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In this work we report on experiments performed on smooth edge-narrow Hall bars. The magneto-transport
properties of intermediate mobility two-dimensional electron systems are investigated and analyzed within
the screening theory of the integer quantized Hall effect. We observe a non-monotonic increase of Hall
resistance at the low magnetic field ends of the quantized plateaus, known as the overshoot effect.
Unexpectedly, for Hall bars that are defined by shallow chemical etching the overshoot effect becomes more
pronounced at elevated temperatures. We observe the overshoot effect at odd and even integer plateaus,
which favor a spin independent explanation, in contrast to discussion in the literature. In a second set of the
experiments, we investigate the overshoot effect in gate defined Hall bar and explicitly show that the
amplitude of the overshoot effect can be directly controlled by gate voltages. We offer a comprehensive
explanation based on scattering between evanescent incompressible channels.

T
he overwhelming interest to utilize quantum mechanics in applied technologies finds one of its first man-
ifestations in the integer quantized Hall effect (IQHE)1. The magnetic field dependence of the transport
coefficients of a two dimensional electron system (2DES) provides a possibility to standardize resistance in

units of the von Klitzing constant h/e2, where h is the Planck constant and e is the elementary charge. However, an
unexpected non-monotonic magnetic field dependence of the Hall resistance at the low-field-end of the quan-
tized plateaus, known as the overshoot effect, remains a puzzle despite of both theoretical and experimental efforts
in various material systems including GaAs/AlGaAs heterostructure2–6 as well as Si/SiGe7–13 and Si metal oxide
semiconductor field effect transistors14. The utilization of the quantized Hall effect as a resistance standard is
hindered by such anomalies, especially because their physical mechanism is not well understood. The overshoot
effect is observed in these material systems at various filling factors n, defined by the number of occupied
quantized (spin resolved) Landau levels (LL) below the Fermi energy. The effect has already been observed in
the 1980’s, where its physical mechanism was attributed to non-ideal contacts2–4, but without providing clear
evidence for this hypothesis. Later, the overshoot effect was attributed to the decoupling of the spin-split states
within the same LL at odd filling factors by Richter and Wheeler5, or, alternatively by the scattering between edge
states together with spin-orbit interaction by Komiyama and Nii6. Recently, the overshoot effect has been
investigated in Si/SiGe heterostructures as a function of current and temperature12. These experimental results
have been elegantly explained within the screening theory of the integer quantized Hall effect, which explicitly
takes into account the direct Coulomb interaction between charge carriers. In this approach the overshoot effect is
described using co-existing (current carrying) evanescent incompressible strips15, while earlier explanations used
1D Landauer-Buttiker edge channels3. Under certain conditions, namely when an incompressible strip is nar-
rower than the Fermi wavelength, but wider than the magnetic length, the carriers can scatter between adjacent
evanescent incompressible regions causing an increase in the Hall resistance. This situation resembles a leaky
incompressible strip in the thermodynamical sense, which then carries a dissipative current. Such an incom-
pressible strip will be called evanescent throughout the paper. A detailed theoretical explanation of the overshoot
effect within the screening theory is provided in Ref. 12 and 15 taking into account finite size and temperature
effects. In particular, Ref. 15 specifically predicts that the overshoot effect can be manipulated by changing the
electrostatic edge profile of the electron gas, for example by utilizing side gates. In a very recent work, overshoot
effect is also predicted for the fractional states and is investigated within the screening theory16.

Here, we present experiments on narrow Hall bars (#10 mm) which are defined by either shallow chemical
etching, or metallic gates employing the field effect in GaAs/AlGaAs heterostructures. A natural direct compar-
ison would be to perform measurements on shallow etched and deep etched samples, however, it is a formidable
task to define both shallow and deep etched samples on the same chip. Instead, we utilized metallic gates that
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provide the possibility of controlling smooth edge potential pro-
files17–19, perfect for testing the predictions outlined above: The over-
shoot effect is predicted to vanish if the co-existence of evanescent
(leaky) incompressible strips is destroyed by a steep potential at the
edge, or is enhanced by smooth potentials in the opposite limit.

