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Bell’s inequality is established based on local realism. The violation of Bell’s inequality by quantum
mechanics implies either locality or realism or both are untenable. Leggett’s inequality is derived based on
nonlocal realism. The violation of Leggett’s inequality implies that quantum mechanics is neither local
realistic nor nonlocal realistic. The incompatibility of nonlocal realism and quantum mechanics has been
currently confirmed by photon experiments. In our work, we propose to test Leggett’s inequality using the
Aharonov-Casher effect. In our scheme, four entangled particles emitted from two sources manifest a
two-qubit-typed correlation that may result in the violation of the Leggett inequality, while satisfying the
no-signaling condition for spacelike separation. Our scheme is tolerant to some local inaccuracies due to the
topological nature of the Aharonov-Casher phase. The experimental implementation of our scheme can be
possibly realized by a calcium atomic polarization interferometer experiment.

B
ell’s inequality1,2 imposes bounds on correlations of different parties of multipartite systems based on local
realism. However, the violation of Bell’s inequality by quantum mechanics implies either locality or realism
or both are untenable. In the debate of incompatibility between quantum mechanics and any local realistic

hidden variable theory, experiments3–9 have supported quantum mechanics. Although for some time there existed
loopholes of locality4,5,7,8 and detection6,9, they have been almost closed. The invalidity of local realism is a
reasonably established fact. In 2003, Leggett10 derived a class of inequalities based on nonlocal realism. He
assumed that the state of a subsystem has been predetermined by some variable l even before the measurement,
and that the joint probabilities consist of a mixture of correlations that cannot be separable. Since only states of
subsystems have been predetermined, the whole system may be nonlocal. After the pioneer work, the incom-
patibility of nonlocal realism and quantum mechanics was experimentally confirmed11–14. It was shown that
quantum mechanics is neither local realistic nor nonlocal realistic.

Topological property of physical systems has given rise to many applications ranging from quantum field
theory to quantum information science. An example is the Aharonov-Bohm (AB) effect15, in which a moving
charge has its phase shifted in the presence of a confined magnetic field, though apparently it feels no net force. In
1984, Aharonov and Casher16 predicted a dual of the AB effect. In the Aharonov-Casher (AC) effect, the role of
charge and magnetic flux is exchanged, i.e., when a neutral particle with magnetic moment moves around an
impenetrable line charge, it also acquires some phase shifts. The AC effect is traditionally understood as a
nonlocal and topological effect in which a particle with magnetic moment acquires shifted phase when moving
in a topologically nontrivial region. In 1998 a scheme involving the AC effect to test local realism was proposed by
Pati17, and the violation of Bell’s inequality indicates the nonlocality of the four-particle entangled state.

In this work, we advance the study of nonlocality of the AC effect and present a scheme to test Leggett’s
inequality by resorting to the AC effect. Due to the topological nature of the AC effect, our scheme is robust
against some local inaccuracies. We shall test the two-qubit Leggett inequality in a physical system consisting of
four neutral particles with magnetic moments, whose initial state is a product of the singlet state of pair (1, 2) and
the triplet state of pair (3, 4). Pseudo-Pauli matrices are introduced such that one may view an entangled spin pair
like pair (1, 4) or pair (2, 3) as a ‘‘single qubit’’, and hence four particles as a total ‘‘two-qubit’’ system. The
influence of the AC effect on an entangled spin pair is found to be equivalent to a rotation in terms of the pseudo-
Pauli operators. Moreover, based on the final state of the four particles, we focus on some specific joint prob-
abilities satisfying the no-signaling condition and obtain a two-qubit-type correlation function that may violate
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the Leggett inequality. We also present some discussion on the
implementation of our scheme in a calcium atomic polarization
interferometer experiment.

Results
Testing leggett’s inequality using the AC effect. In a nonlocal
hidden variable model, one assumes that the joint probability for a
bipartite system consists of statistical mixture of simpler correlations:

