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Housing markets play a crucial role in economies and the collapse of a real-estate bubble usually destabilizes
the financial system and causes economic recessions. We investigate the systemic risk and spatiotemporal
dynamics of the US housing market (1975–2011) at the state level based on the Random Matrix Theory
(RMT). We identify richer economic information in the largest eigenvalues deviating from RMT predictions
for the housing market than for stock markets and find that the component signs of the eigenvectors contain
either geographical information or the extent of differences in house price growth rates or both. By looking
at the evolution of different quantities such as eigenvalues and eigenvectors, we find that the US housing
market experienced six different regimes, which is consistent with the evolution of state clusters identified
by the box clustering algorithm and the consensus clustering algorithm on the partial correlation matrices.
We find that dramatic increases in the systemic risk are usually accompanied by regime shifts, which provide
a means of early detection of housing bubbles.

B
ecause houses and apartments are tradeable and are commonly used in speculations, they are considered as
a special kind of commodity. As time passes the house prices boom and bust. Because the housing market is
closely related to the financial system and plays a crucial role in economies, a crash of the housing market

usually has disastrous consequences, causing financial crisis and economic recession. Recent examples include
the 1997–1998 Asian crisis1–3 and the 2007–2012 global financial tsunami followed by the 2008–2012 global
recession and the European sovereign-debt crisis, none of which has ended4. When the correlations among the
constituents of a market become stronger and the ripple effect increases5, prices tend to converge6 and the
systemic risk increases. However, there is evidence showing that alternative measures based on eigenvalues
and eigenvectors of the correlation matrix outperform the average correlation in characterizing market integ-
ration7, quantifying systemic risks measured by means of the absorption ratio8, and constructing profitable
investment portfolios8,9. Hence, it is extremely important to understand the spatiotemporal dynamics of housing
markets through an investigation of the correlation matrix of price growth rates.

The correlation matrices of stock returns and indices have been widely studied in different markets10. The
studies have employed variety of methods ranging from the minimal spanning trees11, the planar maximally
filtered graph12 based on distance matrices, to RMT13,14. All methods can be used to identify constituent clusters in
financial systems10. When RMT is used to investigate the correlation structure of financial markets, the largest
eigenvalue serves to explain the collective behavior of the market, and other eigenvalues are commonly used to
explain clustering of stocks or indices into groups with specific traits.

The correlation matrices of housing markets are rarely studied, mainly due to the short length of house price
indices, where the sampling frequency is usually either monthly or quarterly. Using the RMT framework at the
state level, we investigate the spatiotemporal dynamics of the US housing market. We analyze the All-
Transactions Indices of the 50 states and the District of Columbia published by the Federal Housing Finance
Agency, which estimate sales prices and appraisal data. The data are recorded quarterly from 1975/Q1 to 2011/
Q4, giving a total of 148 values.

We denote Si(t) the quarterly housing price index (HPI) of US state i at time t. The logarithmic return at time t is
defined as

ri tð Þ~ ln Si tð Þ{ ln Si t{1ð Þ: ð1Þ
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For each moving window [t 2 s 1 1, t] at time t of size s, we compute
the correlation matrix C(t), whose element Cij is the Pearson correla-
tion coefficient between the return time series of US states i and j,

Cij tð Þ~ 1
sisj

Xt

k~t{sz1

ri kð Þ{mi½ � rj kð Þ{mj

h i
, ð2Þ

where mi and mj are the sample means and si and sj are the standard
deviations of the two states i and j respectively.

Stock markets are characterized by both fast and slow
dynamics15,16. To estimate the empirical correlation matrix and min-
imize the unavoidable statistical uncertainty, we use a large window
containing a large number of data points. Although large windows
reduce our ability to investigate the fast dynamics in correlation
studies, the correlation matrix is no longer invertible8,16 when the
window size is smaller than the 51 time series in our study (50 states
1 DC), implying smin 5 51. We set the value at s 5 60 quarters,
giving us 89 moving windows for investigation.

Results
Correlation coefficient. Figure 1A shows the average correlation co-
efficient of Eq. 2 calculated for each year during the last two decades.
In recent years the average correlation coefficient has sharply
increased indicating that the US housing market has become
strongly correlated. In the early years of the period studied, we find
that only a small number of states exhibit correlated housing indices.
In contrast, we find a sharp increase in housing market correlations
over the past decade, indicating that systemic market risk has also
greatly increased.

