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If two identical emitters are coupled to a common reservoir, entanglement can be generated during the
decay process. When using Bell’s inequality to examine the non-locality, however, it is possible that the
bound cannot be violated in some cases. Here, we propose to use the steering inequality to examine
the non-locality induced by a common reservoir. Compared with the Bell inequality, we find that the
steering inequality has a better tolerance for examining non-locality. In view of the dynamic nature of the
entangling process, we also propose to observe the quantum coherent dynamics by using the Leggett-Garg
inequalities. We also suggest a feasible scheme, which consists of two quantum dots coupled to nanowire
surface plasmons, for possible experimental realization.

S
pontaneous emission (SE) occurs when a two-level emitter exponentially relaxes into its ground state and is
one of the fundamental concepts in quantum mechanics. Its history can be traced back to such early works
as that of Albert Einstein. When considering an ensemble of two-level emitters, the emission rate can be

greatly enhanced, a phenomenon known as superradiance (SR)1. The phenomenon of SR has been widely studied
in atomic2 and solid state3–5 systems. Its role and applications in quantum information science have also been
investigated recently6,7. The key ingredient in SR is that the emitters exchange excitations with one another via the
common reservoir. On one hand, this process creates non-local quantum coherence (entanglement) between the
emitters8. On the other hand, one should also note that it is a time-dependent process which involves quantum
coherent dynamics.

To test the non-locality, the Bell inequality is probably the mostly utilized tool9. More recently, an inequality
based on the concept of quantum steering was proposed10. This enables one to make a comparison between the
hierarchy of states which violate Bell’s inequality, quantum steering, and entanglement. Focusing on a single
object, Leggett and Garg in 1985 derived an inequality12 to test the assumptions of macroscopic realism and the
possibility of non-invasive measurement. An experimental violation of this inequality in a superconducting
circuit has recently been seen13. The Leggett-Garg (LG) inequality can also be applied to microscopic sys-
tems14–18 to examine the quantum coherent dynamics therein.

The entanglement generated during SR (or reservoir-induced entanglement) is a well-known phenomenon.
However, to our knowledge, there are no studies on exactly how well the states generated by SR, in a realistic
situation, can violate the hierarchy of inequalities outlined above. Actually, the superradiant process provides a
good platform to examine not only non-locality, but also the quantum coherent dynamics. Therefore, we will
separately investigate these two quantum features of the simplest superradiant case: SE of two identical emitters
coupled to a common environment. As is well known, and will be demonstrated explicitly here, the entanglement,
the steering inequality, and the Bell inequality form a logical hierarchy. Since the collective decay is a dynamical
process, we then propose to use the LG inequalities12,14,15,19 to examine the quantum coherent dynamics. We will
show that the LG inequality can be violated when choosing a suitable observable. We will also utilize the recently-
developed extension of Leggett-Garg inequality (ELG)14,15,19 to further study the quantum coherent dynamics. For
the experimental realization, we will provide a feasible scheme, which consists of two quantum dots coupled to
nanowire surface plasmons20.
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Results
Consider two identical two-level emitters coupled to a reservoir. The
interaction Hamiltonian is written as

Hint~
X
~k

g~k sz
1 a~kzsz

2 a~kei~k:~d
� �

zH:c:
h i

, ð1Þ

where a~k is the annihilation operator of the ~k-mode field in the
reservoir, sz

j is the raising operator of the jth two-level emitter,

and ~d is the inter-emitter distance vector. Here, g~k is the coupling

strength between the jth emitter and the~k-mode field.
In the interaction picture, the evolution of the total system

(denoted by the density matrix x) is governed by the Schrödinger

equation _x~
1
i

Hint,x½ �. After performing the Born-Markov approxi-

mation, the equation of motion of the reduced density matrix r in the
single excitation manifold reads
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where d~ ~d
��� ���, r(t) 5 TrR[x(t)] with R denoting the reservoir, and c is

the spontaneous emission rate of the emitter. Here, q 5 v0/c with v0

being the two-level energy spacing of the emitter and c being the
speed of light.

