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Many complex networks show signs of modular structure, uncovered by community detection. Although
many methods succeed in revealing various partitions, it remains difficult to detect at what scale some
partition is significant. This problem shows foremost in multi-resolution methods. We here introduce an
efficient method for scanning for resolutions in one such method. Additionally, we introduce the notion of
‘‘significance’’ of a partition, based on subgraph probabilities. Significance is independent of the exact
method used, so could also be applied in other methods, and can be interpreted as the gain in encoding a
graph by making use of a partition. Using significance, we can determine ‘‘good’’ resolution parameters,
which we demonstrate on benchmark networks. Moreover, optimizing significance itself also shows
excellent performance. We demonstrate our method on voting data from the European Parliament. Our
analysis suggests the European Parliament has become increasingly ideologically divided and that
nationality plays no role.

N
etworks appear naturally in many fields of science, and are often inherently complex structures. By
looking at the modular structure of a network we can reduce its complexity to some extent, yielding a
‘‘bird’s-eye view’’ of the network1–3.

Although there is no universally accepted definition of a community, there are some commonly accepted
principles. We denote by G 5 (V,E) a graph with nodes V and edges E(V|V , where the graph has n 5 jVj
number of nodes and m 5 jEj number of edges, and is said to have a density of p~m

� n
2
� �

. The idea is that in
general, we want to reward links within communities with some weight aij, while we want to punish missing links
within communities with some weight bij. Working out this idea we arrive at

H sð Þ~{
X

ij

aijAij{bij 1{Aij
� �� �

d si,sj
� �

, ð1Þ

for the ‘‘cost’’ of a partition s. Here Aij is the adjacency matrix, which is Aij 5 1 if there is a link between i and j and
zero otherwise, si denotes the community of node i, and d(si, sj) 5 1 if and only if si 5 sj and zero otherwise. This
is a slightly more simplified version of the approach by Reichardt and Bornholdt4. We will restrict ourselves here
to simple, unweighed graphs.

Different weights aij and bij give rise to different methods. One can imagine for example taking the number of
common neighbours as weight bij, the distance of the shortest path or some transition probability in a random
walk. Many methods have been developed over the years, but the most noteworthy method is that of modularity5

which uses aij 5 1 2 pij, bij 5 pij where pij is some random null-model. It has risen to prominence because it
showed encouraging results in various fields, ranging from ecology6,7 and biology8,9 to political science10 and
sociology11.

Nonetheless modularity was found to be seriously flawed. Its biggest problem is the resolution limit12,13, which
states that modularity is unable to detect relatively small communities in large networks. We showed previously
that methods that use local weights (i.e. aij and bij are independent of the graph) do not suffer from the resolution
limit14, and are hence called resolution limit free. Within this framework there are relatively few methods that are
resolution limit free. One such method is the Constant Potts Model14 (CPM). This model has as weights aij 5 1 2

c and bij 5 c where c is a so-called resolution parameter (see next paragraph), resulting in

H s,cð Þ~{
X

ij

Aij{c
� �

d si,sj
� �

: ð2Þ
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Rewriting this in terms of communities, we arrive at

H s,cð Þ~{
X

c

ec{cn2
c

� �
, ð3Þ

where ec is the number of edges within community c (or twice for
undirected graphs—this is due to double counting inSij(Aij 2 c)d(si,
sj) for undirected graphs) and nc is the number of nodes within
community c. It can be seen as a variant of the Reichardt and
Bornholdt Potts model when choosing an Erdös-Rényi (ER) null
model, which assumes that each edge has the same independent
probability of being included p. In the remainder of this article, when
speaking of a random graph, we refer to an ER random graph, unless
explicitly stated otherwise.

It is not too difficult to show that any (local) minimum yields a
nice interpretation of the role of the resolution parameter c.
Succinctly stated, communities have an internal density of at least
c and an external density of at most c. The parameter c can thus be
seen as the desired density of the communities. The central question
in this paper is why and how we should choose some resolution
parameter c.

Results
Although CPM does not suffer from the resolution limit, there do
remain some problems of scale15. In particular, there is no a-priori
way to choose a particular resolution parameter c. We address this
issue in this paper from two complementary perspectives. First we
will detail how to efficiently scan different resolution parameters c for
CPM. Secondly, we introduce the notion of ‘‘significance’’ of a par-
tition (which is independent of any method). Both perspectives help
in choosing some particular resolution parameter c. We will dem-
onstrate the method on benchmark networks, and show that both
scanning for the right resolution parameter as well as optimizing
significance itself shows excellent performance. As an application
of our method, we analyse a network based on votes of the Euro-
pean Parliament (EP).

Scanning resolutions. Often, various measures of stability—how
much does the partition change after some perturbation—are used
to determine whether a resolution parameter or a partition is
‘‘good’’16–19. In this section we look at stable ‘‘plateaus’’: ranges of c
where the same partition is optimal. If a partition is optimal over the
range of [c1, c2] then the communities have a density of at least c2 and
are separated by a density of at most c1. Hence, the larger this stable
‘‘plateau’’, the more clear-cut the community structure.

For c 5 0, the trivial partition of all nodes in a single community is
optimal (since in that case any cut will increase the cost function). On
the other hand, for c 5 1 the optimal partition is to have each node in
its own community. This idea holds in general: a higher c gives rise to
smaller communities.