Eigenvalues. An important topic in economic theory is whether
housing market bubbles and financial bubbles in general are
predictable. Figure 1B shows that the largest eigenvalue l1 of C(t)
has trended upward since 1993. Note also that l1 sharply increased in
2008, coinciding with the bursting of the real estate bubble and the
world-wide financial crisis of 2007–2010. Figure 1B shows that the
largest eigenvalue l1 of C(t) is larger than the maximum eigenvalue

lmax predicted by the RMT and is also larger than the critical value
l5% of fRnd(l) (see Methods). For the second largest eigenvalue, we
find l2 . lmax for all C(t) matrices and l2 . l5% for most C(t)
matrices. We also find that the third largest eigenvalue l3 is larger
than lmax and l5% for most C(t) matrices, and the fourth largest
eigenvalue l4 is larger than lmax and l5% for part of the C(t)
matrices. In contrast, the fifth largest eigenvalue l5 falls well within
the range of fRMT(l) and fRnd(l) (Fig. S2). The eigenvalues l1, l2 and
l3 should thus contain information about nontrivial spatiotemporal
properties of the US housing market dynamics. We also include l4 in
our investigation.

In addition to using the average correlation coefficient we can also
measure systemic risk using the absorption ratio En~

X
n
i~1li=N ,

which is a better approach because perfectly integrated markets can
exhibit weak correlation7–9. Figure 1C shows the absorption ratio.
Note that the increase in systemic risk is approximately linear, even
during the burst of the housing bubble in 2007, indicating that the US
housing market continues to be fragile and unstable.

Collective market effect and regime shifts. To investigate the
possible collective market effect embedded in the deviating
eigenvalues, we compare the returns of the eigenportfolio with the
US HPI returns (see Methods). Before we proceed with the results for
the housing market, we note that for stock markets k1 ? 0 and usually
k1 R 1, and that kn < 0 for n . 118. Thus although the largest
eigenvalue reflects the behavior of the stock market, the other
eigenvalues do not.

In the following, we report that the RMT results obtained for the
US housing market (Fig. 2 and Fig. S3), which differ substantially
from the results obtained for stock markets. For the housing market,
we observe that the correlation coefficient k1 between R(t9) and R1(t9)
is large for the first four years, and then drops from 0.8354 (1993Q3)
to 0.0655 (1993Q4). Then l1 gradually increases to 0.8826 (2002Q2)
and 0.9593 (2002Q3) and remains close to 1. This behavior for l1

over time indicates that we can approximately identify three regimes
for three time periods: [1989Q4, 1993Q3], [1993Q4, 2002Q2] and
[2002Q3, 2011Q4] (see Methods). We find that the two regime-shift
points in Fig. 2(a) virtually overlap with the first two local minima in
the time dependence of l1 in Fig. 1. Therefore, in the regimes cor-
responding to the first and last time periods, the market effect quan-
tified by the correlation coefficient k1 is remarkable. In contrast, the
market effect is much weaker in the second time period (Fig. S3).
Within the second time period, we further identify a regime-shift
point between 1997Q1 and 1997Q2, where k1 drops from 0.6955 to
0.5879.

Figure 2(b) shows three regime shifts: 1993Q3–1993Q4, 1997Q1–
1997Q2, and 2002Q2–2002Q3, which, surprisingly, are identical to
those we found for l1. Figure 2(c) shows two regime shifts for the
third largest eigenvalue l3: 1993Q3–1993Q4 and 1997Q1–1997Q2,
which correspond to the first and second regime shifts found in
eigenvalues l1 and l2. Figure 2(d) shows three regime shifts for the
fourth largest eigenvalue l4: 1993Q3–1993Q4, 1999Q2–1999Q3, and
2002Q2–2002Q3, the first and third of which correspond to those
found for eigenvalues l1 and l2.