In the single excitation manifold, r(t) can be spanned by the basis
{j1, 0æ, j0, 1æ, j0, 0æ}, where j1, 0æ (j0, 1æ) denotes the first emitter is in
the excited (ground) state with the second one in its ground (excited)
state, and j0, 0æ represents both the emitters are in the ground state.
The inset in Fig. 1 shows the quantum coherence (j1, 0æ Æ0, 1j)
between the two emitters in the limit of d 5 0. As seen, the coherence
saturates to a fixed value. This quantum coherence, created by the
cross terms in the master equation, leads to the entanglement
between the two emitters.

Quantum entanglement induced by the common reservoir. To
demonstrate the degree of the entanglement, we use r to calculate
the concurrence21 C 5 C(rs) 5 max{l1 2 l2 2 l3 2 l4}, where lis are
the square roots of the eigenvalues of r~r with ~r~ sy6sy

� �
r� sy6sy
� �

. In Fig. 1, we assume two different initial states: j1, 0æ
for Fig. 1(a) and the triplet state

1ffiffiffi
2
p 1,0j iz 0,1j ið Þ for Fig. 1(b). As

shown by the red-dashed curve in Fig. 1(a), the excitation is
transferred to the second emitter with the coherence induced by
the common reservoir. The entanglement is created during the
excitation transfer and becomes saturated as t R ‘. However,
when the initial state is the triplet one, the entanglement (red-
dashed curve) decays exponentially with an enhanced rate as
shown in Fig. 1(b).

It is interesting to compare the concurrence to the quantum dis-
cord22, which is a measure of quantum correlations between two
subsystems of a quantum system. In our system, if we denote the
first (second) emitter as subsystem A (B), the quantum mutual
information can be defined as

I A : Bð Þ~S rAð ÞzS rBð Þ{S rð Þ, ð3Þ

and its equivalent expression J A : Bð Þ can be written as

J Pif g A : Bð Þ~S rAð Þ{S Pif g AjBð Þ: ð4Þ

The quantum discord D A : Bð Þ is then defined as22,23

D A : Bð Þ~I A : Bð Þ{J A : Bð Þ, ð5Þ

where S(r) 5 2Tr(rlogr) (in what follows, we use the natural
logarithm) is the von Neumann entropy of the system, rA(rB) is
the reduced density matrix of r after tracing out B (A), and
S Pif g A Bjð Þ in Eq. (4) is the quantum conditional entropy describing
the average uncertainty about the state of A given that the state of B is
known. J Pif g A : Bð Þ is generalized from its classical counterpart
through measuring the subsystem B by a complete set of projectors
{Pi}. SinceJ Pif g A : Bð Þ strongly depends on the projectors {Pi}, the
quantity J A : Bð Þ in Eq. (5) denotes the maximum of J Pif g A : Bð Þ
over all {Pi}.

We plot the quantum discord by projecting the subsystem B with
the complete set {coshj1æ 1 eiwsinhj0æ, e2iwsinhj1æ 2 coshj0æ} for the

initial states j1, 0æ [Fig. 1(a)] and
1ffiffiffi
2
p 1,0j iz 0,1j ið Þ [Fig. 1(b)],
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Figure 1 | The concurrence and quantum discord. The concurrence (red-

dashed curve) and the quantum discord (black-solid curve) of two-emitter

superradiance for the initial states: (a) | 1, 0æ and (b)
1ffiffiffi
2
p 1,0j iz 0,1j ið Þ. The

complete set of the projectors {Pi}{cosh | 1æ 1 eiwsinh | 0æ, e2iwsinh | 1æ 2

cosh | 0æ} is found to contribute maximally to the value of J Pif g A : Bð Þ for

both initial states when h~
p

4
(for any w). Inset: The coherence (off-

diagonal) term, | 1, 0æ Æ0, 1 | . In plotting this figure, we have assumed the

inter-emitter distance: d 5 0.
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respectively. As shown by the black-solid curves in Fig. 1, though the
quantum discord has been proven to be more robust24 than the
concurrence in some systems, the behavior of the quantum discord
resembles that of concurrence. This is because the entanglement is
always present in our system, and thus there is no such thing as,
‘‘quantum discord without entanglement’’ here. In this case, the
concurrence and the quantum discord reveal similar behavior.

