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Our brain is known to automatically optimize effort expenditure during motor coordination, such that for
example, during bimanual braking of a bicycle, a well-oiled brake will automatically be used more than a
corroded, heavy brake. But how does our brain infer the effort expenditure? All previous motor
coordination models have believed that the effort in a task is known precisely to our brain, solely from the
motor commands it generates. Here we show that this belief is incorrect. Through experiments and
simulation we exhibit that in addition to the motor commands, the returning haptic signals play a crucial
role in the inference of the effort during a force sharing task. Our results thus elucidate a previously
unknown sensory-motor association that has major ramifications for our understanding of motor
coordination and provides new insights into how sensory modifications due to ergonomics, stroke and
disease can affect motor coordination in humans.

T
he human motor system is highly redundant. A simple task like picking up a glass of water on the table can be
performed using numerous arm trajectories with different spatial and temporal characteristics, and using
different muscles. Still, it is observed that individuals repeatedly choose a particular set of muscles and

trajectories from the available options for any task. In the optimization framework, this regularity is explained as
the minimization of a set of scalar variables that our brain regards as critical during a task1. While the variables
considered by the human central nervous system (CNS) to determine motion are still debated10,11, the task error
and effort expenditure are probably the most well accepted and have been shown to accurately explain many
aspects of motor behaviors such as eye saccades, arm movements1–4 and bimanual coordination5,6. But, to
minimize the error and effort, the CNS needs to calculate them online during movements. While task error is
believed to be estimated by the CNS through the integration of the sensory predictions with the sensory observa-
tions12,13, the popular belief about effort is that this is known precisely to the CNS1–5,8, solely from the motor
commands it generates. The possible involvement of the sensory feedbacks in effort estimation has been neglected
because the motor commands are considered to be known to the CNS and sufficient to give an accurate estimate
of effort.

However, the one fact that is well accepted about the sensory and motor systems is that they form a closely
coupled unit where functions performed by one system are, more often than not, strongly affected by the other1,14.
In this study we examined if this is true also for effort inference, and hypothesized that in addition to the motor
commands, the haptic feedback determines effort expenditure in motor tasks involving contact force. We focused
purposely on the haptic sensory feedback and contact force production because they characterize a majority of
motor tasks and because the role of haptic feedback has been reported to be particularly unclear in previous
studies that examined cognitive feeling of effort15,16 in humans. Critically, if true then our hypothesis would exhibit
a previously unknown sensory-motor association, providing new insights into how haptic deprivations due to
ergonomics, disease and stroke can affect human motor behaviors.

To examine the role of haptic signals in the inference of the effort expenditure during motor coordination, we
chose a bimanual two finger force sharing task5. While this task gives a target for the total force applied by the two
fingers, the subject’s CNS is free to choose how the exerted force is distributed between the fingers. It has been
previously exhibited5 that the force distribution between the fingers in this task is determined by the force
variability in each finger and the effort (force) applied by each finger. We checked if and how the force distribution
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between the two fingers is affected when the tactile sensation in one
of the fingers is reduced using a glove without changing its force
variability (hence task error).

Results
Experiment-1. Twelve neurologically healthy, naı̈ve (one left-
handed) subjects participated through two experiments in our
study. In Experiment-1, they pressed on two force sensors
isometrically (Fig. 1A) with their left and right index fingers. They
were given a visual feedback of the sum of their finger forces which
they matched to one of three pseudo-randomly presented target
levels (yellow bar in Fig. 1A). The targets were pre-calibrated to
0.1, 0.2 and 0.3 times of the maximum voluntary contraction
(mvc) in each subject. The target presentation time (4 sec) was set
such that all subjects could achieve steady state during force
production. The subjects performed this two-finger task over two
sessions; one when their hands were free (no glove session) and one
when they wore an elastic cloth glove in one of the hand (glove
session). The subjects were divided into two groups; one wore the
right glove in the gloved sessions, while the other wore the left glove
in the gloved sessions. The glove decreased the tactile sensation in the
finger. The decrease in tactile sensation was confirmed by checking

for a decrease in tactile perception in the finger using Von Frey’s
hairs (see detailed methods) and quantified using Experiment-2. The
force profile from a representative subject is shown for with and
without the left glove (Fig. 1B).