P a,b ~a,~b
���� �

~

ð
dlr lð ÞPl a,b ~a,~b

���� �
, ð1Þ

where l is a set of hidden variables determining the system, r(l)
distribution of l; a, b are measurement outcomes, and ~a,~b
measurement settings for two subsystems, respectively. An extra
requirement is that Pl satisfies the no-signaling condition,

i.e.,
P

b Pl a,b ~a,~b
���� �

~
P

b Pl a,b ~a,~b0
���� �

and
P

a Pl a,b ~a,~b
���� �

~P
a Pl a,b ~a0,~b

���� �
. Follow Branciard et al.’s derivation of the Leggett

inequality14, one can define the correlations for a two-qubit system as

Pl a,b ~a,~b
���� �

~
1
4

1zaMA
l ~a,~b
� �

zbMB
l ~a,~b
� �

zabCl ~a,~b
� �� �

. Here

MA
l ~a,~b
� �

~
P

a,b aPl a,b ~a,~b
���� �

, MB
l ~a,~b
� �

~
P

a,b bPl a,b ~a,~b
���� �

,

Cl ~a,~b
� �

~
P

a,b abPl a,b ~a,~b
���� �

, and a, b 5 6 1. MA
l and MB are

expectation values (or marginals) at each respective measuring
location. According to no-signaling condition, the marginals MA

l

and MB
l can be locally described by their respective choices of

measurement, i.e., MA
l ~a,~b
� �

~MA
l ~að Þ and MB

l ~a,~b
� �

~MB
l
~b
� �

.

Leggett assumed that each subsystem can be described by a pure
quantum state, then for the two-qubit case, each hidden variable
determines a product state l?~uj i6~vj i, where ~u,~v are vectors on

the Poincaré sphere. We have MA
l ~að Þ~ ~s:~ah il~~ul

:~a, MB
l
~b
� �

~

~s:~b
D E

l
~~vl

:~b, where ~s~ sx,sy,szð Þ is the usual Pauli matrix

vector. Since no further assumption of the bipartite correlation

function is made, generally speaking, Cl ~a,~b
� �

=MA
l ~að ÞMB

l
~b
� �

.

The Leggett inequality is of the following form14

C ~a,~b
� �

+C ~a, b0
!� ���� ���ƒ2{

ð
dlr lð Þ MB

l
~b
� �

+MB
l b0
� ���� ���, ð2Þ

where~a describes the measurement setting for Alice,~b,b0
!

are the two
measurement settings for Bob. Consider three settings ~ai i~1,2,3ð Þ
for Alice and six settings~bi, b0

!
i i~1,2,3ð Þ for Bob as given in Ref. 14,

where~bi{b0
!

i~2 sin Q=2~eið Þ with~ei i~1,2,3ð Þ being an orthogonal
basis, then one arrives at the Leggett inequality as

1
3

X3

i~1

C ~ai,~bi

� �
zC ~ai, b0

!
i

� ���� ���� �
ƒ2{

2
3

sin
Q

2

��� ���: ð3Þ

For the singlet state of two qubits, the quantum correlation function

reads C ~a,~b
� �

~
Ð

dlr lð ÞCl ~a,~b
� �

~ ~s:~a6~s:~b
D E

~{~a:~b. Then the

Leggett inequality reduces to a simpler form:

2 cos
Q

2

��� ���z 2
3

sin
Q

2

��� ���ƒ2: ð4Þ

Let us consider a system of four neutral spin-1/2 particles with
magnetic moments in the presence of a line charge. In the AC con-
figuration, the particles are moving in xy-plane and the line charge
oriented along the third axis (the z-axis). The motion of the particles
is influenced by the electric field of line charge. Each particle will
acquire a phase when moving along the plane,

:j ij?e
i
Ð
‘j

~E|~mjð Þ:d~r
:j ij~ei

Qj
2 :j ij,

;j ij?e
{i
Ð
‘j

~E|~mjð Þ:d~r
;j ij~e{i

Qj
2 ;j ij,

ð5Þ

where j"æj, j#æj describe quantum states with spin up and spin down

for the j-th particle,~E is electric field intensity, Qj~
Ð
‘j
~E|~mj

� �
:d~r is

the measurable phase accumulated during the evolution, and~mj is the
magnetic moment for the j-th particle.

Denote the state for two spin-1/2 particles by jS, Mæ with total spin
S and magnetic quantum number M, then the singlet state and the
triplet state with M 5 0 are given by

0,0j i~ :;j i{ ;:j ið Þ
. ffiffiffi

2
p

,

1,0j i~ :;j iz ;:j ið Þ
. ffiffiffi

2
p

,

ð6Þ

Under the transformation (5), the initial singlet state j0, 0æmn and
triplet state j1, 0æmn of particles m and n become