Using the four regime shifts in Figs. 2(a)–2(d), we identify five
eigenvalue regimes:R1~ 1989Q4, 1993Q3½ �,R2~ 1993Q4,1997Q1½ �,
R3~ 1997Q2,1999Q2½ �, R4~ 1999Q3,2002Q2½ �, and R5~ 2002Q3,½
2011Q4�, which reveal an interesting US housing market dynamic.
The five regimes are separated by four regime shift points: T 1 between
1993Q3 and 1993Q4, T 2 between 1997Q1 and 1997Q2, T 3 between
1999Q2 and 1999Q3, and T 4 between 2002Q2 and 2002Q3, where T 1

is visible in the evolution of k1, k2, k3 and k4, T 2 is visible in the
evolution of k1, k2 and k3, T 3 is visible only in the evolution of k4,
and T 4 is visible in the evolution of k1, k2 and k4. The cross-validation
of the four regime shift points in the four plots of Fig. 2 indicates that
our identification of the different regimes is valid.

Figure 1 | Evolution of correlation coefficient, deviating eigenvalues and
absorption ratio. (a) Evolution of the average correlation coefficient. The

horizontal red line shows the critical value at significance level 5% of the

correlation coefficient at each time t. The error bar is the standard

deviation of the PDF at each time t. For the evolution of the PDF, see Fig.

S1. (b) Evolution of the five largest eigenvalues ln of C(t) with n 5 1, 2, 3, 4,

and 5. The horizontal dot-dashed red line is the maximum eigenvalue lmax

predicted by the RMT and the horizontal red line represents the critical

values l5% at the significance level of 5%. The five vertical dashed lines

corresponding to the five regime-shift points. (c) Evolution of absorption

ratio En(t) for n 5 1, 2, 3, 4, and 5.
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We find that in regimeR1, only for the largest eigenvalue l1 is the
market effect–quantified by the correlation coefficient k1 between
R(t9) and R1(t9)–substantially large (Fig. S3). In regimeR2, the mar-
ket effect for l1 becomes substantially weaker than in regimeR1, and
l3 exhibits a moderately stronger market effect only at some time t
(Fig. S3). In regime R3, l1 and l2 exhibit a substantially stronger
market effect than l3 and l4. In regime R4, l1, l2, and l4 exhibit a
strong market effect. Finally, in regimeR5, only l1 exhibits a strong
market effect, while the rest of eigenvalues l2 2 l4 do not. We thus
find that the largest eigenvalue l1 almost always exhibits a market
effect, whereas the other eigenvalues exhibit a market effect only
infrequently, especially when the market effect becomes weak in l1.

Information contained in the eigenvectors associated with the
largest eigenvalues. We find that the components of the eigen-
vector of the largest eigenvalue are positive in stock markets when
the components exhibit small fluctuations over time, indicating a
market effect. The rest of the eigenvectors of other largest eigen-
values describe different clusters of stocks or industrial sectors18–20.
For the US housing market, we find that the eigenvectors of the
largest eigenvalues contain much richer information (Fig. 3 and
Fig. S4). The existence of five regimes R1 to R5 is clear and the
eigenvector components persist in each regime (see Methods).
Moreover, the graphical approach in Fig. 3 reveals that the regime
R5 can be separated into two regimes at 2007Q1 to 2007Q2
according to the evolution of u3.

Starting with the first eigenvector u1, we study its components over
time for different regimes. We find that in regime R1 almost all the
components of u1 are positive. In contrast, Fig. 3 clearly shows

that after 1993Q4 and during the three regimes R2 to R4 many
components of the first eigenvector u1 turn from positive to negative.
During the period from 1993Q4 to 2002Q2, positive components of
u1 approximately correspond to the states in the Eastern half of the
US and with California and Arizona in the Western US. It means that
the largest eigenvalue l1 partitions the states into two groups.
Because the states with positive components are predominantly the
states with high HPI values, l1 still exhibits a modest market effect.
As time passes, transferring from regime R4 to regime R5, states
with initially negative components turn from negative to positive
components.

For the eigenvector u2 in the first two regimesR1 andR2 we find a
comparable number of negligible positive and negative components,
and it is not completely clear what information is contained in the US
states with positive and negative components. At approximately
1997Q2 the number of states with negative u2 components drop
significantly, leaving the majority of states with positive components
that reflect a market effect. This predomination of positive compo-
nents over negative components persists inR3 andR4. Beginning in
late R4, the u2 components of Washington and California switch
from positive to negative, and a few Northeastern states do the same.
In regimeR5, the two state clusters, one with positive and the other
with negative u2 components, approximately correspond to states
with low and high HPI growth rates, respectively, as identified by
the super-exponential growth model21.