Testing the non-locality. Let us first utilize the Bell inequality to test
the non-local properties of the emitters during the collective decay.
The Bell quantity associated with the CHSH inequality has the
following form25,

B̂CHSH:â:ŝ6 b̂zb̂’
� �

:ŝzâ’:ŝ6 b̂{b̂’
� �

:ŝ, ð6Þ

where â, â’, b̂, b̂’ are unit vectors in R3. Here, â:ŝ:
P3

i~1 aisi, where
si is the standard Pauli matrix. Then, the CHSH inequality of a state
r is

B̂CHSH
� 	

r

��� ���~ Tr rB̂CHSH
� ��� ��ƒ2: ð7Þ

The maximum value of the CHSH inequality is given by

Bmax~ max
â,â’,b̂,b̂’

Tr rB̂CHSH
� �

: ð8Þ

Assuming a general initial state: cos aj1, 0æ 2 sin aj0, 1æ, we plot in
Fig. 2(a) the maximum value of the CHSH inequality (Bmax) as

functions of time and a in the limit of d 5 0 for the superradiant
process.

As a comparison, let us also consider the steering inequality. If the
correlation measurement on the emitter-1 (B) and emitter-2 (A) is
described by the probability distribution P(Bi 5 b, Ai 5 a) with b 5
61, and a 5 61, the steering inequality is written as26

SN:
XN

i~1

E Âi
� 	2

Bi

h i
ƒ1, ð9Þ

where N(5 2 or 3) is the number of mutually unbiased measure-
ments (the Pauli X̂, Ŷ and Ẑ) for the emitter-2, and

E Âi
� 	2

Bi

h i
:
X

b~+1

P Bi~bð Þ Âi
� 	2

Bi~b ð10Þ

with emitter-29s expectation value for a measured (conditioned on
emitter-19s result) defined as

Âi
� 	

Bi~b:P Ai~z1jBi~bð Þ{P Ai~{1jBi~bð Þ: ð11Þ

In Fig. 2(b), we also plot the steering parameter (S3) as functions of
time and a in the limit of d 5 0.

As shown in Fig. 2, we can see that the area of violating the steering
inequality is larger than that of violating the Bell inequality. In the
limit of a R 0 (only one of the emitters is excited), Bell’s inequality
can never be violated, while the steering one can still be violated. This
again shows that the steering inequality has better tolerance in exam-
ining the non-locality of the entangled states10, as expected. Together
with the results in Fig. 1, one can see that the entanglement, the
steering inequality, and Bell’s inequality form a logical hierarchy11,
i.e. every violation in Bell’s inequality leads to the violation of the
steering inequality (but not vice versa) and every violation in the
steering inequality is a entanglement witness (but not vice versa).
The underlying physics of this logic hierarchy can be understood as
follows. From the operational definition11 of Bell non-locality and
steerability, Bell non-locality can be viewed as a three-party task:
Alice and Bob, who cannot communicate with each other, try to
convince Charlie that the state they share is entangled. Charlie does
not trust them and can be convinced only if the correlations between
them do not fit the local hidden variable model. However, the steer-
ability is regarded as a two-party task: Alice tries to convince Bob that
the state she prepares is entangled, but Bob does not trust her. Bob
can be convinced only if the correlations between his local measure-
ments and Alice’s results cannot be explained by a local hidden state
model. In Bell’s non-local scenario, if we relax the condition to make
Bob trustworthy, the result will be consistent with that of the steering
one. Bell’s non-locality is therefore a stronger non-local concept
compared with the steerability. In other words, an entangled state,
which violates the steering inequality might not violate Bell’s
inequality. The steering inequality therefore has better tolerance in
examining the non-locality.

