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The impurities, introduced intentionally or accidentally into certain materials, can significantly modify
their characteristics or reveal their intrinsic physical properties, and thus play an important role in
solid-state physics. Different from those static impurities in a solid, the impurities realized in cold atomic
systems are naturally mobile. Here we propose an effective theory for treating some unique behaviors
exhibited by ultracold mobile impurities. Our theory reveals the interaction-induced transition between the
extended and localized impurity states, and also explains the essential features obtained from several
previous models in a unified way. Based on our theory, we predict many intriguing phenomena in ultracold
systems associated with the extended and localized impurities, including the formation of the
impurity-molecules and impurity-lattices. We hope this investigation can open up a new avenue for the
future studies on ultracold mobile impurities.

T
he experimental studies of impurities in the cold atomic systems1–5 has generated a lot of interests in this
research area. It provides great opportunities for simulating the static impurity effects which have been
shown in solid-state systems, like the pair-breaking effects and in-gap bound states6–8. On the other hand, the

impurity atoms with mobility possess strikingly unusual effects. This sparks many novel phenomena which are
hard to realize in solid materials, such as attractive9,10 or repulsive11,12 Fermi polarons and quantum flutter13. All
these push the study of the impurity effects into new prospects. Moreover, compared to the systems in real
materials, the physical quantities are easier to control with cold atoms. Specifically, the impurity-background (IB)
interaction can be precisely tunable in the experiments with the help of an external magnetic field4,5, which
facilitates exploring the exotic impurity physics with cold atoms.

The localized impurities, in analogy with the strong coupling polarons in solids14, were previously studied in
several cold atomic systems, including a Bose-Einstein condensate with one or several bosonic impurities15–19, a
superfluid Fermi gas with small number of bosonic impurities20 and a Larkin-Ovchinnikov superfluid with
fermionic impurities21. The extended to localized transition (ELT) of the impurity state is shown to have many
outstanding features: (1) Finite value of IB interaction is needed for the localization of the impurity atoms in two
and three dimensions (2D and 3D)15,16,20,21. (2) Any small IB interaction results in the localization of the impurity
in one dimension (1D)17,19. (3) The critical IB interaction for the localization of N (N . 1) bosonic impurities is
smaller than that of a single impurity18. These features are shared or partly shared in different systems, implying
some common behaviors exist in the IB interaction-induced localization of mobile impurities. In this paper, we
propose a phenomenological model that is able to explain all the features listed above, and in addition, we predict
some exotic features from this model that could be realizable in experiments with ultracold mobile impurities.
Although our effective model is proposed for cold atomic systems, it can be extended straightforwardly to other
systems with direct IB interactions. Thus our theory provides a general framework for understanding problems
associated with the interaction-induced localization of mobile impurities.

Results
The effective model. As shown in the Methods section, the impurities of a total number N immersed in a
background with a contact interaction can be effectively described by a universal energy functional regardless
of the impurities’ statistics:
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where nI rð Þ~
XN

i~1
Yi rð Þj j2 is the local density of the impurity

atoms and Yi(r) is the wave function of the i-th impurity atom.
The first term in equation (1) is the kinetic energy and the last two
terms are self-induced energies originating in the IB interaction. The
energy minimization of equation (1) leads to the one-particle self-
consistent equations for the mobile impurities:
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where mi are the Lagrange multipliers. The density distributions of
the mobile impurities are now determined by an effective system of
noninteracting atoms moving in a Kohn-Sham-like22,23 potential
veff rð Þ~{2anI rð Þz3bn2

I rð Þ, and the total energy of the

impurities is E~
XN

i~1
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Localization of single impurity. Quantum-mechanically, for a
single impurity atom confined within a length l, its energy in l–

dimension has a general form: E*
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to the Landau-Pekar treatment14 and was also used in several specific
systems15,16, the total energy E for a single impurity becomes
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where Bl 5 (2p)2l/2 and Cl 5 (3p2)2l/2. Since thermodynamic stability
requires a be positive (see Methods section), the energy contributions
from the kinetic part and a–part compete with each other. In fact, the
kinetic energy favors an extended state with l21 5 0 and E 5 0, while
the a-term favors a localized ground state with l 5 0 and E 5 2‘. A
positive b then stabilizes the system at a finite l and E. The
localization here is induced by the impurity itself which creates a
local trap in the background through the IB interaction. Below, we
show that all the essential physics about the ELT by tuning a,
including the classification and the critical behaviors of the
transition, are manifested in the competition of energy implied in
equation (3).