In the evolution of the eigenvector u3, we find two interesting
features. First, the majority of states in regime R2 have positive
components, reflecting a modest market effect. Second, there is an
evident subregime around 2007Q2, which surprisingly corresponds

Figure 2 | Market effect hidden in the largest eigenvalues. Each plot shows the evolution of the correlation coefficient kn(t) between Rn and R

in each moving window. The blue symbols are estimated using ordinary least-squares linear regression, while the red ones are estimated using robust

fitting. The four vertical lines indicate four regime-shift points T 1 between 1993Q3 and 1993Q4, T 2 between 1997Q1 and 1997Q2, T 3 between

1999Q2 and 1999Q3, and T 4 between 2002Q2 and 2002Q3, separating five different regimes. The shading area in each plot means that the associated

eigenvalue contains a market effect in the corresponding time period. See Fig. S3 for the scatter plots of Rn against R.

www.nature.com/scientificreports
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to the onset of the primary US mortgage crisis. The information
contained in other regimes is ambiguous, and it is difficult to extract
clear information from the evolution of the fourth eigenvector u4.

Evolution of state clusters. To better understand the spatiotemporal
dynamics of the US housing market at the state level, we partition the
states into clusters for each time t. Because there is a strong market
effect in the correlation matrices, the Pearson correlation coefficient
between the return time series ri and rj of two US states i and j may
not reflect their intrinsic relationship, but may reflect the influence of
the overall US HPI return rus on i and j22,23. We thus utilize a
clustering algorithm that uses the corresponding partial correlation
matrices P(t) by removing the market effect. In this way we obtain a
partial correlation matrix P(t) and an affinity A(t) for each t (see
Methods).

For each t, we rearrange the order of states in P(t) and C(t) to be
the same as in A(t). The evolution of the three matrices is illustrated
in Fig. S5. In the early years represented by regions R1 and R2, we
identify the state clusters (Fig. 4(a)) in which the number of states
forming each cluster is relatively small (Fig. 4(b)) and the constituent
states of the clusters are unstable (Fig. S5). These properties are
consistent with the fact that the average cross-correlation level
among US states is very low, indicating that the housing markets
of different US states are to some extent isolated. With the develop-
ment of the US housing market during the period 1996Q4–2002Q1,
more US states enter two different clusters of significantly different
sizes (Fig. 4(b)). This period roughly corresponds to the two regimes
R3 and R4. During this period both clusters are relatively stable
(Fig. 4(b) and Fig. S5). In regimeR5 the smaller cluster further splits
into two even smaller clusters which remain relatively stable. At
approximately 2007Q2 the larger cluster splits into two clusters of
comparable size, but shortly after the two smaller clusters merge back
into one (Fig. S5). Finally we find three stable clusters of similar size
that form the sixth regime R6.

For each window t there are up to four clusters of states and the
number of states in each cluster varies from one window to the next.
For each cluster, one of the four deviating eigenvalues makes a dom-
inant contribution (Fig. 4(d)). We find that in regimesR2 andR3 the
largest eigenvalue l1 participates in the cluster partitioning.

Figure 4(e) shows the spatiotemporal dynamics of the state clus-
ters. The states in the red cluster tend to have larger price fluctuations
(and a higher price value), and the states in the green cluster exhibit
smaller HPI growth rate fluctuations (Fig. S6). In the earlier years
(R1and R2) the clusters are unstable with a large number of states
shifting between clusters. During this period, the primary contri-
bution to the green cluster comes from the third largest eigenvalue
l3. In contrast, there are more eigenvalues contributing to the red
cluster. In 1997 we find that two rapidly-forming large stable green
and red clusters are dominated by l2 and l1, respectively. This phase-
transition-like phenomenon in 1997 may have been evidence of a fast
ripple effect within the US housing market. After 2005Q2 the red
cluster splits into two smaller clusters for approximately two years
and almost all of the clusters are dominated by l2. Beginning in
2007Q2 the green cluster partitions into two smaller clusters: the
red and green clusters are still dominated by l2 and the new yellow
cluster is dominated by l3. The time period of these two transitions
corresponds to the downturn in the US housing market. In short,
Fig. 4(e) shows the extreme complexity of the spatiotemporal
dynamics of the US housing market.