Fig. 1C shows the steady-state force distributions during the ses-
sions measured as the ratio of the right finger force to the total force
(R/(R1L)). This was computed over the last 2 seconds of each target
trial across subjects so as to ensure the steady state was achieved. The
force distribution in the no glove session (black trace) varied between
subjects, but overall the subjects utilized the two fingers equally in
this session in agreement with previously reported observations5.
However, with a 2 way ANOVA between the 3 sessions (2 glove
and one no-glove) and 3 target levels, we observed that on using a
glove, the subjects consistently utilized their gloved finger more (p ,

1025) in the task irrespective of the target level (p 5 0.94), with no
interactions (p 5 0.99) between the glove and target level. If they
wore a glove in their left hand, they used the left finger more (T(17) 5

7.76, p , 1026, one sample T-test across the target levels and subjects)
and the converse if they wore a glove on their right hand (T(17) 5

6.16, p , 1024, one sample T-test across the target levels and sub-
jects). Importantly, the increased use of the gloved finger was
observed in every subject and at every target force level. The differ-
ence in force distribution (R/(R1L)) across the experiment between
the gloved and non-gloved sessions was used as the quantitative value
for the change in force distribution (DD of Fig. 3,4B) due to the glove
in Experiment-1.

While the steady state force applied by a finger was affected by the
presence of the glove, the standard deviation of the force produced by
an individual finger was not. In separate single-finger sessions, the
same subjects performed the task with either one of their fingers with
and without the glove. Correspondingly the force feedback was also
provided only from the one finger while the target levels in these
sessions were set to half of the levels presented during the two-finger
sessions described above. The standard deviation in the steady state
force recorded in no-glove single-finger sessions was compared to
that recorded in the gloved single-finger session, using a 2 way
ANOVA across the 2 sessions and three target levels from the sub-
jects. The standard deviation of the finger force increased with the
level of force (p , 1025 Fig. 2) consistent to the belief that motor
signals are associated with a signal dependent noise7, but the force
variations were same between the gloved and non-gloved sessions for
both the left finger (p 5 0.89) and the right finger (p 5 0.63). This
result clearly exhibited that the glove does not affect the variability in
the finger force during the task.
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Figure 1 | Bimanual two-finger force sharing task. (A) The task required

subjects to press on two force sensors isometrically with their index fingers.

In one session, they wore an elastic cloth glove (right hand in figure) on one

of their hands. The subjects were given a visual feedback of the total force

they applied (blue bar) which they aimed to match the given target level

(yellow bar). (B) The force production by the left (cyan trace) and right

(orange trace) fingers by a representative subject in two sessions without

and with a (left) glove. The target levels were calibrated to the maximum

voluntary contraction (mvc) of individual subjects. (C) Gloved finger takes

more load: The force distribution in the task by 12 subjects across three

target force levels (0.1 mvc, 0.2 mvc and 0.3 mvc) was quantified as the

ratio of the right finger force to the total force (R/(R1L)) and averaged for

the no glove sessions across subjects for the left gloved subjects(black-blue

trace) and right gloved subjects (black-red trace), and for the sessions with

left (blue trace) and right (red trace) gloves. A force distribution of

0.5 indicates that both fingers apply equal force, a higher value shows that

the right finger applies more force than the left while a force distribution

value less than 0.5 indicates that the left finger applies more force than the

right.
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Figure 2 | Results from single-finger session. The standard deviation of