At sufficiently low temperatures and high magnetic fields, the
direct Coulomb interaction separates a 2DES into compressible
and incompressible regions of finite lateral size with very different
screening properties. Their theoretically predicted existence has been
investigated in various experiments including electrostatic transpar-
ency and dynamical scanning capacitance measurements20,21. The
theoretical prediction of the existence of compressible and incom-
pressible strips dates back to 1990, propounded by Chang22. This
work was followed by a pioneering paper of Chklovskii and co-work-
ers who calculated the widths and spatial distributions of these strips
analytically23. The formation of the strips can be traced back to a
stepwise electron density distribution. In the commonly employed
single particle picture, the LL are bend up in energy at the edges of the
2DES and are filled up to the Fermi energy (at T 5 0). At n $ 1
starting from the edges the lowest LL is completely occupied hence
contributing to the carrier density with a constant value (at fixed B).
Moving from the edges of the Hall bar towards its center the carrier
density changes stepwise whenever a LL crosses the Fermi energy.
The situation is further modified when taking into account the elec-
tron-electron interaction. A stable solution is found by minimizing
the free energy while considering the Coulomb interaction between
the carriers. The result are regions of varying carrier density profile
(the compressible strips), where the total potential is flat, and regions
of constant carrier density profile (the incompressible strips), where
the total potential varies. The width of the kth incompressible strip
(with local filling factor k) can be evaluated up to a reasonable
approximation by an analytic formula16

ak~
2kDEk

p2e2dn xð Þ=dx xkj

� �1=2

ð1Þ

where k is the dielectric constant (,12.4, for GaAs), and n(x) is the
electron density at B 5 0 as a function of lateral coordinate x. Here,
the density gradient is evaluated at the center of the kth incompress-
ible strip, xk. The single particle gap DEk is the extra energy (in
addition to the chemical potential at B 5 0) needed to load another
electron into the system. It consists of the cyclotron energy

wc~ eB=m� and the Zeeman energy g�mBB, where mB is the Bohr
magneton and g* is the effective Landé g factor. For odd (even) filling
factor the energy gap is DEodd 5 g*mBB (DEeven~ wc{g�mBB). The
local carrier density distribution at zero magnetic field can be
obtained within self-consistent numerical calculations16,24

n xð Þ~n0 1{e{ x{ldð Þ=t
� �

ð2Þ

where ld is the depletion length and n0 is the bulk electron density far
away from the edges. The parameter t defines the distance from the
edge at which the electron density reaches n0, in units of the effective
Bohr radius a�B. Substituting equation (2) into equation (1), one
obtains the incompressible strip width

ak~

ffiffiffiffiffiffiffiffiffiffiffiffi
4a�Bak

pn0

r
|

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t

e{ xk{ldð Þ=t

r
ð3Þ

where ak~DEk= wc is the gap parameter. The bulk filling factor
defined at the center of the Hall bar is n0 5 pl2n0 with the magnetic
length l~

ffiffiffiffiffiffiffiffiffiffi
=eB

p
.

In the above calculation we assumed that the Thomas-Fermi
approximation (TFA) is valid, i.e. the electrostatic potential varies
smoothly on the scale of l. However, once the strip widths become
comparable with the magnetic length ak *v l the TFA is prone to fail23.
At this point scattering across the strip becomes more probable25,26.

Furthermore, the electron density and compressibility are ther-
modynamic quantities which are only properly defined for length
scales larger than the mean electron distance. In the low temperature
limit this is the Fermi wavelength lF (hence for ak *< lF compressi-
bility is not a well defined quantity). The above discussion yields a
lower bound for B the width at which an incompressible strip can
exist. Each incompressible strip becomes narrower with decreasing B
(see equation (3)) and for ak *v lF it eventually becomes thermody-
namically permeable (or leaky). This process results in the transition
regions between subsequent Hall plateaus. For l *< ak *< lF we call an
incompressible strip evanescent12. The scattering model predicts the
overshoot effect to occur if at least two evanescent incompressible
strips with consecutive filling factors co-exist: lv ak, akz1ð Þ *< lF . To
be explicit, if (at least) two incompressible strips with different filling
factors are narrower than lF, and wider than l (suppressing scattering
across them) both of the channels contribute to the imposed current,
resulting in an increase of the Hall resistance. For a hand waving (and
simplified) example we assume a co-existence of two evanescent
strips with n 5 2 and n 5 3, which share the imposed current equally,
i.e. I2 5 I3 5 I/2. Assuming no additional dissipation the resulting
resistance

RH~
h
e2

|
1
2

1
2
z

1
3

� �
~

5
12

h
e2

ð4Þ

which is larger than the quantized value of h/3e2, while this should
not be taken as a quantitative prediction it sketches the general
situation which we will observe in the following sections.

