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A common philosophy in control theory is the control of disorder by order. Control of decoherence is no
exception; strategies aimed at suppressing quantum decoherence adopt this point of view. Here we predict
an anomalous phenomenon in open quantum systems-control of disorder by (even more) disorder. It is
shown that suppression of decoherence can be achieved using the most disordered white noise field,
specifically a white Poissonian noise field. This phenomenon seems to be another anomaly in quantum
mechanics and may offer a new strategy in quantum control practices.

D
ecoherence is the deterioration of quantum information in a system due to inevitable interactions with the
environment or bath1–5. Suppression of decoherence is one of the paramount challenges in quantum
control practices and requires accurate control of the system dynamics. Here we predict an anomaly:

suppression of decoherence can be be achieved using uncontrollable white noise fields. By increasing the strength
of noise signals, a two-level system becomes less coupled to its environment and even remains in the initial state
for a period of time. The aberrant effect reveals a new physical mechanism in quantum control theory, and in
practice may offer the possibility of control by uncontrollable white noise. We term the phenomenon as control of
decoherence with no control.

Noise is a source of disorder. White noise, whose spectrum has equal power within any equal interval of
frequencies, is the extreme of disorder (in comparison with coloured noise). Over a decade ago, people began to
notice in classical systems that noise leads not only to nuisance but also to advantages. A remarkable example is
that an external coloured noise can suppress the intrinsic white noise6,7. While it is a surprise, the phenomenon fits
well with the common philosophy - control of disorder by order. This philosophy has been carried out in classical
noise control and extended to suppression of decoherence in quantum dynamical processes. External field control
of quantum decoherence dates back to the spin echo technique8. This technique is used to suppress the inhomo-
geneous spin dephasing by applying a p inversion pulse and has been developed to tackle general decoherence9–17.
However, the philosophy, control of disorder by order, remains the same for both the classical and the quantum
mechanical processes. Now the predicted anomaly is opposite to the common philosophy; the most disordered
white noise is used to control less disordered decoherence, which is characterized by a quantum stochastic process
with coloured noise or by a non-zero correlation function over finite time. Seeing that the setting in use is
exclusively quantum mechanical, it appears that the phenomenon is another anomaly in quantum systems.

Quantum mechanically, the dynamical process of a system plus its environment is governed by the total
Hamiltonian,

Htot~HS tð ÞzHBzHSB, ð1Þ

where HS(t) and HB are the system Hamiltonian, embedded with white noise, and the environment Hamiltonian,
respectively. The system dynamics is normally characterized by master equations. The system-bath interaction
HSB is the source of decoherence.

Results
Protocol of decoherence suppressions with no control. We now introduce our protocol of decoherence
suppressions, in particular suppression of dissipation. Dissipation is a decoherence process caused by the
exchange of energy between a system and the environment. Provided that a two-level system is in its
excitation state, the environment induces the system to give off energy and to decohere to the ground state
[Fig. 1(a)]. If nature happens to have the white noise which we have required above, the decoherence can be
suppressed spontaneously [Fig. 1(b)]. This required noise is described by white noise c(t) 5 g(J,W,t), in particular
the biased Poissonian white noise with the strength J18. We name the average time interval between two neighbour
noise signals as 1/W ; T/n, where T is a time scale, different for variant systems, and n is the noise arrival

OPEN

SUBJECT AREAS:
ATOMIC AND

MOLECULAR PHYSICS

QUANTUM PHYSICS

OPTICS AND PHOTONICS

STATISTICAL PHYSICS,
THERMODYNAMICS AND
NONLINEAR DYNAMICS

Received
11 June 2013

Accepted
4 September 2013

Published
25 September 2013

Correspondence and
requests for materials

should be addressed to
L.-A.W. (lianao_wu@

ehu.es)

SCIENTIFIC REPORTS | 3 : 2746 | DOI: 10.1038/srep02746 1



number18. When 1/W goes to zero, c(t) corresponds to the con-
tinuous-time white noise process, where J is the only parameter. If
1/W is finite, c(t) can be the biased Poissonian white shot noise,
which is essentially different from well-controlled, idealized or
non-idealized, pulse sequences. We can tune the parameter W
towards the continuous time limit. In what follows, we will study
the system responses to the noise c(t).

