is at the vicinity of the subband
minima and the electrons are MCF-like, as in the case of BLG. In
Fig. 2(a), we show the crossover of the transmission/reflection prob-
abilities from mCF-like behavior to the MCF-like behavior when V
varies from 0 to 1 with Z=0. We first restrict ourselves to the
extreme case of Dirac-like incident state at an energy £=0.1 with
(i) V>0 and (ii) V—1. Case(i) is the trivial case where the mismatch
between the incident and the transmitted states is vanishingly small.
In this case, electron transport occurs around the X-point and is
dominated by very high transmission. For case (ii), the transmitted
state is further away from the X-point and is MCF-like. We obtain a
completely opposite result where electrons are reflected with high
probability. Therefore, the highly transmitting mCF-like behavior
and the highly reflective MCF-like behavior are both present in
R2DEG. At intermediate £ and V, the quantum transport phenom-
ena is a mixture of the mCF and MCF tunneling effects where both
transmission and reflection are possible. We emphasize that the
electron transport in R2DEG is a hybrid of transmission of the
mCF and reflection of the MCF. Perfect Klein tunneling and Klein
reflection of electrons does not occur in R2DEG unless in the above
mentioned trivial cases.

When V-1, reflection dominates because of the vanishing Fermi
radius of the transmitted states. We would like to point out an inter-
esting situation when £—0and V— 1. The incident electron is mCF-
like while the transmitted state is at the proximity of the subband
minima and is MCF-like. The ‘massless’ incident state prefers trans-
mission while the ‘massive’ transmitted state forbids transmission.
This is loosely analogous to the situation of ‘an unstoppable object
meeting an impenetrable barrier’. In fact, the chiral tunneling of
electron at normal incidence can be interpreted as the absence of
the s — s reflection process due to the spin non-flipping requirement.
In graphene, there is only one possible pseudospin non-flipping
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transmission mode while in R2DEG there exists an additional spin
non-flipping reflection state in the s = —s branch. The electron
transport condition can be re-stated as: (i) no s — s reflection as
required by the incident state; and (ii) no o = —s transmission as
required by the transmitted state. This leaves the incident electron
with only one choice, i.e. to be reflected to the —s branch. In Fig. 3(b),
we show the transmission/reflection probabilities in the presence of
an interface potential Z > 0. Reflection of s — s and transmission to o
= —sare always forbidden regardless the strength of Z. The interface
potential in the present structure is non-magnetic and the spin-orbit
coupling is not due to spin accumulation. As a result the chiral
tunneling in R2DEG is well protected from the interface potential.
The effect of Z is to enhance the RQS reflection and to suppress the
T@S transmission (shown in Fig. 2(b)). In the extreme case of Z— o,

it can be shown from Eq. (2) that R(j)S =1and T@S =0.

Berry phase and electron backscattering. When electrons are
transported around a closed loop adiabatically in k-space,
the wavefunction acquires an additional Berry phase of geome-

tric nature: 7= % dk-A, where the Berry connection is A=
4

i¢! (k) Vi&,(k)?". The Berry phase is closely related to the transport
phenomena. One classic example being graphene where the = Berry
phase associated with the pseudospin rotation leads to the absence of
electron backscattering®?’. In R2DEG, A= — 1 and the Berry phase
is also 7**. Electron backscattering is, however, permissible in
R2DEG. To illustrate this peculiar result, we consider the spin
polarization: P;= 51055. Because P, - (k/k) = 0, the spin is
perpendicular to the electron wavevector k. Furthermore, spin
polarization is contained entirely in the plane of the R2DEG and it
rotates, with respect to k, in opposite directions along the s = *1

40 60 80
(%)

Fermi circles (P; rotates in clockwise direction along the s = +1
Fermi circle and in anti-clockwise direction along the s = —1
Fermi circle) as dictated by P, x (k/k)=sz. For an incident
electron with incident angle ¢, the spin polarization is

Pgi) =s (Q sin ¢ —9 cos ¢($)) . The reflected electron spin polariza-

tion is

P(r>s= is(f\( sin ¢ +% cos ¢<S)), (4)

for s — s and s — —s reflection respectively. At normal incidence,
the spin polarizations of both incident and reflected electrons are

purely y-directional: Pgi) = —5/}> and P@S = is?. Correspondingly,

Pgi) = iP(_r)s and this implies that the spin orientation is reversed
in s — s reflection while it remains unchanged in s — —s
reflection. During the spin-flipping s — s reflection, electron
acquires an additional © Berry phase and, as in the case of the
psudospin chiral tunneling in graphene, s — s backscattering is
forbidden. However, in the spin non-flipping s — —s reflection
process, the electron does not acquire an additional Berry phase.
Consequently, the s — —s backscattering is permissible and this
leads to the rather surprising result that electron backscattering is
present in R2DEG albeit its 7 Berry phase.