One can readily see from equation (1) that, by manipulating the
edge potential (or equivalently the edge density) profile it is possible
to obtain wide (large t) or narrow (small t) incompressible strips.
Interestingly, depending on the energy gap and steepness it is also
possible to obtain conditions such as, l , ak , ak11 , lF or l , ak11

, ak , lF. For instance one can obtain a situation a1 . a2 if DE1 .
DE2 with an exchange enhanced g* factor, for t *> a�B defining a
smooth edge (c.f. equation (3)).

Experimentally Hall bars can be defined by etching or by depos-
iting gates on the surface. In the case of etching the crystal is usually
removed beyond the 2DES plane, for this so called deep etching, the
confinement potential at the edges becomes steep due to surface
charges inside the etched trenches27. This situation corresponds to
the small t limit, which is most common for Hall bars, Fig. 1a. In the
limit of shallow etching, where the crystal is only removed above the
2DES plane, the confinement is relatively flat, as depicted in Fig. 1b.
According to the discussion above a smoother confinement potential
as that arising from shallow etching results in a higher probability of
overshoot effects. Gated samples have the advantage that the edge
profile can be adjusted via the gate voltages between steep and flat
edges on one and the same Hall bar. In the next section, we will
discuss magneto-transport experiments first on shallow etched
Hall bars, and then on a gate defined Hall bar and compare the results
with our model.

Results
Etched samples below 1 K. In the first set of experiments (on sam-
ples IA (4 mm width) and IB (10 mm width)) we start with the
narrower sample IA. Magnetotransport properties in the quantized
Hall regime are mainly determined by the edges of the sample
including the widths of the incompressible strips. Figure 2 depicts
the Hall resistance of the 4 mm wide sample IA. In addition to the
integer quantized Hall plateaus between 2 # n # 6, the overshoot
effect is clearly present at the low-field end of the n 5 3 plateau. The
amplitude of the overshoot effect increases at elevated temperatures,
but decreases with increasing excitation current at a fixed
temperature (of 750 mK, inset). Interestingly, these experimental
findings are in clear contrast to literature expectations12, but in
agreement with the screening theory as elucidated below. Note that
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we ruled out sample dependencies and the effect of a trivial contact
resistance by careful comparison of measurements before and after
illumination, by performing several cool downs and by testing
various contact configurations.

The observed temperature and current dependence of the over-
shoot effect can be explained within the screening theory as follows:
The mere existence of the overshoot effect is caused by the co-exist-
ence of two evanescent incompressible strips in our case at local
filling factors n 5 2 and n 5 3. According to equation (1) the width

of each incompressible strip is proportional to
ffiffiffiffiffiffiffiffi
DEk

p
, which alter-

nates between even and odd filling factors, and also inversely pro-
portional to the square root of the lateral carrier density gradient
dn(x)/dx. In a sample with weak disorder dn(x)/dx is always smaller
for the inner one of two co-existing incompressible strips (see equa-
tion (2)), which also has the higher filling factor. The ratio of the
widths of two co-existing incompressible strips can be calculated
from equation (3) as

an

am
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
an

am
|e{xm{xn

t

r
ð5Þ

where we take m 5 n 1 1 for co-existing strips. For odd (even) n we

find
ffiffiffiffiffiffiffiffiffiffiffiffiffi
an=am

p
%8:1. This leads to the interesting possibility to change

the ratio an/am via the edge parameters t which is larger (smaller) for
edges defined by deep (shallow) etching and can be adjusted for a
gate defined edge. For our specific case (Fig. 2) we argue that the
overshoot is caused by a co-existence of evanescent incompressible
strips of filling factors n 5 2 and n 5 3, hence n 5 2 and n 5 3. From

Eq. we find a2 # a3 for t§
x3{x2

4
.