As shown in Fig. 1a, a localized state with a finite l21 always gives
the minimal energy Emin for any positive a, indicating that the impur-
ity is always localized in 1D. In 2D, Emin appears at l21 5 0 for small a,
while it appears with a negative value at a finite l21 for large a.
Therefore there exists a critical value ac above which the impurity
gets localized (see Fig. 1b). At the critical point a 5 ac, l{1

c ~0,
indicating that the ELT is continuous in 2D. In 3D as illustrated in
Fig. 1c, we also have ac . 0, but different from 2D, l{1

c w0 at the
critical point a 5 ac, which suggests a discontinuous ELT in 3D.
Additionally, there exists another critical value am in 3D, and in
the parameter region am , a , ac we have a meta-stable localized
state, although the ground state is still extended.

The critical behavior of the ELT in l-dimension is then determined

by
LE
Ll

~0, and near the transition point we have the optimized

localization length and energy:

l{1{l{1
c
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where n 5 1, d 5 2, ac 5 0, l{1
c ~0 for 1D; n 5 1/2, d 5 2, ac 5

constant, l{1
c ~0 for 2D; n 5 1, d 5 1, ac / b1/4, l{1

c !b{1=4 in 3D.
More precise forms of equation 4 can be found in the Supplementary

Information. By solving
LE
Ll

~0 and
L2E

Ll2 ~0 simultaneously in 3D,

we obtain am 5 0.877ac.
The exact impurity profiles and critical behaviors of the ELT can

be given by solving equation (2) numerically with the centrosym-
metric coordinates of the impurity state. We start with an initial
guess of nI(r), then calculate the potential terms. By minimizing
the total energy, we get the Yi(r) and a new nI(r). This process is
repeated until the final density is converged. It also needs to make
sure that the integration of nI(r) over the real space should yield the
total number N of the impurities. To extract the universal features
from the numerical results, we introduce the length/energy units and
dimensionless parameters: a9 and b9 (see Table 1). As shown in
Fig. 2a–c, there always exists a finite localization length in 1D while
in 2D and 3D the localization length l R ‘ for small a9, implying
that the impurity is always localized in 1D while a critical parameter
is needed in 2D and 3D for the localization. From the energy beha-
viors shown in the inset-plot of Fig. 2, we can see that the ELT is
continuous in 2D while discontinuous in 3D. Especially, the critical
exponent d is 1.95 for 2D and 0.99 for 3D, and the critical parameters
(see Fig. 2 and its caption) from the numerical calculations are in
good agreement with those from our Gaussian-trial-wave function
approaches. This coincides with the conclusions drawn from several
specific models, that the Gaussian trial wave function is reliable for
the localized impurity state15,16.

In our theory, the essential physics can be extracted by expanding
the energy to the third order of the impurity density, and taking
higher orders into consideration does not change the properties of
the ELT as long as they contribute a positive energy. This is similar to
the Ginzburg-Landau (G-L) equation where the free energy is
expanded to the second order in the density of superconducting
order parameter. The localization length l, which is in analogy to
the coherence length in G-L equations, characterizes the size of the
localized wave packet. However, the transition here is between two
different states but not phases, and the critical behavior of the trans-
ition here is strongly dimension-dependent, which are quite different
from G-L theory.

Soliton excitations. The dynamics of single impurity is described by
the time-dependent Schrödinger equation:

i
L
Lt

Y r ,tð Þ~Heff Y r,tð Þ ð5Þ

Figure 1 | Schematic diagram for single impurity energy as function of l21 with b . 0. (a–c), 1D, 2D and 3D. The arrows in solid lines indicate the global

minimums of the energies, while the arrow in dashed line in (c) marks a local minimum of E.
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where Heff ~{
2

2mI
+2{2a Y r, tð Þj j2z3b Y r, tð Þj j4 and we have a

series of soliton solutions (detailed derivation is shown in the

supplementary information) Y r ,tð Þ~Y r{vtð Þe
i k:r� mz

2k2

2mI

� �
t=

h i
,

where v 5 k/mI. These soliton solutions are characterized by
nonconservative momentum parameter k and excitation energy

Ez
2k2

2mI
, identifying that the localized impurity can be

represented by a wave packet of length l moving at a constant
speed with the waveform unchanged. In the limit of vR 0, the
stationary localized impurity wave function Y(r) is fully recovered.