In order to achieve a finer resolution as we characterize systemic
risk, we divide the 51 time series into six clusters according to the
state clusters shown in Fig. 4(e). We form a sample with six return
time series, each being randomly chosen from a cluster. We use a
moving window of eight quarters (two years) size to determine the
eigenvalues of the correlation matrices of the sample. We repeat this
procedure 50 times and average the corresponding eigenvalues. We
find that the systemic risk increases sharply in the early 1990s and
drops to a relatively low level in late 1990s (Fig. S7). The absorption

Figure 3 | Evolution of the eigenvectors of the largest eigenvalues. The five regimesR1 toR5 are visible. Moreover, we observe that the regimeR5 can be

separated into two regimes at 2007Q1 to 2007Q2 according to the evolution of u3.

www.nature.com/scientificreports
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ratio increases dramatically in 2003 and remains historically high.
Unlike the results of an analysis of 14 metropolitan housing markets
in the United States9, our analysis shows that the systemic risk is still
at historically high levels after the housing bubble peaks.

Discussion
Using random matrix theory, we have investigated the complex spa-
tiotemporal dynamics of the US housing market at the state level.
Using long timescales, we divide the evolution of the market into
three time periods. During the first time period (1989Q4 to 1997Q1)
the market exhibits a low correlation, the largest eigenvalue reflects a
market effect, and the next three largest eigenvalues contain parti-
tioning information. During the second time period (1997Q2 to
2002Q2) the correlation among the states is still low and the market
effect of the largest eigenvalue becomes weaker. We find that the
largest eigenvalue contains partitioning information and that the
deviating eigenvalues exhibit a weak market effect. During the last
period, the largest eigenvalue exhibits a strong market effect and its
partitioning function disappears, which corresponds to the fact that

market integration has become significantly stronger and exhibits
sharply increasing average correlations. During this period, the par-
titioning of the states is primarily caused by the second largest eigen-
value. After the subprime crisis, the third largest eigenvalue exhibits a
partitioning function.

These regime shifts reflect the abrupt increases in systemic risk
that took place in the US housing market. Figures 4(b) and 4(d) show
that in 1997 most states were gathered into two clusters. Thus we
conjecture that the housing bubble that burst in 2007 had begun to
inflate as early as 1997. This finding is consistent with and provides
convincing evidence for our conclusion based on the evolution of the
absorption ratio9.

Note that there are both positive and negative components in the
eigenvectors of the deviating eigenvalues for most time windows.
When the components of an eigenvector have the same sign, it usu-
ally reflects a market effect. When an eigenvector has both positive
and negative components, especially when their amounts are com-
parable, the eigenvector may reflect either geographical information
or differences in house price growth rates or both. The information

Figure 4 | Evolution of the states’ clusters. (a) Typical affinity matrices A(t) (left column), partial correlation matrices P(t) (middle column), and

correlation matrices C(t) (right column). The order of the states is the same for the three matrices in each row. The ending quarters t of the windows from

top to bottom are 1989Q4, 1992Q2, 1997Q4, 2006Q3, and 2011Q3. (b) Number of clusters Nc(t) and the corresponding number Ns(t) of states included in

the detected clusters for each window. (c) Evolution of modularity M(t) and the squared sum V(t) of negative components in l1(t). (d) Maximal

information ratio G(ln) of certain eigenvalue ln contributed to a cluster. Each cluster is represented by a colorful symbol. The determination of symbols

and their coloring is explained in Methods. (e) Evolution of states clusters, where the order of the states is the same as A(t) at t 5 2009Q3. The states in a

certain cluster are assigned with a cluster-specific colorful symbol and no symbol is assigned to those states not in any cluster. The colorful symbols have

the same meaning as those in (d).

www.nature.com/scientificreports
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contained in the signs of the eigenvector components has recently
been reported for stock markets27–29. However, the US housing mar-
ket appears more complex than stock markets.

During the evolution of the US housing market, we observe that
prices diffuse in complex ways that do not require geographical
clusters30. This differs from worldwide stock markets, which exhibits
clear geographical clustering16. The splitting and merging of clusters
indicate that there is no national convergence of house prices.
Furthermore, the model in Ref. 6, in which there are several clusters
within which the prices converge is too simple, so we have used a
different approach for state clustering. We thus conjecture that there
are different classifications for converging clusters in different time
periods.