Spin-polarized transmission through a n-p junction. The nume-
rical results for finite incident angle transmission/reflection proba-
bilities are shown in Fig. 3 for two incident states s = *1 with £=1
and V=0.5. At finite incident angles, R*) and T'*) are no longer zero
since the spins are mixed. The transmission and reflection
probabilities sum up to one as there is only one incident electron
and the electron current moving across the interface is conserved as

I = - jm————————
r NSO
- N
0.8 Vi
\
il —R, 2=01
0.6 Y ——gr0)
=)
0.4 A
li
0.2 l
. [
/i (b)
A1
\ _- |
0 _

Figure 3 | Probabilities at finite incident angle # at two incident states s = =1 with Z=0.1 in (a) and (b); and with Z=1in (c) and (d).
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required by the charge continuity condition. For thes = —1tos =1
reflection process, there exists a critical incident angle of ¢ = sin ™"
(K“9/k). The critical angle for the transmission of s incident state is

given as ¢U=sin~! (% / k(s)). The transmission/reflection
probabilities vanishes when the critical incident angle is exceeded.
In Fig. 3(a), T=) dominates when the incident angle is small. For

incident angle greater than o) (*) becomes the only permissible
transmission process. For the s = —1 incident state, the « = —1
branch has a relatively small radius in k-space. Due to the smallness
of ¢, the T process is nearly absent as shown in Fig. 3(b). For
small and intermediate incident angles, the s = —1 incident electron
prefers R(J:> reflection and T(;> tunneling where the mismatch of
spin orientation is not too large. Once the incident angle exceeds

¢( )c

Sr >%1 up to the intermediate incident angle regime. At larger

tunnehng becomes the only possible process and hence

incident angle, the mismatch of spin polarization of the R(™)
reflection decreases and R~ rapidly approaches unity. The effects
of the interface potential Z on the transmission/reflection
probabilities are shown in Fig. 3(c) and 3(d). For the s = +1
incident state, Z suppresses transmission and amplifies reflection
at small incident angle. At larger incident angle, Z however
promotes the transmission to o = +1 [Fig. 3(c)]. For the s = —1

AT
02 04 06 08

-04 -02 0
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incident state, transmission is always suppressed Interestingly, <7)

is briefly unity well before the termination of T [F1g 3(d)]. Slnce
the electron transport across a potential barrler in R2DEG is
sensitively influenced by &, V and Z, tuning of these parameters
offers a possibility of manipulating the spin polarization of the
transmitted electrons. We further investigate the spin-polarized

electron transport by deﬁning

TEV)= Z/( ¢8V+T£(¢,8,V)

Here, A7 >0(A7 <0) represents the excess transmission of
electrons to o = +1 (¢ = —1) branch. In Fig. 4(a), AT is
dominantly positive when VV—0 due to the smallness of the critical

angles of T'*). AT is dominantly negative when V—1 where the
radius of the « = —1 branch in phase-space is large enough to
accommodate more electron transmissions. In general, Z does not
significantly modify A7 with the exception that at large V),
transmission to the « = —1 state is strongly enhanced by small
Z=0.2 as shown in Fig. 4(b). Fig. 4(a) and Fig. 4(b) suggest that
plays an important role in determining the sign of A7. We verified
this by examining the Z-and £-dependence of A7 at two contrasting
choices of V=0.1 in Fig. 4(c) and V=0.9 in Fig. 4(d). At V=0.1,
AT >0in the entire ranges of 0 < £ <2 and 0 < Z <5 [Fig. 4(c)]. The

AT

Figure 4 | Dependence of spin-polarization, A7, on V, £ and Z. (a) V-and £-dependence at Z=1. (b) V-and Z-dependence at £=1. £-and Z-

dependence at (c) V=0.1; and (d) V=0.9.
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polarization is completely reversed to A7 <0 at V=0.9 as shown in
Fig. 4(d). This immediately suggests that electrons are preferably
transmitted to « = +1 (¢« = —1) branch if the transmission state
mimics massless (massive) chiral fermion. The R2DEG junction thus
works as a spin-polarizer which polarizes electrons into oo = =*1
branches depending on the choice of V.