The intuitive idea that a partition should remain optimal for some
(continuous) interval of c can be formalized. More precisely, if s is an
optimal solution for c1 and c2, then s is also an optimal solution for
all c[ c1,c2½ � (which was also remarked in the supporting information
of ref. 10 for a similar method).

Theorem 1. Let H c,sð Þ be as in equation (2). If s* is optimal for
both c1 and c2, or

s�~ arg max sH c1,sð Þ~ arg max sH c2,sð Þ

then s�~ arg maxsH c,sð Þ for c1 # c # c2.
Proof. First observe thatH c,sð Þ is linear in c, which can be easily

seen from the definition. Suppose that s* is optimal in c1 and c2. Let c
5 lc1 1 (1 2 l)c2 with 0 # l # 1, then by linearity ofH c,sð Þ in c and
optimality of s* we have

H c,s�ð Þ~lH c1,s�ð Þz 1{lð ÞH c2,s�ð Þ,

ƒlH c1,sð Þz 1{lð ÞH c2,sð Þ~H c,sð Þ:

Hence H c,s�ð ÞƒH c,sð Þ and s* is optimal for c[ c1,c2½ �.
As stated, H c,sð Þ is linear in c, and we can rewrite it slightly to

emphasize its linearity

H c,sð Þ~{
X

ij

Aij{c
� �

d si,sj
� �

~{ E{cN½ �
ð4Þ

where E : ~
P

cec the total of internal edges and N :¼
X

cn2
c is the

sum of the squared community sizes.
It is less obvious how to detect whether a partition remains optimal

over some interval. Fortunately, it turns out that N is monotonically
decreasing with c. Specifically, if both partitions are optimal for both
resolution parameters, then necessarily N1 5 N2, and so also E1 5 E2.
We therefore only need to find those points at which N(c) changes,
which can be done efficiently using bisectioning on c.

Theorem 2. Let sz~ arg max sH cz,sð Þ, z 5 1, 2. Furthermore, let
Nz~

X
cn2

c szð Þ where nc(sz) denote the community sizes of the
partition sz. If c1 , c2 then N1 $ N2.

Proof. The two partitions s1 and s2 have the costs
H c1,s1ð Þ~{E1zc1N1, H c2,s2ð Þ~{E2zc2N2. Both partitions
are optimal for the corresponding resolution parameters and we
obtain

{E1zc1N1ƒ{E2zc1N2,

{E2zc2N2ƒ{E1zc2N1:

Summing both inequalities yields

{ E1zE2ð Þzc1N1zc2N2ƒ{ E1zE2ð Þzc1N2zc2N1

and so c1(N1 2 N2) # c2(N1 2 N2). Since c1 , c2 we obtain that N1 $

N2.

Significance. Another, complementary, point of view would be to
have some quality measure to state at what resolution c the partition
is ‘‘good’’. After some reflection, it is ironic we return to the question
of what resolution yields a good partition. After all, the initial goal of
modularity was in fact to decide on some resolution level: where to
cut a particular dendrogram5.

Although modularity compares the number of edges within a
community to a random graph, this does not provide any ‘‘signifi-
cance’’ of a partition, since random graphs and sparse graphs without
community structure can also have quite high modularity20–22. Other
approaches have been suggested that try to estimate in some way the
significance of a partition. One recent approach, known as ‘‘sur-
prise’’, focuses on the probability to find E internal edges in a random
graph23,24. Another more ‘‘local’’ approach keeps the degrees constant
and asks what the probability is to connect so many edges to a given
community25, which led to a method known as OSLOM26. A third
approach focuses on the likelihood of generating a graph given a
certain partition and degree distribution27, known as stochastic block
models.

But when thinking about the significance of a partition, most
methods go about it the wrong way around23–27. We do not want to
know the probability a ‘‘fixed’’ partition contains at least E internal
edges, but whether a partition with at least E internal edges can be
found in a random graph, which is the approach we will take in this
paper. After all, community detection involves searching for some
good partition, so we should focus on the probability of finding such a
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SCIENTIFIC REPORTS | 3 : 2930 | DOI: 10.1038/srep02930 2



good partition in a random graph. In a way, the earlier approaches
assume the partition is ‘‘fixed’’ and the edges are randomly distrib-
uted, whereas we try to find a partition in a random graph, which can
result in quite different statistics. Stated somewhat differently, earlier
approaches ignore that a simple permutation of nodes still contains
the same partition—one only needs to identify the permutation to
uncover the original partition—whereas our approach does account
for that. We illustrate the differences in the two approaches in
Figure 1.

Nonetheless, these earlier approaches might work quite well. For
example, explicitly calculating the probability to find E internal
edges, seems to yield good results23,24. Obviously, the two probabil-
ities—surprise and our approach—are not completely independent.
If the probability of finding many edges within a partition is high
then surely finding a partition with many edges should be easy. On
the other hand, if the probability of finding a dense partition is low,
then surely the probability a partition contains many edges is low as
well. In between these two extremes is a grey area, and a more in-
depth analysis is required for understanding it exactly.