Multi-impurity structures. Our theory can be applied to N(N . 1)
indistinguishable ultracold impurities and predict some exotic

phenomena. Firstly we consider N noninteracting bosons.
Assuming that all the impurities are condensed into a single
particle state, i.e., Ycon~

ffiffiffiffi
N
p

Y1, we are able to get the critical
value of the localization parameter ac(N) 5 ac/N in 2D, and
ac Nð Þ~ac=N

1
2 in 3D (details can be found in the supplementary

information), where ac is the critical value of a in the single-
impurity case, independent of N. Therefore, for the noninteracting
bosonic impurities, the critical IB interaction for localization is much
smaller than single impurity, which is consistent with Ref. 18. For
weakly repulsive interacting bosonic impurities, the essential effect of
the impurity-impurity interaction lIId(r 2 r9) is to renormalize the
parameter a, and the transition boundary (compared to cases with lII

5 0) in all dimensions are shifted to ac(N) 1 lII/2. Specially, a finite
value of IB interaction with a 5 lII/2 is now needed to get the
impurity localized in 1D.

Figure 2 | The impurity structure as function of the dimensionless parameter. (a–c), 1D, 2D and 3D. The asymptotic behavior of the localized wave

function indicated by equation (2) is parabolic at r?0 : Y rð Þ?Y 0ð Þz 1
2
Y00 0ð Þr2, and exponential at r R ‘: Y(r) R e2kr. Inset: The corresponding

energy of the impurity as function of the dimensionless parameter in (a–c). The dashed (red) lines represent the energy of the extended states. The blue

arrows mark the critical values of the dimensionless parameters for the occurrence of the localized or meta-stable localized state. The critical values given

by the numerical results are (2D) a0c~6:0; (3D) a0c~10:28 and a0m~0:892a0c, which are comparable with the results from Gaussian trial wave function

method where (2D) a0c~2p; (3D) a0c~10:51 and a0m<0:877a0c. Here r and E is in the unit of a0 and E0, respectively.

Figure 3 | Two-impurity bonding energy and bonding length. (a), the background mediated impurity-impurity energy ET22ES for two localized

fermionic impurities as function of interimpurity distance in 1D, 2D and 3D (from left to right). (b), the bonding energy Ebond and the bonding length aB

as function of dimensionless parameters in 1D, 2D and 3D (from left to right). Notice here Ebond is defined as the minimum ET 2 2ES and aB is the

equilibrium inter-impurity distance. The shadow region marks the parameter space of the formation of the bipolaron. For non-bonding states we have

Ebond 5 0 and the absence of aB. The numerical results give the critical value b0c2~2:4 at 1D and a0c2~11:9 at 2D. aB/l decreases when the dimensionless

parameters are increased in all dimensions, while Ebond shows a non-monotonic behavior in 1D, and at very large b9, Ebond approaches zero but still keeps

negative, indicating that the bonding state is very weak in this case.
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Let us now turn our attention to the fermionic impurities. Two
localized fermionic impurities are subject to indirect impurity-
impurity interactions mediated by the background. This indirect
interaction energy can be interpreted as ET – 2ES, where ES and ET

are the energies for one impurity and two correlated impurities,
respectively. By constructing a bonding and anti-bonding states of
two localized wave functions(available in Supplementary Informa-
tion) with distance between these two localized impurities a as the
variational parameter, and considering ET 2 2ES as function of a,
transition between bonding and non-bonding states is found. As we
can see from Fig. 3a, there is a critical value of the dimensionless
parameter in 1D and 2D, above which two localized impurity can
bond together at an equilibrium inter-impurity distance a 5 aB with
the bonding energy Ebond , 0. In this case the total energy is lowered
when two localized impurities bond together to share the same dis-
tortions of the background, and the bound pair can be viewed as an
impurity bipolaron. Below the critical value two impurities are non-
bonding and shortly repulsive to each other. In 3D bipolaron is
always formed as long as the impurities are localized. The two-
impurity behaviors in different dimensions, including the boundary
between bipolaron and non-bonding state, and behaviors of aB and
Ebond, are summarized in Fig. 3b.

Different two-impurity behaviors lead to distinct physical config-
urations for multifermionic impurities. To see this we solve equation
(2) self-consistently in a 2D lattice for N(N . 1) fermionic impurities
(details available at the Supplementary Information). For a strong IB
interaction, while two impurities form a bipolaron, as discussed
above, impurities with larger numbers are weakly attractive to each
other and form a large impurity molecule (see Fig. 4a). The weak
attraction between impurities can also be reflected in the behaviors of
the indirect impurity-impurity interaction energy per impurity,
which is found to get more attractive (or negative) with N. For a
weak IB interaction, the impurities are weakly localized and the
impurities are repulsive to each other. As shown in Fig. 4b, for a
medium impurity density, the impurities form a triangular lattice
structure, while the impurities become randomly distributed for
small N and the lattice structure collapses for very large N because
the size of the system can not accommodate so many localized
impurities. Here the indirect impurity-impurity interaction energy
per impurity gets more repulsive as N increases.