the force at each target force level shows no significant difference between

the gloved (blue/red) and no glove (black) sessions across subjects with the

left and right hands (two panels). The individual averages are shown as

dots while the across subject average and standard error are represented by

solid traces.
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Experiment-2. Next, in Experiment-2, we quantified the change in
tactile sensation induced by the glove using a force perception task.
All the subjects from Experiment-1 participated in Experiment-2,
which also required two finger force production but with a
different protocol. The subjects were first instructed to match a
given force target (which was same as the single-finger sessions)
with only their non-gloved finger and aided by the visual feedback
of the non-gloved finger force. While maintaining the force with the
non-gloved finger, they were then asked to apply a force with the
gloved finger to ‘match the haptic feeling’ in the non-gloved finger.
No visual feedback was provided of the force applied by the gloved
finger. Separately, the subjects also performed a control session in
which they performed the exact same procedure without a glove in
either hand; i.e. the subjects first matched the force target with a
finger that was previously ungloved and then matched the haptic
feeling with the finger that was previously gloved. The difference
in force distribution (R/(R1L)) between these two sessions was
used as the quantitative value for the change of force sensation (DS
in Fig. 3,4) due to the glove. Overall, the force sensation was observed
to decrease by 11.75 6 4.0 SE% in the gloved finger across subjects.

Experiment-1 and Experiment-2 together demonstrated that a
decrease in tactile sensation (DS) in a finger led to a change in force
distribution (DD) in our force sharing task. Indeed, we observed a
significant positive correlation (Fig. 3; Pearson’s R 5 0.761, p ,

0.005, one subject was omitted as a outlier) between DS and DD
across subjects exhibiting that a decrease in tactile sensation due to
the glove was accompanied by an monotonic increase in the force
assigned to the gloved finger. However, our experiments did not
clarify how and why the glove leads to a change in force distribution.
To concretely exhibit that the observed effect was due to tactile

signals being utilized for effort inference, we modeled the subject
behavior in our two experiments.

While a static optimization of a cost function of error and effort
(finger force) would have been sufficient for this purpose, we purpo-
sely choose a dynamic optimization model to clearly show that the
behavior we get cannot be explained by the changes in the forward
model or in the force transients due to the glove. The optimal feed-
back control2 (Fig. 4A) architecture provided us with an elegant way
to clarify these points.

Modeling and simulations. We defined the muscle dynamics in our
model (A, B in Fig. 4A) as in previous studies8,9 and considered signal
dependent (scaling matrix C) and signal independent (scaling matrix
D) noise. Matrices Q, and R defined the control policy in the two
experiments. Matrix H defined the noisy sensory observations
available to the subjects, which they combine with the sensory
predictions available from the forward model to achieve a current
sensory estimate. We considered both the visual feedback of finger
force (sum of the finger forces in Experiment-1 and of the non-
gloved finger in Experiment-2) provided during the task, and the
tactile sensation available to the subjects from each finger (see
methods). e and j were Gaussian random in time with mean 0 and
variance 1.

Next we modeled the effect of the glove. The glove obviously
effects the tactile sensory feedback (y in Fig. 4A), but the glove cannot
change the relation between the applied motor commands and the
generated force; i.e the state matrix (A) and the input matrix (B) are
not expected to be affected by the glove. This is because our task was
isometric with no change in body posture between the gloved and the
non-gloved sessions. Furthermore, no differences were noticed in the
force variance due to the glove (Fig. 2) and hence the noise scaling (C,
D) was also unaffected by the glove. We therefore considered the
three remaining possibilities by which the glove could have affected
the behavior in our experiments.

First, in the Sensory-estimation-effect (SEeffect) model we con-
sidered the possibility that the glove affects only the sensory estima-
tion process. This is the simplest effect model that assumes that the
glove effect is restricted to the change in the tactile sensory feedback
(y in Fig. 4A) and does not affect any other element of the control
process. However, a change in tactile sensory signals does not affect
the task error feedback, which was visual in our task. On the other
hand, the effort was determined by the motor commands in the
SEmodel. Consequently, the SEeffect model predicts the steady state
force sharing to remain unchanged (green line, Fig. 4B) due to a
change in tactile sensation. This prediction was obviously different
from our data (p , 0.02, Fig. 4C) and exhibited that the glove affects
more than just the sensory feedback in our task.