Although exact results for finding a partition in a random graph
are hard to obtain, we do get some interesting asymptotic results. The
asymptotic limit we analyse concerns the probability to find a par-
tition into a fixed number of communities with a certain density for
n R ‘ in a random graph. The probability for finding a certain
partition can be reduced to finding some dense subgraphs in a ran-
dom graph. We consider subgraphs of size proportional to n, so that
it is of size sn, with 0 , s , 1 of a fixed density q. Our central result
concerning these subgraph probabilities is the following (the proof
can be found in the Methods section). We here use the asymptotic
notation f 5 H(g) for denoting g is an asymptotic upper and lower
bound for f.

Theorem 3. The probability that a subgraph of size nc and density q
appears in a random graph of size n and density p is asymptotically

Pr S nc,qð Þ(G n,pð Þð Þ~eH { nc
2ð ÞD qEpð Þð Þ ð5Þ

where D(q jj p) is the Kullback-Leibler divergence28

D qEpð Þ~q log
q
p
z 1{qð Þ log

1{q
1{p

: ð6Þ

For each p ? q the probability decays as a Gaussian, with a rate
depending on the ‘‘distance’’ between p and q as expressed by the
Kullback-Leibler divergence. Furthermore, the larger the subgraph
the less likely a subgraph of different density than p can be found.
Combining these probabilities we arrive at the following approxi-
mation for the probability for a partition to be contained in a random
graph

Pr sð Þ~P
c

exp {
nc
2

� �
D pcEpð Þ

� �
ð7Þ

where pc is the density of community c. We define the significance
then as

S sð Þ~{ log Pr sð Þ~
X

c

nc
2

� �
D pcEpð Þ: ð8Þ

Notice that for the two trivial partitions of (1) all nodes in a single
community (c 5 0) or (2) each node in its own community (c 5 1),
the significance is zero (assuming no self-loops). Since the signifi-
cance is non-negative (because the Kullback-Leibler divergence is
non-negative), there will most likely be some partition in between
these two extremes (0 , c , 1) which yields a non-zero significance.

Encoding gain. Notice that the Kullback-Leibler divergence can be
interpreted as a kind of entropy difference. It can be written as

D qEpð Þ~H q,pð Þ{H qð Þ ð9Þ

where H(q) is the binary entropy and H(q, p) is the cross entropy

H qð Þ~{q log q{ 1{qð Þ log 1{qð Þ, ð10Þ

H q,pð Þ~{q log p{ 1{qð Þ log 1{pð Þ: ð11Þ

Hence, it measures the difference in entropy between p and q,
assuming that q is the ‘‘correct’’ probability.

This points to a possible interpretation of the significance S sð Þ in
terms of encoding of the graph. Suppose we are requested to com-
press the graph G, and we do so using the simplest possible frame-
work: for each possible edge we indicate whether it is present or not.
Using the average graph density p, by Shannon’s source coding the-
orem28, the optimal code lengths are 2log p for indicating an edge is
present and 2log(1 2 p) for indicating an edge is absent. Now
suppose that for some community we have the actual density q.
The expected code length using the average graph density is then
H(q, p). If we use the actual graph density q however, we obtain an
expected code length of H(q). The gain in coding efficiency by using q

instead of p is then D(q jj p). Doing so for all
nc
2

� �
possible edges, and

for all communities then yields the significance (we hence don’t
count the external edges). Significance can thus be regarded as the
gain in encoding a graph by making use of a partition.

Using significance. There are two ways to use significance. Firstly, we
could use significance to select a particular resolution parameter c. As
was made clear in the previous subsection, we don’t have to scan
c[ c1,c2½ � if N(c1) 5 N(c2). If in addition we are only interested in the c
for which S sð Þ is maximal, we can only scan those ranges for which
the significance is maximal (taking a greedy approach), similar to
root-finding bisectioning.

Figure 1 | Probabilities for partitions. Consider the example partition

provided in (a). The objective is to somehow estimate how (un)likely such

a partition occurs in a random graph–the significance of a partition. In (b)

and (c) we show the same graph, but in (b) the same partition as in (a) is

used, while in (c) a partition with more internal edges is used. For

illustrative purposes, the graph is generated by randomly rewiring some of

the edges and permuting the nodes of the original graph in (a). Earlier

approaches keep the partition fixed, and focus on the probability that so

many edges fall within the given partition, as illustrated in (b). Yet this

ignores there might exist some partition within this graph that has more

internal edges. Therefore, we focus on the probability of finding such a

dense partition in random graphs, as illustrated in (c).
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Secondly, we could optimise significance itself. We use an
approach similar to the Louvain method29 for optimizing signifi-
cance (see Methods). Notice that using significance as an objective
function is not resolution limit free, contrary to CPM14. After all,
given a partition and a graph, pick a subgraph that consists of only a
single community. Then the significance S sð Þ of that partition,
defined on the subgraph equals 0, since D(pc jj p) 5 0. Since this
constitutes the minimum, it is unlikely that no other partition pro-
vides a higher significance. Hence, the same partition no longer
(necessarily) remains optimal on all community induced subgraphs,
and the method is hence not resolution limit free.

Resolution profile. Scanning the resolution parameters using bisec-
tioning seems to work quite well on LFR benchmark networks30, as
displayed in Figure 2. These benchmark networks have n 5 103 nodes
and have an average degree Ækæ 5 20 with a maximum degree of D 5

50, and follow a power-law distribution ktk with tk 5 2. The
community sizes range between 20 and 100, and are distributed
according to ntc

c with tc 5 1. This corresponds to the settings as
used for comparing several algorithms31. The proportion of
internal links can be controlled by a so-called mixing parameter 0
# m # 1, so that for m 5 0 communities are easily detectable, whereas
this becomes increasingly difficult for higher m. For the hierarchical
benchmark the mixing parameters m1 controls the coarser level and
m2 controls the finer level. For more details, we refer to Lancichinetti,
Fortunato & Radicchi30.