As shown in the case with N 5 60 in Fig. 4b, the total kinetic energy
of the impurities is quenched and the short-ranged impurity-impur-
ity interaction becomes dominant and repulsive, which leads to the
formation of an impurity lattice. This process is similar to the Wigner

Figure 4 | Multi-impurity structure and indirect impurity-impurity interaction energy. (a–b), plot of indirect impurity-impurity interaction

energy per impurity (EN 2 NES)/N (red solid lines and signals) as function of N in a 2D lattice model with dimensionless parameter (a) a9 5 15.0,

b9 5 1.0, (b)a9 5 7.0, b9 5 1.0. Here EN,(S) is the total energy for N (single) fermionic impurities, and we use the length and energy unit defined in Table 1.

Inset: contour-plot of the impurity density distribution for (a) N 5 2, 8, 22 and (b) N 5 15, 60, 90. The shadow region in (b) marks where a stable lattice

appears.
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crystallization in solid-state physics. While the Wigner lattice is
formed by electrons with long-range Coulomb interactions, the lat-
tice of neutral impurity atoms is due to the IB interaction.

Discussion
We proposed an effective theory for the interaction-induced local-
ization of the ultracold mobile impurities. Beyond its theoretical
significance in describing the essential features of the dimension-
dependent ELT of the impurity states, our theory also predicted
some exotic behaviors of the localized impurities in cold atomic
systems, such as molecules and lattice structures, which extends the
potential applications of the cold atoms as a quantum simulator for
solid-state materials. On the other hand, these features are direct
consequences of the impurity effects under the feedback of the
background. This is quite different from solid state physics in
which the impurity atoms are hardly affected by the background,
and marks the unique nature of the mobile impurities. To realize
the extended-localized transition and its related phenomena, one
may use two-component 40K superfluid as the background and 6Li
as the impurity atom in 2D, since both the 40K superfluid24 and the
three-component 40K-6Li mixture25 are experimentally accessible.
Due to the existence of an energy gap in the spectrum of the
background system, the quantum fluctuations and the gapless par-
ticle-hole excitations are effectively suppressed, which benefits for
the applicability of the meanfield treatment even in low dimen-
sions. As shown in the Supplementary Information, the transition
can be achieved by tuning up the scattering length between the
impurity and the background to a critical value.

Methods
Derivation of the effective model. To derive model (1), we consider a generic
Hamiltonian constructed with three parts:

H~

ð
dr hIzhBzhIBð Þ, ð6Þ

where hI and hB are local functions of the coordinate r. hI is the density of the impurity
kinetic energy. hB contains the kinetic energy density of the background atoms, and
the interaction term between the background atoms, which varies for different
interacting systems. The IB interaction part is

hIB~UIBn̂I rð Þn̂B rð Þ, ð7Þ

and it can be rewritten as

hIB~UIB n̂I rð Þh in̂B rð ÞzUIB n̂B rð Þh in̂I rð Þ{UIB n̂I rð Þh i n̂B rð Þh i ð8Þ

in the mean-field level. Within the local density approximation, the local energy
density is then given by

E rð Þ~EB rð Þ mB?mB{UIBnI rð Þ


 zEI rð Þ, ð9Þ

where nI,B~ n̂I,B rð Þh i, EB mB
~ hBh i



 , EI~ hIh i, and mB is the chemical potential of the
background. By expanding the background energy EB we get

E rð Þ~EI rð ÞzEB rð Þz
X

m

Cm {UIBnI rð Þ½ �m, ð10Þ

where Cm~
LmEB

m!Lmm m~mB



 . If the impurity concentration is dilute, i.e., N=NB=1,

where NB is the total number of the background atoms, the impurities only induce
slight changes to the background. In this case it is sufficient to keep nI(r) to the third

order, and get the total energy E~

ð
dr E rð Þ as presented in equation (1) by

neglecting impurity-irrelevant terms. The parameters are then given by

a~{
L2EB

2Lm2 m~mB
U2

IB~
LnB

2Lm
m~mB

U2
IB







 ð11Þ

b~{
L3EB

6Lm3 m~mB
U3

IB



 ~
L2nB

6Lm2 m~mB
U3

IB:


 ð12Þ

Clearly for a homogeneous background in the absence of impurities, a, b are r-
independent. For most systems the thermodynamical stability requires a positive a,
while the sign of b is largely relevant to the IB interaction and the details of the
background.

Length and energy unit. In 1D we define the length unit a0 and the energy unit E0

through
2

2mI a2
0
*

a

a0
, and in 2D and 3D they are defined through

2

2mI a2
0
*

b

a2l
0

where

l 5 2, 3. Then we get the length and energy unit in Table 1. Accordingly, the
parameters a, b have the dimensionless forms a9, b9 which are also summarized in
Table 1. Notice there is only one independent dimensionless parameter left in each
dimension.
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