Fidelity preserved by white noise. Consider a dissipative model for
the two-level system, described by a non-Hermitian Hamiltonian in
the exact quantum Stochastic Schrödinger equation [See Method]19,20,

Hss tð Þ~ vzc tð Þ½ �sz=2ziz�t gs{{igQszs{, ð2Þ

where v is the bare-energy spacing and g is the coupling strength
between system and environment. c(t) is the above-mentioned white
noise signal and Q satisfies a nonlinear differential equation
_Q tð Þ~gc=2z {czivzic tð Þ½ �QzgQ2, with a boundary condition
Q(0) 5 0 17. The correction function of this process is G t,sð Þ~
c

2
e{c t{sj j. Here c characterizes the environmental memory in the

Ornstein-Uhlenbek process and is inversely proportional to the
environmental memory time. The values of c can be used to
somehow determine the degree of non-Markovianity. The larger c
is, the more Markovian the environment is. c R ‘ corresponds to
the white noise model and indicates the Markov limit. This colored
noise is formulated as z�tzDt~z�t {cz�t Dtz

ffiffiffiffiffiffiffiffiffiffi
Dt=2

p
cw�, where w* is a

complex Wiener process17.
Suppose that the system initial state is jy0æ 5 j1æ. The fidelity
F tð Þ:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y0 rtj jy0h i

p
, qualifying the survival probability, evolves

according to

F tð Þ~e{
Ð t

0
dsR Q sð Þ½ �

, ð3Þ

where R :½ � is the real part of the input function17. Below we will
numerically study the noise effects on fidelity during time courses.

Figures 2 showF tð Þ vs time for c 5 0.2 and 0.5, subject to different
c(t). Suppression of dissipation is excellent in all cases with bigger W,
in particular for less Markovian environments. Different values of W

represent different physics. Smaller W corresponds to a sequence of
noise shots with random amplitudes and sparser random arrival
moments, as illustrated by W 5 200/T. It suppresses dissipation to
some extent, but not as efficient as bigger W. When W is big enough,
all different values of W tend to result in the same fidelity and give an
identical curve, as exemplified by the red solid curves with W 5

1000/T. These curves correspond to the continuous-time white
noise.

The quality of suppression depends mostly on the strength J of the
continuous-time white noise and environmental non-Markovianity
c. The two figures show clearly that the larger J is, the better the
quality of suppression is. The parameter c seriously influences the
quality of suppression as well. Suppression becomes worse at c 5 0.5
than at c 5 0.2, and even worse when the environment is more
Markovian. Eventually, suppression is invalid in a complete Mark-
ovian environment (c R ‘), corresponding to quantum white noise.
Significantly, it shows that white noise cannot suppress white noise,
i.e. complete disorder cannot suppress complete disorder.

Now we look into the detailed roles that the parameters J and W
play. Figure 3 plots the fidelity contour as a function of J and W at two
time moments t 5 50 T and t 5 100 T. The regions where Fw0:99
are highlighted. The fidelity is saturated at W . 600/T for both
figures, where a discrete random pulse sequence becomes the con-
tinuous-time white noise. While the fidelity is excellent for bigger
values of J, it seems not to be saturated with J. The bigger J is, the
better the fidelity is.

The numerical results presented by figures could be valid for vari-
ous physical systems with corresponding characteristic values of T.
For example, v is approximately 109–1010 Hz in a superconducting
flux qubit21. The relaxation time is T1 < 1 ms such that the time scale
T < 5 ns and the dimensionless vT < 5 as taken in Fig. 2. The
required noise strength J should be more than 109 Hz in order to
successfully suppress decoherence.

Discussion
The perfect suppression could be justified by the following argument.
By integrating over equation (5) (see Methods), for a long time limit,
one can always write,

Figure 1 | Sketches of (a) qauntum dissipation of a two-level system induced by its environment, (b) dissipation suppressed by white noise.
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y0jy?h i{1~
X

ab

ð?
0

Nab tð Þhab tð Þdt, ð4Þ

where a’s denote a set of complete bases. Here N(t) and h(t) represent
a noisy matrix and a system dynamical matrix (see example in
Methods). If each nonzero element of N is a fast-varying noise func-
tion of time and the corresponding element in h is much slower and
weaker, the integral of each term Nab(t)hab(t) could be zero. In our

model, N tð Þ!e{i
Ð t

0
c sð Þds and h(t) 5 2Q(t)Æy0jytæ are c-numbers.