From Figure 2 it is quite clear that both N and E are stepwise
decreasing functions of c. The plateaus indeed correspond to the
planted partition for the benchmark network. The ‘‘stability’’ of a
partition is reported in terms of the average pairwise variation of

information (VI) between the various results of multiple runs of
the algorithm. The VI measure can be interpreted as a distance
between partitions32, so a low value indicates the results are relatively
stable. Indeed, in the range of the plateau, the VI is relatively low
(near 0), indicating the partition is relatively stable. Hence, using
such heuristics, it seems possible to scan for ‘‘stable’’ plateaus of
resolution values. Moreover, significance is highest in the region of
the plateaus, and thus seems to be able to point to ‘‘meaningful’’
resolutions for these networks.

For hierarchical LFR benchmark graphs30 results are similar
(Figure 2). This network has n 5 103 nodes, and each node has a
degree of ki 5 k 5 20. It consists of 10 large communities of 100
nodes each, and each large community is composed of 5 smaller
communities of 20 nodes each. We observe two plateaus for m2 5

0.1 (we have used m1 5 0.1 for both results), corresponding to the two
levels of the hierarchy. For these plateaus the VI is near zero, indi-
cating quite stable results. For m2 5 0.5 the two plateaus have merged
into a single plateau, The smaller communities are more significant
for m2 5 0.1. This makes sense, since the smaller communities are
quite well defined for this regime, while the larger communities are
less clearly defined. Interestingly, when the two plateaus merge for m2

5 0.5, the significance is lower than for m2 5 0.1. Indeed, the com-
munities are less clearly defined for m2 5 0.5 than for m2 5 0.1. Again,
this makes sense, as the smaller communities are much less clearly
defined, while most links still fall within the larger community (since
m1 5 0.1).

ER graphs. Applying the same technique as in the previous
subsection to ER graphs, we obtain a resolution profile, which
shows a particular transition (Figure 3a). This transition can be

Figure 2 | Scanning results for directed and hierarchical benchmark graphs. We display the squared community sizes N~
P

c n2
c , the total internal

edges E~
P

c ec and the significanceS~
P

c
nc

2

	 

D pcEpð Þ of each partition (all on a logarithmic axis on the left). The VI (on a linear axis on the right) is

calculated over the various results returned by running a stochastic algorithm. If the VI is low, this indicates that the partitions found by the algorithm are

(almost) the same. The black dashed line indicates the expected (maximal) significance of an equivalent random graph, which is estimated to be

about n log n < 6,908.
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explained by the asymptotics of significance. As the graph grows, and
n R ‘, the probability in equation (7) Pr(s) R 0 for pc ? p. This
indicates that it becomes increasingly difficult to find (relatively
large) subgraphs of a density different from p, and in the limit we
expect only to find subgraphs of about density p. For c , p we then
expect to find one large community, while for c . p we expect to
obtain each node in its own community, thereby explaining the
transition around c* < p. The asymptotic analysis ignores the fact
that the number of communities may grow with the number of
nodes. Therefore, it misses the fact that small communities may
have a density of pc . p, which explains the somewhat slower
increase of number of communities for c . p.

Analysing how significance behaves in ER graphs provides us with
a baseline to compare to observed significance values. Obviously, the
maximum significance scales with the size of the graph. In particular,
it seems to scale as n log n (Figure 3b). Compared to the benchmark
graphs (Figure 2), the significance found in random graphs is rather
low, so that significance shows little to no sign of any community
structure in ER graphs (although there will be a non-trivial partition
obtaining this maximum significance). By comparing the observed
significance in any graph to n log n, one is thus able to asses to what
extent the observed community structure is significant. We believe
this represents a first step towards a fully fledged hypothesis testing of
the significance of community structure.

Maximizing significance benchmarks. We have tested the two
methods: (1) using significance to choose a c in CPM; and (2)
optimizing significance itself. We used the standard LFR bench-
mark, with the same parameters as for Figure 2 for the ‘‘big’’
communities, while the ‘‘small’’ communities range from 10 to 50,
for both n 5 1,000 and n 5 5,000. The results are displayed in
Figure 4. We measure the performance using the normalized
mutual information (NMI)31, with NMI 5 1 indicating the method
uncovered the planted partition exactly. It is clear that using
significance to scan for the best c parameter for CPM works quite
well. Surprisingly however, optimizing significance itself results in a
slightly worse performance than scanning for the optimal c
parameter for CPM for some settings. This is presumably due to
some local minima in which the significance optimization gets
stuck, while this is not the case for CPM. Nonetheless, optimizing
significance works quite well, and seems to outperform Infomap33,34,
which was previously shown to perform well31. The OSLOM method
performs relatively well, although not as well as using significance to
scan for the best c parameter for CPM. This method is aimed at
overlapping communities, so an adjusted NMI35 was used to
account for that, which still equals 1 if it uncovers the planted

partition exactly. No results for the significance are provided, since
there is no adjusted version of this measure (yet). Modularity clearly
shows signs of the resolution limit12, as it has difficulties detecting
smaller communities in relatively large networks. In general, all
methods have a similar computational complexity and use (vari-
ants of) the Louvain method29. Detecting the optimal resolution
value c for CPM involves running the Louvain method multiple
times which obviously takes more time.