Discussion

We have calculated the electron transport across a step potential in
R2DEG. We demonstrated the simultaneous occurrence of both
mCF- and MCF-like tunneling behavior in a non-relativistic
Schrédinger system. The Rashba spin-orbit coupling can give rise
to adjustable transparency for electron transport at a semiconductor
junction. Apart from the non-relativistic nature of the R2DEG sys-
tem, there is another interesting distinction between the chiral tun-
neling in the present system and the chiral tunneling in a relativistic
system or in SLG. In graphene, incident electrons are in the conduc-
tion band and transmitted electrons are in the valence band. In the
present system, the states on the two sides of the junction are both in
the conduction band and the valence band is not involved in our
analysis. The results presented in this work is in the ballistic transport
regime where the sample size is assumed to be smaller than the
electron mean free path. In the diffusive regime where disorder
and interaction is important, localization of the two-dimensional
electron gas is expected to occur®*®. Weak localization of electrons
in R2DEG has been experimentally observed in a Zn doped p-type
InAs single crystal”’. We therefore expect our results to be quantita-
tively different with that of the diffusive regime. However, as long as
the impurity does not cause spin-flipping, the chiral-like transport
phenomena at normal incidence will remain valid. To observe the
R2DEG electron transport and its crossover between mCF and MCF
behavior, a large Ego is preferred since it allows a larger tuning range
for V. Experimental results on layered semiconductor BiTel** and
surface state of Bi/Ag(111)* have revealed giant RSOI with Eg in the
order of 10> meV. A junction based on these materials may be a
suitable system to experimentally study the the crossover from
mCF-like and MCF-like tunneling phenomena.

Methods

In this section, we briefly discuss the general procedures to obtain the transmission
and reflection probabilities. On the incident side (x < 0), the total wavefunction is
given as

£ congl o o i) gl
‘{-’L:f(s)e'k(/“’“pl x Z rifjé(sl) e (6)

s=41

where s = %1, * denotes complex conjugate, ¢ is the angle of incidence of an

electron in the s-branch and rgf ) denotes the reflection coefficients of the s — s’
reflection process. The eigenstate can be explicitly written as

£ = { ' } )

—ise "
On the transmitted side (x > 0), the total wavefunction is given as
Y= t(i)§+eiq+ cosyx +t(j)éi e—iq, cosO_x (8)

where t(is) is the transmission coefficients to o = *1 state. The second term of Eq. (8)
is a hole-like transmitted state whose direction of motion is antiparallel with its
wavevector and hence it carries a factor of e~ “*/-* The eigenstate is given as

1

b= {11’5?"”’] ©)
Due to the conservation of k,, the s — s’ reflection angles can be obtained vas ¢’ =
sin™'(k9/k“" sin ¢“) and the transmission angles into the o branch can be obtained as
0, = sin”'(k¥/q, sin ¢*), where ¢ and k* are the incident angle and wavevector
respectively and s’ = 1. W and W can be connected by the boundary conditions at
x=0,ie ¥l = Yrlxmoand d,Wr|x=o — d¥1|s—o = 2mZ /. This leads to a set
of simultaneous equations

1 1 —1 —1 ) -1

£i(+) _eit(-) il it 6 et
Z k) cos g+ — K cosg ) —q, Q. o [T k9 cosg? (10)
k) cos g e(+) k() cos g (2) Qe Qe it pe) — sk® cos ) "

where Qi = g cos 0. = i2mZ/ 1. The transmission and reflection coefficients can
then be solved and the probabilities are determined from

©[?
5 (11)

(s) _ vy
RS/ =

T =ty

(s)
vs || &

where s = *1and s’ = *1. v, vy and u are the x-directional component of the
incident and reflected electron group velocity at x < 0 and of the transmitted electron
group velocity for x > 0 respectively. These are given by,

ve= /-2 (Eso+E) cos e

vy =1/:& (Eso+E) cos ¢ (12)
=1 /%(ESO‘FE* V) cos 0,
At normal incidence, Eq. (10) reduces to
1 1 -1 =1\ [ -1
1 —1 —1 1 ) s
= 13
—k+) k(=) -Q, Q_ t(i) — k) (13)
K0 -k Q. Q. £9) —sk®

where Q, =¢+ + i2mZ/h2. Eq. (13) can be decoupled into two sets of equations:

A o) = %
(s) () (14)
KO Q) ) = 155k
P8 () = =1=s
O £ 21 (15)
k(+)r(;‘) +Q+ t(j) = —T—sk(s)
Solving the above equation, we obtain
O _ o
s e} /
SRl SE (16)
() _ kD) 4k
===,

Knowing that the wavevectors are related by k) sin P =k sin () = qa sin H(y*)
and defining £=E/Eso, V= (V —E)/Eso and Z =Z/ ), we arrive at the main results
in Eq. (3).
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