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Possible universal dynamics of a many-body system far from thermal equilibrium are explored. A focus is set
on meta-stable non-thermal states exhibiting critical properties such as self-similarity and independence of
the details of how the respective state has been reached. It is proposed that universal dynamics far from
equilibrium can be tuned to exhibit a dynamical transition where these critical properties change
qualitatively. This is demonstrated for the case of a superfluid two-component Bose gas exhibiting different
types of long-lived but non-thermal critical order. Scaling exponents controlled by the ratio of
experimentally tuneable coupling parameters offer themselves as natural smoking guns. The results shed
light on the wealth of universal phenomena expected to exist in the far-from-equilibrium realm.

T
he concept of universality has been extremely successful in classifying and characterising equilibrium states
of matter. For example, there are different types of order in a magnetic material separated by a second-order
phase transition at which the relevant physical properties become independent of the microscopic details of

the system. This constitutes universality and allows to characterise an extensive range of different phenomena in
terms of just a few classes governed by the same critical properties. In view of the intensifying discussion on the
dynamics of many-body systems it is a pressing question whether also far away from the thermal limit the
character of dynamical evolution can become independent of the microscopic details. For a closed system this
would imply that in approaching a critical configuration the evolution must become independent of the particular
initial state the system has started from and critical slowing down in the actual time evolution is observed. As a
consequence, different types of dynamical evolution could be distinguished by means of universality classes.

In this article, we demonstrate that such universal dynamics far from thermal equilibrium states is indeed
possible. We show that there is a dynamical transition between different types of universal dynamics. After having
quenched a two-component ultracold Bose gas we follow the ensuing evolution of the closed system and observe
transient universal behaviour. In particular, we identify a tunable external parameter that determines the type of
transient non-equilibrium order. In our setup non-equilibrium order is constituted by the appearance of spatial
patterns including quasi-topological defects like vortices and skyrmions which are created through instabilities
and which decay only on very large time scales1. We find the dynamics of diluting defects to constitute a separate
dynamical critical phenomenon far from thermal equilibrium and therefore clearly distinct from the known
equilibrium critical points2,3. Large-scale correlations in the system are universal in the sense that they are fixed by
the type of defect, but are completely insensitive to the specific positions and velocities of the defects.
Distinguishable types of defects are produced for different values of the tuning parameter. Hence, the dynamics
can be tuned to a transition between different metastable non-equilibrium ordered states, see Figure 1. Extending
upon the presented results will allow to learn about the universal properties of classes of models in the vicinity of
attractors, non-thermal fixed points and other critical submanifolds of the greater space of all possible non-
equilibrium configurations4–7. Knowing such universal properties, predictions for the behavior of very different
physical systems can be obtained on the basis of comparatively few exemplary measurements. When looking at
fundamental science applications, universality classes of far-from-equilibrium criticality can link the dynamics,
which we propose to be observable in ultracold atomic or exciton-polariton gases, with phenomena as different as,
e.g., magnon gases in solids, quark-gluon-plasma dynamics in heavy-ion collisions, or reheating after early-
universe inflation. Technological applications would not stay away.

The two-component Bose systems we consider are described by the Hamiltonian density ( 5 1)

H~
1

2m
+w{

j +wjz
g
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w{
j wj

� �2
{g 1{að Þw{

1w1w{
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Here m is the mass of the atoms and a 5 g12/g the ratio between the inter-species coupling g12 and the intra-
species interaction constant g. The latter as well as the mass are chosen to be the same for both components and
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the sum over the field index j g {1, 2} is implied. The considered
systems allow for good experimental control and have been studied
intensely8–11. In experiment, a can be varied by means of a Feshbach
resonance. Two different ground states exist, depending on the value
of the parameter a12,13. In the immiscible regime, a . 1, the inter-
species interaction energy is greater than the intra-species interac-
tions. Hence, in the ground state, the spatial overlap of the
components is minimised through domain formation and spatial
separation of the two components. On the contrary, for a # 1, the
two components become miscible and, in the ground state, uni-
formly distributed over the whole volume. We make use of a to
change the properties of the system in the yet unexplored region of
non-equilibrium quasi-stationary states. A focus is set on long-lived
states with non-/quasi-topological defects including domain walls8,12,
single-species vortices, and skyrmions14 in the coupled system.