Testing the quantum coherent dynamics. Given an observable Q(t),
which is bound by jQ(t)j # 1, the assumption12 of realism and
noninvasive measurability implies the Leggett-Garg inequality12:

LGQ: Q t1ð ÞQh iz Q t1zt2ð ÞQ t1ð Þh i{ Q t1zt2ð ÞQh iƒ1, ð12Þ

here Q ; Q(t 5 0), and t1 , t2. The experimental violations of this
inequality in a ‘‘macroscopic’’ superconducting circuit13, photon
polarization states27–29, electron-nuclear spin pairs30,31 have recently
been seen.

Normally, the LG inequality is applied to a macroscopic object to
verify the property of macroscopic realism. Here, we wish to make
use of it as a tool to check the quantumness (quantum coherent
dynamics) during the superradiant process. By choosing t1 5 t2 5
t with the initial state being in j1, 0æ, we apply the original LG
inequality in Eq. (12) to examine the quantumness in the two-emitter
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Figure 2 | Testing the Bell-CHSH and steering inequalities during the
superradiant process. Assuming a general initial state: cos a | 1, 0æ 2

sin a | 0, 1æ, we plot in (a) the maximum value of the Bell-CHSH inequality

and in (b) the steering parameter as functions of time and a in the limit of

d 5 0. In plotting the figure, the time t is in unit of 1/c.
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SR scenario. If we choose Q 5 Q1 5 j1, 0æ Æ1, 0j as our observable,
there is no violation of LGQ(t) as shown by the blue-dotted curve in
Fig. 3. This coincides with our intuition: the decay of the state j1, 0æ is
a monotonically decreasing function. However, if we choose Q 5 Q2

5 j1, 0æ Æ1, 0j 1 j0, 0æ Æ0, 0j, i.e. the excitation is not in the second
emitter, the red-dashed curve shows the violation of LGQ2 tð Þ in the
early stage of the time domain. We also plot in Fig. 3 the result of Q 5

Q3 5 1–2 j0, 1æ Æ0, 1j. One can see that the maximum of the violation
LGQ3 tð Þ is enhanced. The analytical results of LQ(t) can also be
worked out. For instance, the expression of LGQ3 tð Þ is

LGQ3 tð Þ~1z
1
2

e{2cte{2b {2ecteb {1zeb
� �2

z {1ze2b
� �2

h i
,ð13Þ

where b:
Sin qdð Þ

qd
ct.

In practice, the non-invasive measurements are not easily imple-
mented. Recently, an extension of the LG inequality was developed
for an open transport system14,15. Based on the Chapman-
Kolmogorov equation in stochastic theory14, when measuring the
population of a state of a classical Markovian system, the following
inequality can be derived:

LQ tð Þj j: 2 Q tð ÞQh i{ Q 2tð ÞQh ij jƒ Qh i, ð14Þ

where ÆQæ is the expectation value of the zero-time population Q ;
Q(t 5 0), and ÆQ(t)Qæ is the two-time correlation function. Note that
if the zero-time state is the steady state then this is equivalent to the
original12 LG inequality when the measurements are performed non-
invasively. Violations of Eq. (14) mean that the dynamics is beyond
the classical Markovian description. Note that in deriving Eq. (14)
the assumption of the non-invasive measurement is not required in
that one can replace the initial measurement by state preparation.