Second, in the Forward-model-effect (FMeffect) model we con-
sidered the possibility that, in addition to the effect on the tactile
feedback as in the SEmodel, the glove also affects the forward model
of the task (see Fig. 4A). In other words, the reduction in tactile signal
due to a glove is misinterpreted by the CNS as a loss of efficiency,
where a same effort produces less force output by the gloved finger
compared to the non-gloved finger. This can be represented by a
change in

^
A or/and

^
B in Fig. 4A. Consequently, as motor coordina-

tion is determined by effort minimization, the FMeffect model pre-
dicts that with the decrease in tactile sensation in the gloved finger
the CNS would assign progressively more load to the non-gloved
‘more efficient’ finger in the force sharing task (grey line, Fig. 4B).
However, this prediction is converse to the force distribution change
we observed in our experiments (compare grey line and data points
in Fig. 4B, p , 0.006 in Fig. 4C). Therefore, we ruled out the pos-
sibility that the force distribution changes observed in our task were
due to a change in the forward model due to the glove.

Finally, in the Effort-optimization-effect (EOeffect) model we
assumed that in addition to the effect on the tactile feedback, the
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Figure 3 | Effect of tactile sensation on force distribution. (A) The

average change in force distribution (DD from Experiment-1) in every

individual was plotted against the individual’s average change in force

sensation (DS from Experiment-2). A positive DD indicates an increase in

the right finger force while a negative DD indicates an increase in the left

finger force. Similarly a positive DS indicates a decrease in tactile sensitivity

in the right finger while a negative DS indicates a decrease in tactile

sensation in the left finger. A significant linear correlation (p , 0.005) was

observed between the decrease in force sensation (DS) and the change in

force distribution (DD) across subjects.
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glove affects the control policy, specifically the effort optimization in
our task. This model conforms to our hypothesis and assumes that
the effort expenditure during the task is determined not only by the
motor commands (u) but also by the tactile feedback. This possibility
can be represented by a change in cost function in Fig. 4A (see
methods) and predicts that the force applied by a finger to increase
as the tactile sensation decreases (violet trace in Fig. 4B). The experi-
mental observations agreed extremely well with the EOeffect model
(left glove: T(5) 5 0.28, p 5 0.79; right glove: T(4) 5 0.78, p 5 0.47,
see Fig. 4C). The simulations thus clearly show that the force distri-
bution observed in our task (Fig. 2C, Fig. 3) can only be explained if
the tactile signals are utilized in the inference of effort expenditure
during our coordination task. A decrease in tactile feedback in a
finger is mis-interpreted by the CNS as reduced effort by the finger
during force sharing, and is compensated with an increase of the
force assigned to the finger.

Discussion
Understanding motor coordination-how the brain distributes and
controls a motor task across the available choice of muscles and
joints, is fundamental for our understanding of human motor beha-
vior in health and pathology and thus has been a key research goal in
motor neuroscience1. It is believed that motor coordination in
humans is achieved utilizing sensory feedbacks and optimizing the
error and effort expenditure during a task. However, up till now, the
role played by sensory feedback was believed to be restricted to the
inference of task error12,13 while effort expenditure was believed to be
known solely from the motor commands15. In this study we showed
that, in addition to the motor commands, the haptic feedback plays a
critical role in determining the effort cost our CNS infers during a
motor task. With our experiments, we first exhibited that a reduction
in the tactile sensation in a finger affects the force distribution in a
force sharing task, with a monotonic increase in the force applied by
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the affected finger. Next, we showed that the change in force distri-
bution cannot be explained by a change in task variability due to the
glove (Fig. 2), a tactile bias alone (SEeffect model) or an error in the
forward model (FMeffect model) due to the glove. The force
distribution change in our task occurred because the force produc-
tion and hence the effort expenditure was inferred from the tactile
feedback received during the task (EOeffect model, Fig. 4).