For bigger values of J, h(t) is slower and weaker than N(t). When h(t)
is such slow in comparison with N(t) that it can be treated as time
independent, it is easily to prove

Ð?
0 N tð Þh tð Þdt~0 by using the

properties of a continuous-time white noise.
The signal c(t) mimics natural white noise and is also associated

with dephasing processes. Our results demonstrate that the existence

of noise c(t) (or dephasing) significantly inhibits the dissipation. This
well explains the reality where the relaxation time T1 is longer than
the dephasing time T2 for all systems; dephasing has suppressed
dissipation spontaneously.

It is easy to discriminate our approach from the well-discussed
dynamical decoupling, e.g.11–13, since the latter control method is
realized through designed sequences of pulses in frequency or the
arrival time whereas white noise is ubiquitous and beyond artificial
control. Yet it is also dramatically different from the stochastic res-
onance22–24, where a dynamical system is subject to both periodic
forcing (for classical systems) or Floquet Hamiltonian (for quantum
systems) and random noise may show a resonance or coherent beha-
vior which is absent when either the periodical driving or the per-
turbation is absent. The stochastic resonance is achieved when the
noise amplitude is optimized so that it is not too weak to attain the
threshold of the system signal detector and is not too strong to
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Figure 2 | F tð Þ vs time. The environmental memory parameter c is taken as 0.2 and 0.5 respectively. We compare the free dynamics (green-solid curves)

with those subject to different noises, red curves to W 5 1000/T and blue to W 5 200/T. The solid, dashed and dotted curves represent different strengths

J 5 15v, 8v and J 5 3v respectively. Here vT 5 5 and g 5 0.4v.
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Figure 3 | Parameter thresholds and effective regions at two time moments. Here vT 5 5 and g 5 0.4v. Fidelity where Fw0:99 is distinguished. The

non-Markovian environment is characterized by c 5 0.2.
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overwhelm the system coherent behavior. On the contrary, our con-
trol works when the amplitude of the white noise J is above a lower
bound. The stronger noise is, the better the control is. More precisely,
all known control approaches fit well with the philosophy-control of
disorder by order, while ours, control of disorder by even more
disorder, is opposite.

Methods
Consider the system-bath interaction HSB 5 LB{ 1 L{B for simplicity. The exact
stochastic Schrödinger equation is19,20,25:

iLtyt z�ð Þ~Hss tð Þyt z�ð Þ: ð5Þ

where Hss~HS tð ÞziLz�t {iL{ �O is an exact system Hamiltonian and L 5 gs2 for our
two-level system. �O is a combination of system operators and environmental noises
satisfying consistency conditions19. Each quantum trajectory is accompanied by a
special process z*, and the system density matrix is given by rt 5 M[jyt(z*)æÆyt(z*)j].

Suppose that the system is initially at jy0æ 5 jmæ, a vector in the completed set jnæ’s.
The system Hamiltonian and the coupling operator could be generally expressed by
HS(t) 5 Snvn(t)jnæÆnj and L 5 Sm?nCmnjmæÆnj respectively,

hab~z�t Cbadbm ajyth i{
X
m’n’

Cab�damdbn’ n’ �Oj jm’h i m’jyth i ð6Þ

and Nab:e{i
Ð t

0
va sð Þ{vb sð Þ½ �ds . The white noise is embedded in the differences va 2

vb. F~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y0h jM ytj i yth j½ � y0j i

p
is obtained by an ensemble average over the integral

results in Eq. (4). For the two-level system initially at j1æ, we can specifically write Eq.
(4) as,

y0jy?h i{1~{

ð?
0

Q tð ÞN� y0jyth idt ð7Þ

where N tð Þ~e{i
Ð t

0
vzc sð Þ½ �ds .

The paper employs the biased Poissonian white noise18,26, c(t) 5 Sjxjd(t 2 tj)
satisfying the following statistical properties

M c tð Þ½ �~JW,J~M xj
� �

,

M c tð Þc sð Þ½ �{M c tð Þ½ �M c sð Þ½ �~WM x2
j

h i
d t{sð Þ,

ð8Þ

where xj’s are noise heights. Details of numerical realization of the noise can be found
in Ref. 26.
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