Methods
Determining deviating eigenvalues. For each t larger or equal to t 5 1990/Q1, we
calculate the correlation matrix C(t) and compute its 51 eigenvalues

ln : n~1, � � � ,51f g. Then we sort the eigenvalues {ln} in descending order and
calculate the corresponding eigenvectors un tð Þ~ un,1 tð Þ, � � � ,un,51 tð Þ½ �T.

If M is a T 3 N matrix with mean 0 and variance s2 5 1, we define C~
1
T

MTM. In

the limit N R ‘, T R ‘ where Q 5 T/N $ 1 is fixed, the probability density fRMT(l) of

eigenvalues l of matrix C is fRMT lð Þ~ Q
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmax{lð Þ l{lminð Þ=l

p
, where l g [lmin,

lmax] and lmin , max~1z1=Q+2
ffiffiffiffiffiffiffiffiffi
1=Q

p
17,13,18. If an eigenvalue l is greater than lmax–

and thus deviates from the prediction of the RMT–its eigenvector frequently contains
valuable information about market dynamics.

In real-world data, however, the limit conditions N R ‘ and T R ‘ are never
fulfilled and some finite-size effect should be included in the RMT studies. In order to
identify the deviating eigenvalues, we thus randomize the housing index time series to
eliminate any temporal correlations. We then calculate a new correlation matrix CRnd

from the randomized return time series, and compute the corresponding 51 eigenva-
lues. Repeating this procedure 1000 times we obtain a total of 51,000 eigenvalues based
on which we calculate the probability density of eigenvalues fRnd(l). Although the
density functions fRMT(l) and fRnd(l) overlap to a great degree, they exhibit some
differences in the right-hand tail. We find that fRnd(l) is not bounded by the maximum
eigenvalue lmax predicted by the RMT (Fig. S2). This is the case because the HPI
returns have fat tails. We retain only the eigenvalues that come from the distribution
fRnd(l) with a probability smaller than 5% and we denote the critical value to be l5%.

Construction of eigenportfolio. For each eigenvalue ln we construct its
eigenportfolio, the returns of which we calculate by

Rn t’ð Þ~uT
n t’ð Þ:r t’ð Þ ð3Þ

where t’~t{sz1, � � � ,t, and r t’ð Þ~ r1 t’ð Þ, � � � ,r51 t’ð Þ½ �T is a vector whose
components are state-level HPI returns defined in Eq. 1. To evaluate the collective
market effect embedded in ln, we investigate the following linear regressive model
between Rn(t9) and the return R(t9) of the US HPI

Rn t’ð Þ~kn tð ÞR t’ð Þz t’ð Þ, ð4Þ

where Rn and R are normalized respectively to zero mean and unit variance18, and
kn(t) is the correlation coefficient between Rn and R in time t9. If kn differs significantly
from 0, we assume the eigenvalue ln contains a market effect because the
corresponding eigenportfolio is correlated with the entire market18. The market effect
is stronger if kn is larger. To estimate the value of kn, we perform an ordinary least-
squares (OLS) linear regression together with a robust regression. Since the results
and conclusions for both methods are qualitatively the same, we limit our discussion
to the OLS results.

Partial correlations and state clustering. The partial correlation coefficient Pij

between ri and rj with respect to rus can be calculated24,23

Pij~
Cij{Ci,usCj,usffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1{C2
i,us

� �
1{C2

j,us

� �r , ð5Þ

where Ci,us (Cj,us) is the Pearson correlation coefficient between ri (rj) and rus. For each
partial correlation matrix P(t), we combine the box clustering and consensus
clustering methods to search for clusters of states25,26. We first determine the optimal
ordering of P(t) by identifying the largest elements in P(t) close to the diagonal, where
the simulated annealing approach is adopted to minimize the cost function

Q~
X51

i,j~1

i{jj jPij tð Þ: ð6Þ

We then use a greedy algorithm to partition clusters of states and isolated states25. We
repeat this procedure 200 times and obtain 200 partitions. We construct an affinity

matrix A9 whose element A’ij is the number of partitions in which i and j are assigned
to the same cluster, divided by the number of partitions 200. Finally we apply the
clustering method to the affinity matrix A9, resulting in a final partition A(t)26. For
each t, we rearrange the order of states in P(t) and C(t) to be the same as in A(t).