In the common case of deeply etched Hall bars we expect

tv
x3{x2

4
and the bulk strip (n 5 3) to be wider, see Fig. 1b. As a

consequence along the n 5 3 plateau electron transport would always
be dominated by the n 5 3 strip and no overshoot was expected.
However, the data in Fig. 2 have been measured in a shallow etched

sample and the existence of the overshoot points to tw
x3{x2

4
. As a

consequence, at the low field end of the n 5 3 plateau the bulk strip is
narrower than the edge strip (n 5 2) and the transport properties are
influenced by the n 5 2 incompressible strip. This can lead to an
increase of the resistance beyond the n 5 3 and up to the n 5 2 plateau
value. In more detail we expect an overshoot for a3 , l and l , a2 ,

lF.
According to the above arguments overshoots can be expected

only (never) at the low field end of odd (even) filling factor plateaus.
The reason is the alternating gap size DEeven ? DEodd. In Fig. 2 we
observed that the overshoot increases with growing temperature.
This is in accordance with our model assuming that the narrower
bulk strip is stronger affected by temperature (and becomes easier
compressible) compared to the wider edge strip. Hence, at higher
temperature the influence of the n 5 2 edge strip increases towards
the n 5 2 plateau value up to an even higher temperature where the
edge strip also becomes completely compressible. When this hap-
pens the overshoot resistance should decrease again (towards the
classical Hall resistance). In the present experiment we could not
observe the high temperature limit due to a technical restriction,
but measured instead the current dependence at the highest temper-
ature of 750 mK. Since in the overshoot regime the current is dissip-
ative, due to Joule heating the imposed current warms up the current
carrying strip. Due to the fact that the n 5 2 evanescent strip has a
higher resistance, it warms up more and breaks easier than the n 5 3
strip and the overshoot decreases.

Figure 1 | A schematic presentation of the electron density as a function of the lateral coordinate together with the evanescent incompressible strips
indicated by dotted (n 5 2) and dashed (n 5 3) vertical lines carrying dissipative current (depicted by arrows). The two left sketches show 4 mm wide Hall

bars defined by (a) deep and (b) shallow etching. The density oscillations results from long-range potential fluctuations due to remote donors. (c) 10 mm

wide Hall bar comprising several long-range disorder induced density oscillations, resulting in several bulk incompressible strips dominating the

transport, hence overshoot. (d) Gate defined narrow Hall bar, the lower panel sketches electron densities for 3 different gate voltages, where the depletion

length changes and the maximum of the electron density increases at higher gate voltages, however, the average density remains almost the same. Note

that drawing are not to scale.

Figure 2 | The Hall resistivity measured at a 4 mm wide shallow etch
defined Hall bar as a function of magnetic field measured at three
different temperatures, base temperature BT (dotted line), 250 mK
(broken line) and 750 mK (solid line). The excitation current amplitude is

fixed to 100 nA. A well developed overshoot effect is observed at n 5 3

plateau, which becomes more pronounced at elevated temperatures. The

inset depicts current amplitude dependency at 750 mK. The topographic

image of the sample is shown at the upper inset, where W denotes the

width.
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To summarize, on a 4 mm wide shallow etched sample we
observed the overshoot effect at the low field end of the n 5 3 plateau.
Our model indicates that the edge n 5 2 evanescent incompressible
strip is wider than the bulk n 5 3 strip in contrast to literature
prediction. The effect is more pronounced at elevated temperatures.
This behavior can be explained by the fact that the inner thinner n 5

3 strip vanishes before the outer wider n 5 2 strip because ofDEeven .

DEodd. In the extreme case where the n 5 3 strip already brakes down
and the n 5 2 strip still exists, the Hall resistance can even approach
to h/2e2 (with dissipative corrections). At higher imposed currents
due to dissipation proportional to the local resistance, the n 5 2
evanescent incompressible strip vanishes rapidly yielding a decrease
of the overshoot, driven by the complete breakdown of the quantized
Hall effect.