Note that it is possible to explain our finding by constructing
other cost functions17, for example, one that includes not just error
and effort but also a sensory term that equalizes the sensory feeling
between the fingers. However, in order to construct the right cost
function, we need to first know the cost variables considered by the
CNS; a knowledge that is still debated10,11 and out of the scope of this
study. Therefore at present we choose to explain our results in terms
of the cost function (including error and effort) that has been most
successful in the past to explain motor behaviors1–6 including that in
the finger force sharing task that we use here5. Future studies that
isolate definite cost variables used by the human may explain
our results differently. However, in the least, our results clearly
exhibit that sensory feedbacks determine more than just the task
error during motor action and this result has several important
implications.

Primarily, it encourages a rethink of our understanding of ‘effort
optimization’ and its modeling. In this study we specifically investi-
gated tactile feedback; a feedback that is present only in the presence
of external forces and during contact with another object. But our
elucidation of the sensory role in effort inference suggests similar
roles may be played by proprioception in motor tasks that do not
involve physical contact, such as reaching. Our results support the
theory that our CNS may interpret sensory signals as covertly gen-
erated motor commands14 and elucidate that, similar to task error,
effort expenditure values may also be noisy and delayed and require
forward models18 for their estimation.

Second, our results can provide clues to explain several seemingly
unusual results in previous motor studies. Grip studies have regularly
exhibited that humans are able to remember and produce predictive
grip forces while handling commonly gripped objects19. However,
patient grip studies and studies in ergonomics have observed that the
grip forces for even well-known objects increase when the somato-
sensory feedback is either absent20 or attenuated by a glove over the
hand21,22. These observations are well explained if the returning tact-
ile feedback is considered to determine the generation and control of
predictive finger forces. Motor studies have recently highlighted the
presence of hysteresis in motor behaviors23–26 where certain past
behaviors are maintained even though they are not optimal with
respect to the effort cost. However, it has been unclear which com-
ponent of the sensory-motor system is responsible for this hysteresis.
Our finding shows that the hysteresis might be computationally
explained as a persisting bias in the control policy resulting from
sensory factors that are known to suffer from after-effects and
illusions27.

Finally, our result provides new perspectives for our understand-
ing of neural abnormalities and their rehabilitation. Our observation
suggests alternate computational perspectives to explain behaviors
observed in Micrographia and Parkinson Disease, which were prev-
iously associated with mis-calculations in the effort expenditure28,29.
These may be alternatively explained by a deficiency in the sensory-
motor transformation circuits. The new associations between motor
action and sensory feedback observed in our study elucidate how
haptic deteriorations can affect motor control in stroke and accident
rehabilitations. The finding that a decrease in tactile sensation leads
to the increased use of a limb has obvious benefits for rehabilitation.
While it supports recent results exhibiting the effectiveness of sens-
ory rehabilitation in restoring motor function31, it also encourages
novel rehabilitation paradigms where a purposely induced reduction
of haptic input may help augment voluntary motor output.

Methods
Experiment. 12 neurologically healthy, naı̈ve subjects (age between 23–45; one
female, one left handed male). Their handedness was verified using the Oldfield
handedness inventory. The experiment was approved by the local ethics committee at
ATR and subjects provided informed consent for their participation. The subjects
participated in one force calibration session, five force production sessions, 2 passive
force perception session (data not used in this study) and 2 active force perception
sessions. The force production sessions were classified as Experiment-1 while the
force perception sessions were classified as Experiment-2.

Session types. Force calibration session. The subjects sat comfortably on a chair in
front of a table on which they were required to press two force sensors with the index
fingers of their left and right hands while the other fingers were closed into a fist (see
Fig. 1A). The chair height was adjusted as per the subjects comfort. Visual feedbacks
were provided on a computer screen placed on the table in front of them.