Results
Since the dynamics we are interested in exclusively affects the low-
momentum, strongly populated field modes, we employ the so-called
classical field method which yields, within numerical accuracy, exact
results for the time-evolving observables. In order to discuss the
contribution of the different (quasi-)topological configurations in
detail, we make use of the spin representation of the two-species
fluid. In this representation the Sz-component of the spin vector
simply refers to the density imbalance between the two species.
This is an essential observable for the detection of domain walls.
Furthermore, we make use of a hydrodynamic decomposition of
the superfluid flow which allows for the detection of vortex contribu-
tions to the spectra. For details on numerical parameters and decom-
position methods we refer the reader to the Methods section. In
Figure 2, we unravel the time evolution of a two-component Bose
gas as outlined in Figure 1. The parameters of our simulation are
chosen such that the final states are close to the ground state of the
system. To clarify the type of non-equilibrium order during the
intermediate stages of the evolution, we show the imbalance between
the two components Sz as well as the momentum distribution n(k) for
three characteristic times. The initial time, tI, marks the stage of an
isotropic momentum distribution which is overpopulated within an
intermediate range of momenta, as compared to the ensuing equi-
librium distribution. It is marked by a strong fall-off at large
momenta. In our driving scheme this state is reached in the wake

of an instability. For the immiscible case, a . 1, we use a modula-
tional instability in which small low-momentum fluctuations in the
polarisation are amplified to macroscopic spin domains. In the mis-
cible regime, a # 1, we invoke a counter-superflow instability15,16 by
choosing oppositely directed flow vectors for the two field compo-
nents. Above a critical relative velocity, momentum exchange
between the two fluids causes the superflow to decay and spin
domains to form. Subsequently, overpopulation at intermediate
momenta is encountered for all values of the parameter a. Its micro-
scopic origin is seen in the coloured distributions of the density
imbalance Sz in Figure 2 which show strong fluctuations and the
onset of domain formation. We estimate tI^10=vI, with vI being
the energy of the fastest growing unstable mode. Note, that the
dynamics up to tI is different for different a and involves for example
isotropisation in case of a # 0. For details see section A in the
Supplementary Material. The further dynamical evolution of over-
populated states involves particle transport towards small momenta
and energy transport towards high momenta17,18. In Figure 2 this is
best observed by comparing the high momentum tails of the
momentum distributions at tI and tNTFP. Particle transport towards
low momenta eventually fills the zero-mode (not seen), a process
most important in the miscible regime a 5 0.8. The key insight
gained from the spectra concerns the development of infrared (IR)
power laws in the momentum distribution n(k) , k2f at
tNTFP^102=vI. These power laws depend on the external parameter
a: f , 3.5 for a . 1, f , 3 for a 5 1 and f , 4 for a , 1. Also, the
pattern of imbalance fluctuations in the system depends on the inter-
action strength.

We highlight the most striking observations at late times before we
carry on developing a detailed understanding of the relation between
the dominant fluctuations and the observed power laws. In the
immiscible regime the system consists of few large domains with
additional inclusions of small point-like domains. As compared to
the initial time domains have considerably grown. A special situation
is encountered at the transition point (a 5 1), where domain-like
structures persist to extremely long times. This is remarkable since in
this regime domains are not energetically favourable as compared to
overlapping particle densities. For a 5 0.8, imbalance fluctuations
have decayed up to few small areas of strong imbalance. Let us finally
look at the largest computed time tF^103=vI. For a . 1, two
domains of equal size remain, which reflects the immiscibility in

Figure 1 | Illustration of the dynamical evolution of a two-component Bose gas, with a focus on the possible transition between far-from-equilibrium
transient states. The set in the bottom left corner represents an ensemble of out-of-equilibrium initial states. Amongst these, a subset subjected to a

dynamical instability is marked in white. It is chosen such that for all values of the the ratio a of inter- to intra-species couplings the system belongs to the

unstable subset. Subsequently, the time evolution of the closed system leads to non- and quasi-topological defect formation. The type of defects created

determines the scaling in the low-momentum regime of the particle spectrum of the gas. Our results reveal three different scalings corresponding to three

types of defect configurations, and a dynamical transition between the far-from-equilibrium universal states.
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the ground state. The small-scale domain-fluctuations have consid-
erably reduced in number. At the transition point, we observe the
persistence of domain-like structures which we attribute to a diver-
ging time scale t of domain decay as a R 1 from below. For details see
section B in the Supplementary Material. For a , 1, small long-lived
imbalance fluctuations remain, whereas the background tends to
become very smooth, Sz < 0. Finally, we investigate the microscopic
origin of the scaling found in the momentum distributions. The
bimodal power laws in these distributions are signatures of the sys-
tem having approached a non-thermal fixed point4–7. At long times
they become more pronounced in all three cases, signalling critical
slowing down of the dynamic evolution. In Figure 3, the result of a
decomposition of the momentum distribution according to spin and
fluid degrees of freedom at t 5 tNTFP is presented, see the Methods
section for details on the decomposition. We show spin-spin correla-
tion functions as well as correlations in the incompressible velocity as
a function of momentum. The crucial point is that they explain the
scaling properties of the total momentum distribution and allow for
an interpretation in terms of specific defect configurations, as shown
in Figure 2. This completes our understanding of transient non-
equilibrium order in a two-component ultracold Bose gas.