Calculating the significance for the planted partition S�, we see
that in general whenever a method correctly finds the planted com-
munities (i.e. NMI 5 1), that the significance of the partition found
by that algorithm is equivalent, so that S~S� (second row of
Figure 4). We observe a decrease in significance for increasing m,
as expected (third row of Figure 4). At the point where the signifi-
cance of the planted partition goes below the significance of an equi-
valent random graph, S�v Sh i, no method seems able to correctly
detect the communities. This suggests that significance accurately
captures whether there is some partition present in the network or
not. Before this point, whenever a method is unable to detect the
planted communities, the significance of that ‘‘incorrect’’ partition is
lower than that of the planted partition, SvS�, indicating that the
planted partition is of maximal significance.

European parliament. We demonstrate the method on networks of
the European Parliament (EP) from 1979–2009, where each vote of a
member of parliament (MEP) for or against a certain proposal is
recorded, the so-called roll call votes (these do not constitute all
votes in the EP though), similar to an analysis of the U.S. Senate10.
Over this whole period, a total of almost 16 million votes were cast, by
in total a little over 2,500 different MEPs for more than 21,000 issues.
For each parliamentary year (roughly from mid-June to mid-June the
next year), we constructed a network, where there is a link between
two MEPs whenever they vote more in accord than average. We only
take into account votes whenever both MEPs cast a yea or nay vote
(instead of abstaining, not voting or being absent). We used data
from Simon Hix36.

The MEPs are elected for a five year period from national member
states, and each MEP is associated to a national party. In total we can
discern 169 national parties over the whole period, but usually parties
and MEPs organise themselves in political groups (EP groups) that
correspond to some ideological views, ranging from liberalism to
socialism and from conservatives to progressives. Not all MEPs orga-
nise themselves in EP groups; these are known as Non-Attached
(NA) members. Although the EP has the power to choose the
European Commission (not per individual commissioner, but as a
whole), they do not need to organise themselves in governing parties

Figure 3 | Results for ER graphs. In (a) we show that there is a transition around c 5 p the density of the graph. This transition can be explained by the

subgraph probabilities calculated in this paper, which suggest that asymptotically, a random graph only contains subgraphs of about the same density (of

size proportional to n). In (b) we show the significance of random graphs, which seems to scale approximately with n log n.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2930 | DOI: 10.1038/srep02930 5



and opposition. Nonetheless, various coalitions are formed, and
from time to time the largest groups have collaborated in a grand
coalition of sorts37. In short, we can create a partition on three dif-
ferent aspects of the MEPs: (1) their EP group; (2) their national
party; and (3) their member state. In addition, we obtain the partition
that maximizes significance.

We show the normalized significance (i.e. normalized by ÆSæ <
n log n) for the four different possible partitions in Figure 5 from
1979 (the first EP) to 2008 (the sixth EP). Given the (sub) national
constituencies of elected MEPs, one particular concern is that the EP
is governed by national interests, rather than some common
European interest. Our results clearly show that neither a partition
based on national party nor on a partition based on member states is
significant. To be clear, this does not imply that MEPs of the same
national party do not vote similarly (because they do), rather, it
means they vote highly similar to MEPs of other parties. For member
states however, the division seems to run across member states, and
MEPs of the same member state do not necessarily vote in a similar
fashion. This shows that in general MEPs do not vote along national
lines, although for certain votes the national background may play a
role38,39.

The partition in EP groups shows 5 to 15 times the significance of a
random graph, making it quite significant. Whereas the partition
into member states and national parties remains almost constant
throughout time, the partition into EP groups increases quite a lot

from 1979 to 2008, with an all time low of
S
Sh i<3:9 in 1981 and

reaching its maximum of
S
Sh i~16:8 in 2001, an increase of more

than 400%. One possible explanation of the general increase in divi-
siveness is that the EP has become more powerful over the years, so
that competition over important issues have taken a lead37,38,40.
Besides a general trend upwards, there seems to be a particularly
large jump between 1995 and 1996. One possible explanation is that
Austria, Finland and Sweden entered the European Union in 1995,
whereafter MEPs were elected to parliament in 1995 and 1996. On
the other hand, the accession of Eastern European countries in 2004
and Eastern Balkan countries in 2007 did not seem to increase the
divisiveness. The maximum significance closely follows the same
trend as the EP group partition, suggesting the two are related.

We have also analysed in the sixth parliament for the year 2008,
using CPM and significance, to see what scales of community struc-
ture are present. We show results for c 5 0.5 and c 5 0.8, with the
latter corresponding to the maximal significance for CPM. Clearly,
the communities have a quite high internal density, and are quite
strongly connected amongst each other, as is also clear from the
adjacency matrices displayed in Figure 5.