Next we study a relatively wide Hall bar (sample IB, 10 mm width)
defined on the same wafer again by shallow etching. Fig. 3, depicts the
Hall resistance as a function of the B field. Here, the overshoot effect
is very strong at the low-field end of the n 5 3 plateau, but also
appears on the other plateau (n $ 2). The overshoot for odd n can
be explained within the model discussed above. However, it also
appears at even n which requires further discussion: We interpret
the occurrence of the overshoots at even n in terms of disorder in the
bulk: Local potential fluctuations (in space, not in time) add to the
potential drop induced by the edges. If two incompressible strips
coexist the influence of disorder is stronger at the inner (bulk)
incompressible strip where the edge profile is already less steep com-
pared to the outer (edge) incompressible strip. In this situation dis-
order can result in a strong enhancement of the gradient dn(x)/dx
and, consequently, a thinner bulk strip.

It is important to note that, by potential fluctuations we mean the
fluctuations at the overall screened potential not the disorder eman-
ating from a single impurity. The range of a single impurity would be
of the order of few tens of nanometers, however, the potential
fluctuations at the overall screened potential might be as large as
few microns. A detailed self-consistent calculation regarding the
long-range disorder potential fluctuations can be found in the
literature28,29.

We start our discussion with the n 5 2 plateau, for which we
observe an overshoot for the largest imposed current (I 5 500 nA,
solid line), however, a quantized Hall resistance for lower currents
(broken and dotted lines). In this situation the bulk incompressible
strip with n 5 2 is well developed and stays stable at low currents.

However, it becomes evanescent due to increased potential drop
across the strips at larger currents. In addition due to its exchange
enhanced Zeeman gap, the outer incompressible strip with n 5 1
satisfies the condition lF . a1 . l, hence is evanescent. Therefore, we
observe an overshoot only at large currents, where both incompress-
ible strips become evanescent.

We now discuss the case of even n . 2: Once the sample is suffi-
ciently wide to accommodate more than a couple of long-range
potential fluctuations, indicated by the density modulation in n(x)
Fig. 1c, the bulk dominates the scattering mechanism yielding more
than one bulk evanescent incompressible strip. Hence, for a shallow
etched sample, an even edge integer evanescent incompressible strip
can co-exist with the odd evanescent incompressible bulk strips. We
expect that the disorder is more effective in the large sample, since it
offers more long-range potential fluctuations leading to a bulk domi-
nated transport15. We also determined the exact bulk filling factors
from the SdH oscillations and checked for the coincidence of the
maximum of the overshoot effect and the bulk filling factor. The
mechanism is the same, however, the effect is more immune to
heating effects due to dissipation, since there exists many bulk strips
which share the total current.

Gated sample above 1 K. Next we study a narrow Hall bar of 3 mm
width (sample IIA) which is electrostatically defined by metallic
surface gates (see inset of Fig. 4). By tuning the gate voltages it is
possible to adjust the carrier density gradients at the edges of the Hall
bar, and hence, to manipulate edge and bulk incompressible strips.
Fig. 4 shows the Hall resistance as a function of the magnetic field for
various values of the imposed current. These measurements have
been performed at a relatively high temperature of 1.7 K. In Fig. 4,
all gate voltages have been set to Vg 5 20.3 V (which is just below the
pinch-off value at which the 2DES below the gates is com-
pletely depleted). This gate voltage close to the pinch-off value
offers the smoothest possible edge confinement (and smallest
density gradient) of a working Hall bar. According to equation (3),
we therefore expect odd filling factor bulk strips to be narrower than
even filling factor edge strips (similar as in shallow etched samples,
but more pronounced, compare sketch in Fig. 1a). As for the shallow
etched narrow sample (Fig. 2) we observe an overshoot effect at the
low field end of the n 5 3 plateau, which points the co-existence of the
n 5 2 and n 5 3 evanescent incompressible strips. Consistent with
the high temperature data on the shallow etched sample in the inset
of Fig. 2, the gated sample (at T 5 1.7 K) also reveals a weakening of
the overshoot effect as the current is increased (Fig. 4). The expla-
nation is the break-down of the Hall effect as already discussed above.
Fig. 5 shows similar measurements on the same sample as in Fig. 4,

Figure 3 | The Hall resistivity measured at a 10 mm width, shallow etch
defined Hall bar as a function of the magnetic field measured at three
different excitation amplitudes at 100 mK. The overshoot effect is

observed at both even and odd integer plateaus, due to different scattering

mechanisms, as discussed in the text. The inset shows the temperature

dependency of the n 5 3 overshoot considering different temperatures.