0,0j imn? cos
Qm{Qn

2
0,0j imnzi sin

Qm{Qn

2
1,0j imn,

1,0j imn?i sin
Qm{Qn

2
0,0j imnz cos

Qm{Qn

2
1,0j imn,

ð7Þ

namely, the states j0, 0æmn and j1, 0æmn evolve to the quantum states
that are linear superpositions of themselves. This is a very notable
feature of the AC effect influencing an entangled spin pair17,18.
Equation (7) implies that {j0, 0æ, j1, 0æ} may span a subspace, and
in turn one may treat the spin pair as a ‘‘single qubit’’. To make this
point explicit, let us abbreviate

�0j i: 0,0j i, �1j i: 1,0j i, ð8Þ

then Eq. (7) can be recast as

�0j imn

�1j imn

� 	
?

cos Qm{Qn
2 i sin Qm{Qn

2

i sin Qm{Qn
2 cos Qm{Qn

2

 !
�0j imn

�1j imn

� 	
: ð9Þ

Moreover, one defines the following pseudo-Pauli matrices asPx
~ �0j i �1h jz �1j i �0h j,

Py
~{i �0j i �1h j{ �1j i �0h jð Þ,

Pz
~ �0j i �0h j{

�1j i �1h j, which share similar properties as the usual Pauli matrices,
then Eq. (9) is nothing but a rotation

Rx
mn Qm{Qnð Þ~ei Qm{Qnð Þ

Px

mn=2 ð10Þ

along x-axis on the basis { �0j i, �1j i} of the ‘‘single qubit’’.
Our scheme for testing the Leggett inequality by experiment

involves two pairs of entangled spin-1/2 particles. Similar to Refs.
17, 18, we prepare the four particles entangled in two pairs (1,2) and
(3,4) initially, and finally perform some proper projective measure-
ments on particle pairs (1, 4) and (2, 3) to obtain the correlation
function. Assume initially that particles 1 and 2 are emitted from a
source O12 with total spin S12 5 0 and magnetic moment M12 5 0;
similarly, particles 3 and 4 are emitted from a source O34 with S34 5 1
and M34 5 0. Namely, the initial state reads Yij i~ 0,0j i126

1,0j i34~
1
2

:;;:j i{ ;::;j iz ::;;j i{ ;;::j ið Þ1423, in the last step
of which we have rearranged the particles in the order of ‘‘1423’’.
Actually, jYiæ can be rewritten as

Yij i~
1
2

�0j i14
�1j i23{

�1j i14
�0j i23

� �
z

1
2

::;;j i{ ;;::j ið Þ1423: ð11Þ

However, the last two terms of Eq. (11) will vanish when they are
acted by any operator defined in the subspace H~ �0j i14, �1j i14


 �
6 �0j i23, �1j i23


 �
Here we retain them for normalization. In fact, the

initial state can be understood as a ‘‘singlet state’’ Yij i!
1ffiffiffi
2
p

�0j i14
�1j i23{

�1j i14
�0j i23

� �
of ‘‘two-qubit’’ without any confusion.
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Our experiment proposal is demonstrated in Fig. 1. The distance
from A to B is supposed to be large enough so that the measurement
of particle pair (1,4) and that of particle pair (2,3) are space-like, and
thus no-signaling condition is satisfied. Due to Eqs. (9) and (10), we
have the final state of the four particles as

Yfj i~
1
2
Rx

A QAð Þ6Rx
B QBð Þ �0j i14

�1j i23{
�1j i14

�0j i23

� �
z

1
2

eic ::;;j i1423{e{ic ;;::j i1423

� �
:

ð12Þ

Here A represents ‘‘14’’ and B represents ‘‘23’’, c 5 (Q1 1 Q4 2 Q2 2

Q3)/2, and QA 5 Q1 2 Q4, QB 5 Q2 2 Q3 are relative AC phases for
meeting locations A and B acquired by four particles moving along
different paths. It is worth to mention that AC effect usually concerns
a single particle moving around a line charge, however here none of
the moving paths of four particles encircles the line charge, though
the combination of four corresponding paths actually makes a circle.