At c 5 0.5 CPM groups together the Greens/European Free
Alliance (G/EFA) and the European United Left/Nordic Green Left
(EUL/NGL), which are both left wing environmental parties. The
Party of European Socialists (PES), joins the two other leftist parties
at a somewhat higher resolution of c 5 0.8. The more conservative
parties of the Union for Europe of the Nations (UEN) and the Alliance
of Liberals and Democrats for Europe (ALDE) seem to join forces
with the more centric European People’s Party-European Democrats
(EPP-ED). The eurosceptic Independence/Democrats (IND/DEM)
group divides itself between the right-wing and the left-wing bloc,
although some members constitute a separate bloc with other Non-
Attached (NA) MEPs, who themselves also split across the two large
blocs. The partition maximizing significance is different still, but
shows a similar grouping of EP groups, in addition to several smaller
communities. Surprisingly however, a part of UEN is joined with
PES, although they seem ideologically more remote.

These three different partitions highlight different aspects of the
voting network. The partition maximizing significance for CPM (at c
5 0.8) seems to highlight a more or less traditional partition into left
and right wing politics37. The partition for c 5 0.5 seems to reveal a
grand coalition37, with mainly the green-left differing from the rest.
The partitions maximizing significance itself seems to highlight some
interesting split of the UEN. In conclusion, the EP shows signs of
multiple possible partitions, and significance seems to point to some
interesting partitions.

Discussion
We have presented in this paper a method to find significant scales in
community structure. Firstly, we introduced a bisectioning method
allowing a fast and accurate construction of a resolution profile.
Secondly, we suggested a measure based on subgraph probabilities
in order to state what partitions are significant. This measure can be
interpreted as the gain in encoding a graph by making use of a

Figure 4 | Benchmark results for significance. Finding the optimal resolution value for CPM using significance seems to work best (first row), where an

NMI of 1 indicates the algorithm uncovers exactly the planted partition (OSLOM might return overlapping communities, we used an adjusted NMI for

that35, but it is still 1 if it is correct). Optimizing significance itself also works rather well. We tested two different community size distributions: the small

communities are between 10 and 50 nodes, and the big communities between 20 and 100 nodes. The resolution limit is clearly visible for modularity,

which shows especially for small groups in large networks. Whenever the significance found by each method S is higher than the significance of the

planted partition S�, the planted partition is no longer the optimal partition from the significance point of view (second row). If the significance of the

planted partitionS� is lower than the significance of an equivalent random graph Sh i no method seems able to correctly detect the planted partition (third

row).
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partition. We showed significance is able to accurately portray parti-
tions in benchmarks. Additionally, we showed on an empirical
example using voting data of the European Parliament that this mea-
sure conveys meaningful information in that setting. Significance
seems to be closely related to the measure of surprise23,24 and to
stochastic block models27, relationships we hope to explore further
in the future.

We conjectured that the maximum significance ÆSæ , n log n for
random graphs, which allows researchers to compare the observed
significance to the expected significance. It constitutes a first step
towards fully fledged hypothesis testing of the significance of parti-
tions. Nonetheless, a proof of this behaviour is lacking so far.
Moreover, the standard error needs to be estimated still, although
simulations show it is relatively small. Furthermore, the significance
is currently based on Erdös-Rényi graphs, but it might be more
realistic to take the degree distribution into account3. Significance
is not only useful for partitions found using community detection,
but also for partitions based on other node characteristics41, such as
school grades42, gender43, or dormitories44, similar to what we did for

the European Parliament, and as such we deem it to be a valuable
contribution to analysing partitions in complex networks.

Methods
Subgraph probabilities. We write G[G n,pð Þ for a random graph G from G n,pð Þ, such
that each edge has independent probability p of being included in the graph, the usual
Erdös-Rényi (ER) graphs. We use jGj: 5 jV(G)j 5 n for the number of nodes and
jjGjj: 5 jE(G)j5 m for the number of edges. We use H # G to denote the fact that H is
an induced subgraph of G. We write Pr H(G n,pð Þð Þ for the probability that H is an
induced subgraph of a G[G n,pð Þ. Let S(nc, mc) 5 {G j jGj5 nc, jjGjj5 mc} denote the
set of all graphs with nc 5 jGj vertices and mc 5 jjGjj edges. Furthermore, we slightly
abuse notation and write Pr S nc,mcð Þ(G n,pð Þð Þ for the probability that a graph
G[G n,pð Þ contains one of the graphs in S(nc, mc), i.e.

Pr S nc,mcð Þ(G n,pð Þð Þ~ Pr (
[

H[S nc,mcð Þ
H(G(n,p)):

Let us denote by X the random variable that represents the number of occurrences
of a subgraph with nc vertices and mc edges in a random graph. Let XH be the indicator
value that specifies whether a subgraph H of order nc 5 jHj in the random graph
equals one of the graphs in S(nc, mc), which of course comes down to

Figure 5 | Results for the European Parliament (EP). In (a) we show the significance of four different possible partitions throughout time: the partition

that maximizes significance and partitions based on the affiliation of each member of parliament (MEP) to an EP group, a national party or a member

state. In (b) we show the resolution profile for the sixth EP in the parliamentary year 2008 (June 13, 2008–June 12, 2009). Besides the other quantities, we

also show the similarity as measured by the NMI to partitions based on the EP groups, the national parties and the member states. In (c), (d) and (e) we

show how such a partition looks like at maximum significance and at two different resolution values c 5 0.5 and c 5 0.8 respectively. The latter

corresponds to the partition that maximizes significance. The top shows the division in parliament, while the bottom shows the adjacency matrix ordered

the same as the parliament. The division in communities is indicated by the grouping of the seats in parliament and the black lines in the adjacency matrix,

while the EP groups are indicated by colour. For a key to the abbreviations of the EP parties, we refer to the main text.
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XH~
1 if Hk k~mc and Hj j~nc