In the calibration session the subjects were asked to press the force sensor as
strongly as possible four times 22 seconds each time followed by a 2 second rest. The
presses were cued by a visual feedback on the computer monitor. The average of the
force values over the last second in each of the four presses were used to define the
maximum voluntary contraction (mvc) for the left and right fingers separately. These
mvc values were used to normalize the force values presented as feedback to the
subjects in the next sessions. The force distribution was quantified as the ratio of the
right finger force and the total force (R/(R1L)) and plotted for target across subjects
in Fig. 1C. The difference in force distribution (R/(R1L)) across the experiment
between the gloved and non-gloved sessions was used as the quantitative value for the
change in force distribution (DD of Fig. 3,4B) in Experiment-1. Therefore, a positive
DD indicates an increase in the right finger force while a negative DD indicates an
increase in the left finger force.

Force production session (Experiment-1). In the five force production sessions, the
subjects pressed either one force sensor with one finger (single finger session) or both
force sensors with both index fingers (two finger sessions). Each subject also per-
formed the two kinds of sessions wearing an elastic cloth glove on either their left or
right hand. The five force production sessions in our Experiment-1 were 21) single
finger press with right hand finger, 2) single finger press with left hand finger, 3) two
finger press with no glove, 4) two finger press with glove on one hand and 5) single
finger press with the gloved hand. Note that the order of the sessions was randomized
across subjects.

During the five sessions the subjects were provided with a visual feedback of the
applied finger force represented by a blue bar on a computer screen. The feedback
corresponded to the sum of their finger forces in case of the two fingers sessions and
corresponded to the single finger forces in the single finger sessions. The task required
the subjects to match the blue bar to the provided yellow targets on the screen. The
targets were set at 0.1, 0.2 and 0.3 mvc in the two fingers sessions and as 0.5, 0.1, and
0.15 mvc in the single finger sessions. Each target was presented 6 times in a session.
The 18 targets (3 levels 3 6 times) were presented in a pseudo random order where
each target was presented for 3 seconds followed by a rest of 1 second.

Passive force perception (Experiment-2) (note that this data is not used in this study).
zThe subjects performed two passive force perception sessions-without a glove,
and with a glove on one hand. In each session, they were asked to close their eyes
and place their two hands on their lap, palm facing up. The experimenter then
pressed a Von Frey hair32 (chosen pseudo-randomly from 0.02 g, 0.04 g, 6 g, 15 g,
180 g and 300 g) on the non-gloved finger, followed by pressing another hair on
the gloved finger. In each trial a subject was asked to consider the load feeling of
the press on the non-gloved hand to be level 5 on a scale of 1 and 10 and asked to
rate the subsequent press on the gloved hand relative to the first press. This
process was repeated 25 times in one session. A similar procedure was repeated
for the no-glove session where the order in which the two fingers were pressed
was kept the same in the session without gloves. Of all the presses in one session
only 15 pseudo randomly distributed trials, when the same Von Frey Hair was
pressed on both fingers, were used in the passive tactile sensation analysis. The %
difference in these 15 scores between the gloved and non-gloved sessions were
defined as the % change in passive tactile sensation. Every subject reported a
decrease in passive tactile sensation. Across subjects, the passive tactile sensation
decreased by 19.82%.

Active force perception (Experiment-2). The subjects pressed force sensors with both
fingers in two sessions- one with no gloves and with a glove in one hand.
However, visual feedback was provided only for the force applied by the non-gloved
finger. The targets were similar to the single finger sessions in Experiment-1. In
the gloved session (when one hand was gloved) the subject were asked to first
match the non-gloved finger force to the target, maintain this level following
which they were asked to press the gloved finger to ‘match the tactile feeling’ in
the non-gloved finger. The same order of finger press was also maintained in the
non-gloved session. The behavior was again classified by the ratio of the right
finger force and the total force (R/(R1L)) similar to Experiment-1. A difference in
force distribution between the gloved and no gloved sessions is plotted as the
abscissa of Fig. 3, 4B as a measure of decrease in tactile sensitivity (DS). Therefore,
a positive DS indicates a decrease in tactile sensation in the right finger (as then
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the right finger would be pressed more to equate to the left force) while a negative
DS indicates a decrease in tactile sensation in the left finger.