We remark that, for all a, compressible and quantum pressure
excitations, which are not shown, dominate the spectrum in the

ultraviolet (UV) regime and follow a thermal Rayleigh-Jeans distri-
bution n , k22, while they give a negligible contribution towards
lower momenta.

In the immiscible regime, see Figure 3 (left), the main contribution
to the spectrum in the IR region is provided by the incompressible
component ni, corresponding to flow orientations transverse to the
direction in which the flow velocity varies. Although we are dealing
with a multi-component gas this feature is similar to superfluid
turbulent flow in a single-component Bose gas. Thereby the incom-
pressible spectrum shows ni , k24 scaling over approximately one
decade which is generated by coherent vortical flows wi around
topological defects17,18. The cores of these vortex-like structures can
be seen in the spin imbalance, see Figure 2, since they are filled with
particles of the other species and thus are of the skyrmion type. They
are created during the merging process of domains and, persisting
due to their topological nature, give the main contribution to the
incompressible component spectrum. However, spin excitations nz

s
overtake in an intermediate momentum region, showing a scaling of
nz

s*k{3. Looking more closely, one observes that the scaling beha-
viour terminates in the IR at a scale p/LD given by the mean domain
size LD, while the cut-off in the UV at p/js is set by the width of the
domain walls, i.e., the spin healing length js 5 j(1/j1 2 aj)1/2. Since
the two contributions nz

s and ni are of comparable magnitude within

Figure 3 | Decomposition of correlation functions of the two-component Bose gas. The three different graphs refer to the three different non-

equilibrium ordered states parametrised by the coupling ratio a. Shown are the z-spin component nz
s , the sum of x- and y-spin components nxy

s and the

incompressible component ni at time tNTFP. For details of the decomposition procedure see the Methods section.

Figure 2 | Time evolution of the system in three different parameter regimes. Three snapshots (columns) of the evolving two-component Bose gas for

three different values of the coupling ratio a (rows) are shown. In each case we show the spatial distribution of density imbalance Sz as well as the

momentum distribution n(k) as a function of the momentum modulus k of particles in the gas. Tick labels for the spectra graphs are the same as in

Figure 3. Until tI the dynamics is characterised by the instability and isotropisation of density fluctuations. At tNTFP 5 10 tI, one observes the development

of different power laws in the momentum distributions. They remain metastable for a long time beyond tF 5 100 tI and reveal different non-thermal fixed

points. The change of power laws at a 5 1 indicates a dynamical transition.
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an intermediate momentum range the sum of all contributions, giv-
ing the full spectrum n(k), appears to follow the power law n , k23.5

in the IR, as discussed above.
The situation on the other side of the transition can also be cla-

rified. When a falls below 1 domains are energetically suppressed.
Thus, vortices dominate the non-thermal fixed point and induce the
characteristic scaling n , ni , k24, see Figure 3 (right). Here, it is also
visible in the scaling of relative phase fluctuations nxy

s , which is
related to constant particle densities on scales larger than j as com-
pared to the skyrmionic case above.

The picture changes dramatically on the transition point, a 5 1. As
shown in Figure 3 (middle), vortical flow is much less important in
this regime. The momentum distribution is dominated by spin fluc-
tuations scaling as n*nz

s*nxy
s *k{3. We attribute this feature to the

increased dimensionality of the vacuum manifold for a 5 1 which
removes the topological protection of vortices. The stability of
domain walls at the transition point takes over but is non-topological
in nature. Instead, conservation laws restrict the decay of this par-
ticular type of defect19. This argument can be made even more trans-
parent by studying the critical dynamics at the transition from a , 1
towards a 5 1, where two non-equilibrium ordered states meet each
other, vortices and domains. Details on the connection between
defect structures and scaling exponents of the momentum distri-
bution can be found in the Methods section.