Next we perform local projective measurements on two particle
pairs (1,4) and (2,3) along arbitrary directions~nA~ sin jA cos hA,ð
sin jA sin hA, cos jAÞ and ~nB~ sin jB cos hB, sin jB sin hB,ð
cos jBÞ, respectively. The projectors are defined as P̂ i,jð Þ~
inA jnB

�� E
inA jnB

D ��, (i, j 5 0, 1), where

0~nj i~ z~n,{~nj i{ {~n,z~nj ið Þ
. ffiffiffi

2
p

,

1~nj i~ z~n,{~nj iz {~n,z~nj ið Þ
. ffiffiffi

2
p

,

ð13Þ

which are respectively the singlet state and the triplet state with M 5

0 written in terms of the following states: z~nj i~ cos
j

2
:j iz

sin
j

2
eih ;j i, {~nj i~ sin

j

2
:j i{ cos

j

2
eih ;j i. Here we choose the vec-

tors ~nA and ~nB in the xy-plane, i.e., jA 5 jB 5 p/2. Let us denote
P i,jð Þ~ Yf P̂ i,jð Þ

�� ��Yf

� 
as the joint probabilities satisfying the no-

signaling condition, and based on which the correlation function is
defined as

CAB~

P
i,j~0,1 {1ð ÞizjP i,jð ÞP

i,j~0,1 P i,jð Þ : ð14Þ

After some calculations, we obtain the explicit result of the correla-
tion function as

CAB ~a,~b
� �

~{~a:~b, ð15Þ

where~a~ sin hA cos QA, sin hA sin QA, cos hAð Þ and~b~ sin hB cos QB,ð
sin hB sin QB, cos hBÞ are two unit three-dimensional vectors. Here

the vectors ~a and ~b (or say QA, QB, hA, hB) are experimentally con-
trollable: The parameters QA, QB (i.e., Qi, i 5 1, 2, 3, 4) are the relative
AC phase shifts of the four particles determined by the locations A, B
and the paths ,i; and the parameters hA, hB come from the selection of
directions in the projective measurements for each particle pair at A
and B. Actually, the correlation function (15) is equivalent to

CAB ~a,~b
� �

~ Yi
~S:~a6~S:~b
��� ���Yi

D E
, which is just similar to that of

two usual qubits under the joint measurement~s:~a6~s:~b on the singlet
state. This correspondence also provides a reasonable explanation on
why the AC effect can be used to test both the Bell-Clauser-Horne-
Shimony-Holt (Bell-CHSH) inequality2 in Ref. 17 and the Leggett
inequality in this work.

Reference 17 proposed to test the Bell-CHSH inequality

C ~a,~b
� �

zC ~a0,~b
� �

zC ~a,~b0
� �

{C ~a0,~b0
� ���� ���ƒ2 ð16Þ

using the AC effect. There are four measurement settings in the ine-

quality (16), i.e., ~a, ~b, ~a0, ~b0. To attain maximal violation of the
inequality, it is sufficient to put the four measurement settings in the
same plane, i.e., one may always choose hA 5 hA9 5 hB 5 hB9 5 p/2 if
the Bell-CHSH inequality is tested. By properly selecting two loca-
tions A, A9 for Alice where particle pair (1,4) meets, and two locations
B, B9 for Bob where particle pair (2,3) meets, and adjusting the phase
shifts as QA 5 0, QA9 5 p/2, QB 5 p/4, QB9 5 2p/4, or say~a~ 1,0,0ð Þ,

Figure 1 | A schematic illustration of experiment proposal. We let the two sources be located at points O12 and O34 on the xy-plane respectively, and

invoke an impenetrable line charge (with charge density r) oriented along the z-axis. After the four particles are emitted from the two sources, we then

move particle 1 from location O12 to location A along path ,1, and move particle 4 from location O34 to meet particle 1 at location A along path ,4.

The motion of the particles are influenced by the electric field of line charge as shown in Eq. (5) and accordingly the corresponding AC phase shifts are Q1

and Q4 for particles 1 and 4 respectively. Similarly, we move particle 2 from location O12 to location B along path ,2, and move particle 3 from location O34

to meet particle 2 at location B along path ,3, and the corresponding AC phase shifts are Q2 and Q3 for particles 2 and 3 respectively.

www.nature.com/scientificreports
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~a0~ 0,1,0ð Þ,~b~ 1
� ffiffiffi

2
p

,1
� ffiffiffi

2
p

,0
� �

, and~b0~ 1
� ffiffiffi

2
p

,{1
� ffiffiffi

2
p

,0
� �

, then
the right-hand side of (16) achieves 2

ffiffiffi
2
p

and thus the Bell-CHSH
inequality is maximally violated. The violation of the Bell inequality
rules out local realistic theories from quantum mechanics.