The blue-dotted, red-dashed, and solid curves in Fig. 4(a) repres-
ent the results of jLQ(t)j for the observables Q 5 Q1 5 j1, 0æ Æ1, 0j, Q
5 Q2 5 j1, 0æ Æ1, 0j 1 j0, 0æ Æ0, 0j, and Q 5 Q3 5 1–2 j0, 1æ Æ0, 1j,
respectively. Again, we see that the violation depends crucially on the
choice of the observable. Figure 4(b) is the 3D plot of LQ3 tð Þj j as
functions of time t and inter-emitter distance qd. As expected, the
maximum of the violation gradually decays to unity when increasing
d. As qd 5 np, where n is an integer, the function LQ3 tð Þj j is not
violated because the two emitters act as independent objects due to
the interference effect in SR32,33. This can be seen more clear from the
analytic expression of LQ3 tð Þ.

As pointed out in Ref. 14,15, the ELG inequality is equal to the
original LG inequality if (i) the zero-time state is the steady state, (ii)
the operator Q in Eq. (9) is normalized as Q 5 2Q/ÆQæ 2 1, and (iii)
the measurements are performed non-invasively. For the observable
Q3, surprisingly, we find that the kernel is mathematically identical to
that of the LG inequality, i.e.,

LQ3 tð Þ= Q3h i~LGQ3 tð Þ: ð15Þ

However, in plotting Fig. 3, we have assumed the excitation is ini-
tially in the state j1, 0æ, not the steady state. To answer this, we check
the two-time correlation functions and find that ÆQ(t)Qæ 5

ÆQ(2t)Q(t)æ for the observable Q 5 Q3. This explains why the ELG
inequality is mathematically equivalent to the original LG inequality.
However, one should note that although the mathematical results are
the same, it does not mean that they are physically equivalent since
the originally LG inequality requires the assumption of non-invasive
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measurement. We can only say that the violation of the ELG inequal-
ity is the indication of the quantum coherence.

It is also interesting to see how the time interval of violation (tvio)
varies with inter-emitter distance qd. We therefore plot in Fig. 4(c)
the border line ( LQ3j j~1) that separates the violation and non-viola-
tion regime. The interval of violation is maximum when d 5 0 and
gradually decreases to a fixed value with the superradiant interfer-
ence feature. To explain the approach to the fixed value, we take the
series expansion of Eq. (10) to the order of b2. LQ3 is then approxi-
mated as

LQ3 tð Þ<1z
1
2

e{2ct 4{2ectð Þb2: ð16Þ

Therefore, the time interval of violation is tvio 5 ln 2/c in the limit of
large d. Of course, as d R ‘, the value of LQ3j j should go to unity since
b R 0 in this limit, i.e. no superradiant effect. Equation (11) is to tell
us that tvio is kept fixed, not like the maximum of the violation, when
the inter-emitter distance d gradually approaches to infinity.

A proper choice of the observable is the key to see the violation of
the ELG inequality. This can be understood by the following
example. Consider a qubit in a lossy cavity. Let us choose j1, 0cæ
Æ1, 0cj or j2, 1cæ Æ2, 1cj as our observables, for which we plot in Fig. 5
the function jLQj. Here, the state j1, 0cæ (j2, 1cæ) denotes the qubit is
in its excited (ground) state and there is zero (one) photon in the
cavity. For the observable j2, 1cæ Æ2, 1cj, it is possible that jLQj is not
violated (the red-dashed curve) even though the population
dynamics is still oscillatory. Therefore, it is very important to choose
a proper observable when using the ELG inequality as a tool to
indicate the quantumness.

Discussion
Here, we propose an experimental realization for verifying the
quantum coherent dynamics in SR. Consider two quantum dots
positioned near a metal nanowire20,34,35 as shown in Fig. 6. Due to
the quantum confinement, the surface plasmons propagate one-
dimensionally along the axis direction on the surface of the nanowire.
Quantum dot-1 is assumed to be excited initially. In one-dimen-
sional problems, the SR becomes independent of the inter-dot

distance. If we choose Q 5 Q3, the kernel of both LG and ELG
inequality can be written as

LQ3 tð Þ= Q3h i~LGQ3 tð Þ~ 1
2

1ze{4ct{4e{2ctz4e{ct
� �

: ð17Þ

The advantage of choosing Q 5 Q3 5 1–2 j0, 1æ Æ0, 1j is that, experi-
mentally, one only needs to measure the population of quantum
dot-2.