Session order. Order of presentation of the five force production sessions and two
passive force perceptions sessions were randomized across subjects, while the two
active force perception sessions were always performed at the end. In total the two
experiments took about 40 minutes to complete.

Modeling and simulations. Task. The task dynamics in our experiment are
represented in a discrete time formulation as

Dynamics : x(tz1)~Ax(t)zBu(t)ze(t)Cu(t)zDj(t) ð1Þ

Observation : y(t)~Hx(t)zw(t) ð2Þ

Cost per step : x(t)T Qx(t)zu(t)T Ru(t) ð3Þ

Matrices A, B in equation (1) were defined assuming that the control signal u(t) is
transformed into the finger force f(t) through a coupled first order filter pair given by
z1 _g(t)zg(t)~u(t), z2

_f (t)zf (t)~g(t) with t1~t2~0:04 sec 8,9.

A~

1 0 0 0 9

0 1{
D

z2
0

D

z2
0

0 0 1{
D

z2
0

D

z2

0 0 0 1{
D

z1
0

0 0 0 0 1{
D

z1

2
66666666666664

3
77777777777775

and

B~

0 0

0 0

0 0
D

z1
0

0
D

z1

2
6666666664

3
7777777775

D is the simulation frequency which was 0.01 in our simulation. We assume a delay of
one time step in the observation. However, similar results can be achieved with larger
delays. This is because the delays affect only the transient but not the steady state
values of the forces. The state vector is taken as ½T,fl,fr ,gl ,gr �, where T represents the
target force in the task, and fl and fr represent the force applied by the left and right
fingers. C and D represent the scaling matrix for the signal dependent noise and
random noise while e and j are Gaussian random in time with mean 0 and
variance 1.

C~

0 0

cl 0

0 cr

0 0

0 0

2
6666664

3
7777775

,

where c1 and c2 were set as 0.01 in our simulation.
The matrices H, Q, and R (Eq. 2 and 3) which define the observation and cost

differed between Experiment-1 and Experiment-2 (see following sections).
The state estimation is done through

x̂(t)~~x(t)zK y(t){H~x(t)½ � ð4Þ

Where ~x represents the forward model estimation of the state, y represents the online
observation while the control policy is represented by u(t)~{Lx̂(t). The Kalman
gain K and optimal control gain L are calculated recursively as in8 to minimize the
expected summation of cost in equation (3).

Modeling Experiment-1 and Experiment-2 without the glove. In Experiment-1 the
subjects have access to four individual sensory values given by

y~ Tv ,(flzfr)
v ,f t

l ,f t
r

� �
ð5Þ

Where the first two terms are given as visual feedback to the subjects. In addition, we
assume that the two individual finger forces can also be estimated from the corres-
ponding tactile feedback a fl

t and fr
t. Hence the observation matrix H in Eq. 2 is given

by-

H~

1 0 0 0 0

0 1 1 0 0

0 1 0 0 0

0 0 1 0 0

2
6664

3
7775

As the task required the subjects to match their summed finger forces to the target
(T), the cost becomes q T{fl(t){fr(t)½ �2zrul(t)

2zrur(t)
2, hence

Q1~

q {q {q 0 0

{q q q 0 0

{q q q 0 0

0 0 0 0 0

0 0 0 0 0

2
6666664

3
7777775

,

and

R1~
r 0

0 r

� �

q was set to 100 and r to 1.
In Experiment-2, when the right hand is gloved, and visual feedback is available

only for the left non-gloved hand, the sensory observation is given by
yRG~ Tv ,fl

v,f t
l ,f t

r

� �
such that

HRG
2 ~

1 0 0 0 0

0 1 0 0 0

0 1 0 0 0

0 0 1 0 0

2
6664

3
7775

The task required to match the ungloved (left hand) finger force to the target AND
match the sensory feeling between the fingers. Therefore the cost becomes

q1
2 T{fl(t)½ �2zq1

2 slfl(t){sr fr(t)½ �2zrul(t)
2zrur(t)