To test Leggett’s inequality (3), we need totally nine measurement
settings, i.e.,~a1,~a2,~a3,~b1,~b 01,~b2,~b02,~b3,~b03. Since~ei i~1,2,3ð Þ is an
orthogonal basis, the nine measurement settings cannot lie in the
same plane. Properly select three locations Ai(i 5 1, 2, 3) for Alice
where particle pair (1,4) meets, and six locations Bi

�
B0i i~1,2,3ð Þ for

Bob where particle pair (2,3) meets (see Fig. 2), and adjust the nine
different paths and nine directions of the projectors such that
the measurement settings are hA1 ,QA1

� �
~ p=2,0ð Þ, hA2 ,QA2

� �
~

p=2,p=2ð Þ, hA3 ,QA3

� �
~ 0,0ð Þ, hB1 ,QB1

� �
~ p=2,Q=2ð Þ, hB01

,QB01

� �
~

p=2,{Q=2ð Þ, hB2 ,QB2

� �
~ p=2{Q=2,p=2ð Þ, hB02

,QB02

� �
~ p=2zð

Q=2,p=2Þ, hB3 ,QB3

� �
~ Q=2,0ð Þ, hB03

,QB03

� �
~ Q=2,pð Þ, we arrive at

the experimental settings given in Ref. 14. Based on which the six
correlation functions in Eq. (3) are all equal to 2 cos(Q/2), and

consequently for Qj j[ 0,4 tan{1 1
3

� 	� 	
, the Leggett inequality (4)

is violated. The violation of the Leggett inequality implies that non-
local realistic theories are not compatible with quantum mechanics.
In the AC experiment, the invalidity of both the Bell inequality and
the Leggett inequality suggests that quantum mechanics is neither
local nor realistic. The result is consistent with the works in the
literatures11–14 based on the experiment of entangled photons.

Discussion
Let us make some discussion on the possible implementation of
our scheme in physical systems. One possible system to explore
the our scheme experimentally is a calcium atomic polarization

interferometer as investigated in Ref. 19. Encode two magnetic sub-
states of the excited state j3P1æ as computational basis, j "æ ; j3P1, 1

1æ and j #æ ; j3P1, 21æ, the phase difference between j "æ and j #æ
accumulated during the evolution includes two parts, one is dynam-
ical phase and the other one is nothing but the AC phase. As we
know, the presence of dynamical phase may destroy the potential
robustness of our scheme since it is sensitive to noise. Fortunately the
dynamical part can be canceled out via interferometer, as shown in
Ref. 19, and therefore one only has the AC phase in the experiment.
Due to the topological property of the AC phase, the experiment
offers a promising fault-tolerant method to test Leggett’s inequality.
The experimental achievement in the literature19 tells us that our test
of Leggett’s inequality using the AC effect is possibly realizable with
current techniques in an experiment of a calcium atomic polarization
interferometer.

In summary, we have proposed a scheme to test the two-qubit
Leggett inequality using two entangled spin-1/2 particle pairs emit-
ted from two sources in the presence of a line charge. Pseudo-Pauli
matrices are introduced such that these four particles can be viewed
as a total ‘‘two-qubit’’ system. The influence of the AC effect on each
entangled spin pair is found to be equivalent to a rotation in terms of
the pseudo-Pauli operators. Based on the final state of the physical
system, two-qubit-type correlation functions with controllable para-
meters can be calculated from joint probabilities for the measure-
ment of the two particle pairs with M 5 0. The Leggett inequality is
found to be violated, which implies the invalidity of nonlocal realistic
theories. The merit of our scheme lies at robustness against local
inaccuracy, and thus our scheme of testing the Leggett inequality is
tolerant to some local inaccuracies. As is well known, photon-based
experiments often encounter loophole problems, such as errors in
the detectors and detecting systems. The existence of loopholes may
affect the validity of the experiments, and hence the investigation of

Figure 2 | Illustration of different locations and trajectories in space. Properly choose three locations Ai(i 5 1, 2, 3) for Alice where particle pair

(1,4) meets, and six locations Bi
�

B0i i~1,2,3ð Þ for Bob where particle pair (2,3) meets, and control the different paths such that we arrive at the

experimental settings given in Ref. 14. (a) Illustration of locations A1 and B1, and paths ,1, ,2, ,3, ,4; (b) Illustration of l ocations A1 and B2, and paths ,1,

‘02, ‘03, ,4; (c) Illustration of locations A2 and B1, and paths ‘01, ,2, ,3, ‘04; (d) Illustration of locations A2 and B2, and paths ‘01, ‘02, ‘03, ‘04. Other locations and

their corresponding paths can be given in a similar way.
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loophole-free experiments is a good alternative. This makes our
scheme totally different from the known experiments on testing
the Leggett inequality in the literatures11–14.
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