Identification of different regimes. To identify different regimes, we locate abrupt
changes in the evolution of different variables. The first class of variables is the degree
of market effect quantified by kn for the deviating eigenvalues as shown in Fig. 2. If the
absolute change jkn(t 1 1) 2 kn(t)j is significantly greater than the average of the
absolute changes around t, t is identified as a possible regime-shifting point. For the
evolution of eigenvectors in Fig. 3, if there appears to be significantly less similarity
between two successive eigenvectors un(t) and un(t 1 1), t is a possible regime-shifting
point. This similarity criterion can also be applied to the evolution of state clusters as
shown in Fig. 4(e). If the identified regime-shifting points overlap, their presence is
more convincing. Comparing the results from different variables can thus serve as a
method of cross-validation. Thus to design a reliable method of regime identification
we clearly need to construct mathematical models that include the kind of regime-
shifting seen in the US housing market.

Determination of symbols in Fig. 4(d). We assign the symbol for each cluster
according to the contribution made by the eigenvalues. Note that the correlation
matrix C(t) can be decomposed as31,32

C tð Þ~
X51

n~1

Cln tð Þ~
X51

n~1

ln tð Þun tð ÞuT
n tð Þ, ð7Þ

where Cln tð Þ~ln tð Þun tð ÞuT
n tð Þ is the matrix associated with ln, and its element is

Cln ,ij tð Þ~ln tð Þun,i tð Þun,j tð Þ. We define the information ratio of ln in a certain cluster
C tð Þ as

G ln,C tð Þð Þ~
P

i,j[C tð Þ Cln ,ij tð ÞP
i,j[C tð Þ Cij tð Þ , ð8Þ

which is the relative contribution of ln to C tð Þ, and the maximum information ratio
G(ln) can be easily determined. Since almost all the components of u1 are positive in
regimes R1,R5, and R6 (Fig. 4(c)), the partitioning function of l1 is weak. In these
time periods, the modularity defined in Ref. 33, 34 is also relatively small. We thus
exclude l1 from the determination of G(ln) in these three regimes. If ln(t) makes the
largest contribution to cluster C tð Þ (i.e., G ln,C tð Þð Þ is maximal), then an eigenvalue-

specific symbol is assigned to C tð Þ: circle (.) for l1, square (&) for l2, diamond (¤)
for l3, and triangle (m) for l4.

Coloring the states in Fig. 4(e). For a given time t, states belonging to the same cluster
are marked with the same color and states belonging to different clusters are marked
with different colors. For the sake of simplicity, we define for each t a color
configuration vector Wt, the elements of which correspond to the 51 states in a
predetermined order. The elements of Wt corresponding to each cluster are assigned a
unique positive integer and the remaining elements not belonging to a cluster are
assigned zeros. For two configurations Wt and Wt9, we define a measure of similarity J,

J Wt ,Wt’ð Þ~ Wt|Wt’j j
51{

P51
i~1 d0,Wt,iWt’,i

, ð9Þ

where dx,y is the Kronecker delta function, which is equal to 1 if x 5 y, and 0 otherwise.

The ultimate task of globally maximizing
X50

t’~1

X51

t~t’z1
J Wt ,Wt’ð Þ is impossible

since the number of the parameters in Fig. 4(b) is too large.
To solve the coloring problem, we adopt a heuristic algorithm. We determine the

colors of the clusters in reverse from 2011Q4 to 1989Q4. We separate the time period
into two intervals: I1 5 [1989Q4, 1996Q1] and I2 5 [1996Q2, 2011Q4]. For t 5

2011Q4 there are three clusters of states colored yellow, green, and red. As we
determine Wt for a given t g I2, all Wt9 with t9 . t are already determined. The

configuration Wt is determined by maximizing F2 Wtð Þ~
Xt’

t~1Q
J Wt ,Wtztð Þ,

where t9 5 min{6Q, 2011Q4 2 t}. When t g I1, we maximize F1 Wtð Þ~X1998Q3

t’~1997Q1
J Wt ,Wt’ð Þ. Note that small alterations in the assigned future reference

configuration does not affect the results.
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