2 where sl, sr represent the linear

scaling factor that transform the finger force to the corresponding tactile sensory
signals. We take q1

2~q1
2~q to get:

QRG
2 ~

q {q 0 0 0

{q q(1zsl) {qsr 0 0

0 {qsl qsr 0 0

0 0 0 0 0

0 0 0 0 0

2
6666664

3
7777775

,

while

RRG
2 ~

r 0

0 r

� �

We take q 5 100, r 5 0.1. Similarly, when the left hand is gloved in Experiment-2,
matrices H and Q change as follows:

HLG
2 ~

1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 1 0 0

2
6664

3
7775,

QLG
2 ~

q 0 {q 0 0

0 qsl {qsr 0 0

{q {qsl q(1zsr) 0 0

0 0 0 0 0

0 0 0 0 0

2
6666664

3
7777775

,

while

RLG
2 ~

r 0

0 r

� �

Model simulations with the glove. Next, we considered three different effect models by
which the glove can affect the above behaviors.

In all the models, the glove led to a reduction in tactile sensation in the gloved finger.
The tactile feedback of the gloved hand in matrix y (equation 4) was reduced by
multiplying the sensitivity (sl) to fl

t. (see equation 5) to simulate the left glove and (sr)
to fr

t. to simulate the right glove, where 0 , sl, sr , 1. The sensitivity in the non-gloved
case is considered to be equal to unity.

1) SEeffect model—The SEeffect model assumes the glove effect is restricted to
the reduction in tactile sensation. To simulate the SEmodel, we first calculated
the optimal estimation gains and control signals with the matrices correspond-
ing to the non-gloved sessions, and then to simulate the gloved session, the
online tactile observation of the gloved hand in matrix y (Equation 4) was
reduced by multiplying the sensitivity (sl or sr) in two experiments.
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2) FMeffect model—The FMeffect model assumes that in addition to the effect on
the tactile sensation, the glove also affects the forward model during the task.
That is, a change in sensitivity is perceived as a loss of efficiency in the finger--
the same motor command leads to a decreased finger force (though this is false)

in the gloved finger. We assume the effect to be limited to the estimated
^
B

matrix (Fig. 4) utilized during the calculation of the optimal estimator gains and
control signals, though qualitatively similar results may be achieved with

changes in
^
A. We utilize the same variables 20 , sl , 1 and 0 , sr , 1 to

also indicate the forward model changes and simulate the FM model by chan-

ging the
^
B matrix in two experiments as-

B̂FM~

0 0

0 0

0 0

sl
D

z1
0

0
D

z1

2
6666666664

3
7777777775

with the left hand glove and

B̂FM~

0 0

0 0

0 0
D

z1
0

0 sr
D

z1

2
6666666664

3
7777777775

with the right hand glove.
3) EOeffect model—The EOeffect model assumes that the effort cost in a task is

determined by not only the motor commands u but also by the tactile signals t
such that the expected cost per step (equation 3) is infact-

x(t)T Qx(t)zu(t)T Ruu(t)zt(t)T Rt
ut(t)

Like before, assuming the tactile signals are linearly related to finger force as
tl(t)~sl fl(t) and tr(t)~sr fr(t) for the left and right hands, the above equation can be
rewritten as-

x(t)T Qx(t)zu(t)T Ruu(t)zx(t)T Rtx(t)

Where Rt is given by

Rt~

0 0 0 0 0

0 rs2
l 0 0 0

0 0 rs2
r 0 0

0 0 0 0 0

0 0 0 0 0

2
6666664

3
7777775

,

and r 5 1.
The EOeffect model can thus be represented by adding Rt to the Q matix in

Experiment-1 and Experiment-2. We assume that the glove changes the sensitivities:
0 , sl , 1.0 with the left glove, and 0 , sr , 1.0 with the right glove.

Note that sl and sr represent different transformations in the three models, though
their value range is same. In our simulations we varied the values of sl and sr between 0
and 0.3 in the two experiments for each model to generate the simulation plots of
Fig. 4.
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