Figure 4 | The Hall resistance measured at a gate defined 3 mm width Hall
bar at 1.7 K, while imposing different excitation currents. The n 5 3

overshoot fades with increasing the current amplitude, where edges are

supposed to be smooth due to the small gate bias voltage of 20.3 V.

www.nature.com/scientificreports
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but for a much steeper confinement at the edges due to Vg 5 21.2 V.
Compared to Vg 5 20.3 V a larger current is needed to destroy the
overshoot.

Fig. 5 depicts the Hall resistance as a function of B for various
current values. We observe, as expected, that the overshoot effect
tends to disappear while increasing the current. In contrast to the
situation in Fig. 4 for smoother edges, even at the highest current
remainders of the n 5 3 plateau still exists. We explain this as follows:
The edge profile is steeper at large gate voltages, therefore, the n 5 2
evanescent strip is washed out faster than the wider bulk strip of n 5

3. To test our explanation due to edge profile together with dissipa-
tion, we measured the Hall resistance at the n 5 3 plateau interval for
Vg 5 20.3 V and 20.6 V and compared with 21.2 V in the inset of
Fig. 5. We observe that at the smallest gate voltage where the edge is
smooth and the n 5 2 strip is expected to exist, the overshoot effect is
smeared out, due to higher dissipation contributed by the outer most
strip. We would like to clarify once more that, dissipation which is
quadratic in imposed current is the deciding parameter together with
the gate potential. Note that, in Fig. 4 at 1000 nA the overshoot effect
is completely destroyed, however, in Fig. 5 the effect is clearly
observed. Despite an order of magnitude difference between dissipa-
tion amplitudes, say for 250 nA for small gate voltage and 1000 nA
for high gate voltage, yield similar results, which supports our theor-
etical model.

To summarize this subheading, we utilized a gate defined narrow
Hall bar to clarify the contribution of the bulk evanescent incom-
pressible region to the overshoot effect by manipulating the side gate
potential. We observed that for all gate voltages, the amplitude of the
overshoot effect decreases with increasing current amplitude, as
expected. However, if the edge is smooth the overshoot effect dis-
appears even at smaller currents compared to a steep edge (large bulk
incompressible region).

Discussion
To explain the resistance anomalies, namely the overshoot effect,
observed in two dimensional electron systems in the integer quan-
tized Hall regime is a long standing challenge. In this article, we
present magneto-transport measurements on Hall bars with smooth
edges which show a strong overshoot effect and study its dependence
on temperature, current, Hall bar width and edge profile, investi-
gating the scattering between the edge-edge and the edge-bulk evan-
escent incompressible strips. Our results support the screening
theory of the quantized Hall effect and its interpretation of the over-
shoot effect in terms of scattering between edge and bulk evanescent
incompressible strips. In more detail we observed flat plateaus

starting from low temperature and low current, but the overshoot
effect becomes more pronounced as either temperature or current is
moderately increased. Too high current, however, causes the break-
down of the QHE and with it the overshoot effect. Once the sample
width exceeds the typical length scale of disorder induced long range
potential fluctuations, the overshoot effect can be observed not only
for odd but also for even filling factors which is related to disorder
induced modifications of the bulk strips.

Methods
We performed standard magneto-transport measurements on narrow Hall bars
defined and gate defined in GaAs/AlGaAs heterostructures. The first set of Hall bars
are defined by shallow chemical etching, whereas an additional sample is defined by
metallic gates. Samples IA and IB differ in their widths, 4 mm and 10 mm respectively
(IIA has 3 mm width). The used wafer contains a 2DES approximately 100 nm below
the surface while the etching depth was about 80 nm. The nominal mobility of the
wafer is 380000 cm2?V21s21 at an electron density of 2.45 3 1011 cm22. The gate
defined sample is produced on a heterostructure with the 2DES 110 nm below the
surface, with an electron density of 2.8 3 1011 cm22 and a nominal mobility of 1.4 3

106 cm2?V21s21. More details of the gate defined Hall bars can be found in Refs. 17–
19. We measured the Hall voltage using standard lock-in technique at a frequency of
8.5 Hz, as a function of magnetic field at low temperatures, via a dilution refrigeration
system for shallow etching samples measurements and standard closed cycle cryo-
cooler system for gate defined samples measurements.
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