Summarizing, we have utilized both the Bell inequality and the
steering inequality to examine the non-locality during the superra-
diant decay and have shown that the steering inequality has better
tolerance in examining the non-locality. Moreover, we have also
pointed out that the quantum coherent dynamics during the super-
radiant decay can be examined by using the LG inequality. Although
violating one of the inequalities indicates that quantum effects exist
during the superradiant process, the violations have two different
meanings: one is for the non-locality (Bell, steering), and the other
is for the quantum coherent dynamics (LG). In experiments, we
stress that only the measurements on one of the emitters are required
to test the LG inequalities. The ELG and LG inequalities are math-
ematically equivalent when choosing a proper observable. Therefore,
the ELG inequality, which does not require the non-invasive measur-
ability, can in practice assist in verifying the quantumness in SR. As a
final remark, we wish to point out that the contextuality test36 can
also be used to indicate the non-locality mentioned above. Similar to
the LG inequality, its temporal scenario37 can be utilized to indicate
the quantum coherent dynamics. Further investigations in this dir-
ection are under way.

Methods
Details of the derivation of Bell-CHSH inequality. To obtain the results in Fig. 2(a),
we adopt the method provided in Ref. 26. In order to verify whether the Bell-CHSH
inequality is violated for a given state r, one has to maximize the mean value of the
Bell-CHSH parameter:

Bmax~ max
â,â’,b̂,b̂’

Tr rB̂CHSH
� �

~2
ffiffiffiffiffiffiffiffiffiffiffi
M rð Þ

p
~2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1zl2

p
, ð18Þ

where l1 and l2 are the two largest eigenvalues of TT
r Tr . Here, TT

r is the transpose of
Tr, and the matrix elements of Tr is written as

tmn~Tr rsm6snð Þ, ð19Þ

where sn is the standard Pauli matrix.

Details of the derivation of steering inequality. To obtain the results in Fig. 2(b), we
first measure the state r in the z-basis, and the probability that Bob obtains 61 is

P Bi~+1ð Þ~Tr P̂Bi~+1
z r

� �
, ð20Þ

where

P̂Bi~z1
z ~

1 0

0 1


 �
6

1 0

0 0


 �
, ð21Þ

and

P̂Bi~{1
z ~

1 0

0 1


 �
6

0 0

0 1


 �
: ð22Þ

After Bob’s measurement, the state is mapped to
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state | 2, 1cæ. Here, k and c are the cavity loss and atomic dissipation rate,

respectively, while g is the coupling strength between the qubit and the

cavity field.

QD-1

metal nanowire

QD-2

excite measure

Figure 6 | Schematics of a experimentally-accessible system. Two two-

level quantum dots coupled to metal nanowire surface plasmons. Here, the

quantum dot-1 is assumed to be excited initially, and one measures the

populations of the quantum dot-2.
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r?r’~
P̂Bi~+1

z rP̂Bi~+1
z

Tr P̂Bi~+1
z r

� � : ð23Þ

With the state r9, the probability that Alice obtains 61 is

P Ai~+1jbð Þ~Tr P̂Ai~+1
z r’

� �
: ð24Þ

With P(Bi 5 61) and P(Ai 5 61jb), Eqs. (10) and (11) are obtained accordingly. To
calculate S3 in Eq. (9), one repeats the above procedure by replacing P̂Bi~+1

z , P̂Ai~+1
z

with P̂Bi~+1
x , P̂Bi~+1

y and P̂Ai~+1
x , P̂Ai~+1

y . One can then have S3 in three mutually
unbiased basis.
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