0 otherwise

�
:

We can then write X~
P

H XH where the sum runs over all n
nc

� �
possible sub-

graphs H. Obviously then, Pr Xw0ð Þ~ Pr S nc,mcð Þ(G n,pð Þð Þ. By Cauchy-Schwarz’s

inequality E XYð Þ2ƒE X2ð ÞE Y2ð Þ and Markov’s inequality Pr X§að Þƒ E Xð Þ
a

we

obtain the following bounds

E Xð Þ2

E X2ð Þƒ Pr Xw0ð ÞƒE Xð Þ: ð12Þ

This way of estimating probabilities is known as the second moment method45.
It is convenient to define the probability that a graph of nc nodes contains mc edges

r~ Pr S nc,mcð Þ(G nc,pð Þð Þ~
nc
2ð Þ

mc

	 

pmc 1{pð Þ

nc
2ð Þ{mc :

Theorem 4. The expected number of occurrences of an induced subgraph with nc

nodes and mc edges in a random graph with n nodes and density p, is given by

E Xð Þ~ n
nc

� �
r ð14Þ

Proof. By linearity of expectation, we have E Xð Þ~
X

H
E XHð Þ, and because XH is

an indicator variable E XHð Þ~ Pr XH~1ð Þ. Notice that H has nc nodes, so that

H[G nc,pð Þ, and Pr(XH 5 1) 5 r. There are n
nc

� �
subgraphs of nc nodes in a graph with

n nodes, which concludes the proof.
For E X2

� �
the idea is to calculate the expected value of the number of pairs of

subgraphs that have mc edges. We do this by separating in three parts: the parts of the
two subgraphs without overlap, and the part that overlaps.

Theorem 5. The expected squared number of occurrences of an induced subgraph
can be written as

E X2
� �

~E Xð Þ
Xnc

u~0

nc
u

� � n{nc
nc{u

� � Xmin u
2ð Þ,mcð Þ

m Dð Þ

M uð Þ

mc{m Dð Þ

 !

pmc{m Dð Þ 1{pð ÞM uð Þ{ mc{m Dð Þð Þ,

ð15Þ

with M uð Þ~ nc nc{1ð Þ{u u{1ð Þ
2

.

Proof. The variable X2 can be decomposed into parts XH 3 XH9, such that we need to
investigate the probability that both H and H9 have mc edges. So, we can separate this
expectancy in parts of partially overlapping subgraphs, like

E X2
� �

~
X

u

X
H\H’j j~u

Pr Hk k~ H’k k~mcð Þ, ð16Þ

where u represents the overlap between the different subgraphs. If H and H9 are
(edge) independent, so when u , 1, the answer is simply given by Pr(XH 5 1)2. For u
$ 1 the answer is more involved.

So let us consider two subgraphs H and H9 such that jH > H9j 5 u $ 1. Let us
separate this in three independent parts, the overlap D5 H > H9, and the remainders
A 5 H 2 D and B 5 H9 2 D. Clearly then, jDj 5 u, and jAj 5 jBj 5 nc 2 u. The
probability that jjHjj 5 jjH9jj 5 mc can then be decomposed in the probability that
the sum of these independent parts sum to mc. The probability that jjHjj5 mc can be
decomposed as

Pr Hk k~mcð Þ~
X
m Dð Þ

Pr Dk k~m Dð Þð Þ

Pr Hk k~mc Dk kj ~m Dð Þð Þ:

where m(D) signifies the number of edges within D. Similarly, we arrive at the
conditional probability for both subgraphs H and H9. However, since we have con-
ditioned exactly on the overlapping part, the two remaining parts are independent,
and we can write

Pr Hk k~ H’k k~mc j Dk k~m Dð Þð Þ~ Pr Hk k~mc Dk k~m Dð Þjð Þ2:

This probability can be calculated and yields

Pr Hk k~mc Dk kj ~m Dð Þð Þ~
M uð Þ

mc{m Dð Þ

	 

pmc{m Dð Þ 1{pð ÞM uð Þ{ mc{m Dð Þð Þ,

where M uð Þ~ nc nc{1ð Þ{u u{1ð Þ
2

. We then obtain

Pr Hk k~ H’k k~mcð Þ~
X
m Dð Þ

Pr Dk k~m Dð Þð Þ

M uð Þ

mc{m Dð Þ

 !2

p2 mc{m Dð Þð Þ 1{pð Þ2M uð Þ{2 mc{m Dð Þð Þ

which leads to

nc
2ð Þ

mc

	 

pmc 1{pð Þ

nc
2ð Þ{mc

X
m Dð Þ

M uð Þ
mc{m Dð Þ

	 

pmc{m Dð Þ 1{pð ÞM uð Þ{ mc{m Dð Þð Þ,

where m(D) ranges from 0 to the minimum of mc and the number of possible edges
u
2

� �
.

Now counting the number of subgraphs that overlap in u nodes, for each choice of
subgraph H, we choose u nodes in H, and nc 2 u nodes in the remaining n 2 nc nodes.
In total, there are then

Cu~
n
nc

� �
nc
u

� �
n{nc
nc{u

� �
overlapping subgraphs with u nodes in common. Concluding, we arrive at

E X2
� �

~
X

u

Cu Pr Hk k~ H’k k~mc H\H’j jj ~uð Þ:

Writing this out, we arrive at equation (15).
We consider subgraphs of size sn, with 0 , s , 1 with fixed density q. For the

asymptotic analysis, we can afford to be a bit sloppy with this density, and consider
(sn)2 possible edges in the subgraph of sn nodes, so that mc 5 q(sn)2, and we now
denote by S(sn, q) the subgraphs with density q instead of the actual number of edges.

Theorem 6. The probability for a dense subgraph can be bounded below and above
asymptotically as

Pr S sn,qð Þ(G n,pð Þð Þ~eH { snð Þ2 D q pkð Þð Þ ð17Þ

where D(q jj p) is the Kullback-Leibler divergence

D q pkð Þ~q log
q
p
z 1{qð Þ log

1{q
1{p

: ð18Þ

Proof. We prove the asymptotic result by showing that both an upper and a lower
bound have a similar asymptotic behaviour. The upper and lower bounds are pro-
vided by Markov’s and Cauchy-Schwarz’s inequality as stated in equation (12). We
will first prove the upper bound. Taking logarithms on Stirling’s approximation, we
obtain that

log
n
nc

� �
*nH

nc

n

� �
~nH sð Þ,

where H(p) is the binary entropy

H pð Þ~{p log p{ 1{pð Þ log 1{pð Þ: ð19Þ

We apply this to E Xð Þ~ n
nc

� �
r with r as in equation (13) and we obtain

log E Xð Þ*nH sð Þz snð Þ2H qð Þz log pq snð Þ2 1{pð Þ 1{qð Þ snð Þ2
� �

,

which can be simplified to log E Xð Þ*nH sð Þ{ snð Þ2D qEpð Þ, utilising the binary
Kullback-Leibler divergence28

D qEpð Þ~q log
q
p
z 1{qð Þlog

1{q
1{p

, ð20Þ

which yields the upper bound by Markov’s inequality.
We need the second moment for the lower bound. This can be rewritten as

E Xð Þ2~E Xð Þ
P

u

P
m Dð Þ f u,m Dð Þð Þ, with

f u,m Dð Þð Þ~
nc

u

	 

n{nc

nc{u

	 

M uð Þ

mc{m Dð Þ

	 

pmc{m Dð Þ 1{pð ÞM uð Þ{ mc{m Dð Þð Þ: ð21Þ

By Cauchy-Schwarz inequality, we want that

log
E Xð Þ2

E X2ð Þ~logE Xð Þ{log
X

u

X
m Dð Þ

f u,m Dð Þð Þ

increases as 2(sn)2D(q jj p). We know that by Jensen’s inequality we have

log
E Xð Þ2

E X2ð Þ§logE Xð Þ{
X

u

log
X
m Dð Þ

f u,m Dð Þð Þ ð22Þ
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Using the notation u 5 asn we can write

f a,m Dð Þð Þ~
sn

asn

 !
1{sð Þn

s 1{að Þn

 !
1{a2ð Þ snð Þ2

mc{m Dð Þ

 !

pmc{m Dð Þ 1{pð Þ 1{að Þ2 snð Þ2{ mc{m Dð Þð Þ

We can bound

Xsnð Þ2min a2 ,q

m Dð Þ~0

1{a2ð Þ snð Þ2

mc{m Dð Þ

 !
pmc{m Dð Þ 1{pð Þ 1{að Þ2 snð Þ2{ mc{m Dð Þð Þ

by

Xq snð Þ2

k~0

1{a2ð Þ snð Þ2

k

 !
pk 1{pð Þ 1{a2ð Þ snð Þ2{k,

with k 5 mc 2 m(D), in which we recognize the binomial cumulative probability Pr(Y
# mc) where Y are the number of edges in the overlapping part. By Hoeffdings
inequality this can be bounded by

exp {2 snð Þ2 1{a2{qð Þ2

1{a2

 !
: ð23Þ

Combining with our earlier result on E(X), we then have

log
E Xð Þ2

E X2ð Þ§{ snð Þ2D qEpð ÞznH sð Þ{
X

a

snH að Þz 1{sð ÞnH 1{að Þ s
1{s

� �

{ 2 snð Þ2 1{a2{qð Þ2

1{a2

 !
:

For large enough n the quadratic term dominates, and we obtain

log
E Xð Þ2

E X2ð Þ§{ snð Þ2D qEpð Þ, giving the lower bound. By combining the lower and

upper bound we obtain the asymptotic result stated in the theorem.

Optimizing significance. As is common in the Louvain method29, we look at the
difference of moving some node. However, we also need to aggregate the graph, and
still correctly move communities. For that we need the node size ni, similar as for
CPM14, which initially is ni 5 1. Upon aggregating the graph the node size is set to the
sum of the node sizes within a community. Moving node i from community r to s with
size ni, eir edges to community r and eis edges to community s gives a difference in
significance of

DS sð Þ~
nr

2

 !
D qrEpð Þ{

nr{ni

2

 !
D q’rEp
� �

{
ns

2

 !
D qsEp
� �

z
nszni

2

 !
D q’sEp
� �

,

where q’r~
mr{eir

nr{ni

2

	 
 and q’s~
mszeis

nszni

2

	 
 .
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