Discussion
We conclude that the appearance of (non-)topological defects deter-
mining bulk features of correlation functions in far-from-equilib-
rium situations is very general and strongly relevant for
intermediate-time universal dynamics. It is easily imaginable that
multi-component field theories with more than two components
show similar behavior to the one outlined here. We point out the
possibility of a universal duality between diluting defects and inverse
particle cascades. This requires the generation of (quasi-)topological
configurations far from thermal equilibrium and their slow decay,
going together with an increase of coherence and defect separation20.
Under these conditions, an inverse particle cascade is generated, and
the associated power-laws can be found from the scaling properties
of the respective single defect.

The cascades exhibit a characteristic non-thermal infrared power-
law behaviour of correlation functions, e.g., as demonstrated in the
paper, the momentum spectrum n(k) , k2f, f^3 . . . 4. This scaling
is distinctly different from the situation of a thermal gas and reflects a
different relation between spectral and statistical correlations far
from equilibrium. The scaling behaviour which is evolving further
towards the infrared while the defects are being diluted marks the
presence of a non-thermal fixed point. In the vicinity of this point,
the time evolution becomes universal due to self-similarity in the
scaling regime. We point out that universality, here, is not only
related to the scaling in the spatial coordinates but is also present
in the time dimension, manifesting itself e.g. in the cascading char-
acter of the scaling regime which is progressively building up coher-
ent population in the infrared due to the dilution process of the
topological defects. Furthermore, the time evolution of correlation
functions can show scaling behaviour. We emphasise that adiabatic
near-equilibrium descriptions of dynamical critical phenomena do
not apply to the strong quench scenarios studied here, such that in
principle new scaling exponents should appear which mark new
universality classes of far-from-equilibrium critical dynamics, the
determination of which is beyond the scope of this work.

We furthermore conclude that it is possible to establish the notion
of a dynamical transition between different far-from-equilibrium
ordered states in a two-component Bose gas. Tuning a system para-
meter (a) through a point where the symmetry properties of the
system change allows the universal far-from-equilibrium dynamics,
e.g., its scaling properties, change qualitatively. Hence, in what we call

a dynamical transition, the way how non-thermal fixed points are
approached during the equilibration evolution changes qualitatively.
Determining how such a dynamical transition is related to a corres-
ponding equilibrium transition, being beyond the scope of this work,
poses an interesting question for the development of a theory of far-
from-equilibrium critical phenomena.

A variety of (quasi-)topological excitations are known to exist in
multi-component fields1,19, examples are monopoles in gauge fields21

and exotic magnets22, as well as skyrmions in Bose-Einstein conden-
sates14,23 and liquid crystals24. New interesting features that are read-
ily accessible in experiment are expected for ultracold spinor
gases25–29. The transition between different types of transient non-
equilibrium order can be controlled by changing the symmetry prop-
erties of the Hamiltonian and thus topology and local conservation
laws of the system. This offers interesting prospects for far-from-
equilibrium dynamical transitions in very different areas of physics.

Methods
Classical field equations. Since the dynamics we are interested in exclusively affects
the low-momentum, strongly populated field modes, we employ the so-called
classical field method which yields, within numerical accuracy, exact results for the
time-evolving observables30,31. For this, initial field configurations w1,2(x, t0) are
sampled from Gaussian probability distributions and then propagated according to
the classical equations of motion. At the end of the time evolution correlation
functions are obtained from ensemble averages over the set of sampled paths. The
classical equations of motion derived from the Hamiltonian density (1) of the
interacting two-component Bose gas are

iLtw1~{
1
2
+2w1zg w1j j2za w2j j2

� �
w1, ð2aÞ

iLtw2~{
1
2
+2w2zg w2j j2za w1j j2

� �
w2: ð2bÞ

The momentum distribution which is shown in various graphs is defined as

n k, tð Þ~
ð

dVk w�j k, tð Þwj k, tð Þ
D E

, ð3Þ

where
Ð

dVk denotes the angular average in two-dimensional momentum space.
We have applied the following rescalings to obtain dimensionless quantities in the

system of coupled Gross-Pitaevskii equations (2), using the lattice constant as of the
computational grid: was R w, mg R g and t

�
ma2

s

� �
?t. Here n 5 (N1 1 N2)/L2 is the

mean total particle density on a Ns 3 Ns grid of linear size L 5 Nsas, with Ns 5 1024.
Conversion to physical time scales appropriate for a specific experiment, with, e.g.,
87Rb atoms, can be achieved by noting that the healing length j 5 (2mgn)21/2 is given
by j 5 4as for our system. Giving an estimate, e.g., for a physical healing length
j^1 mm, our lattice unit corresponds to as^0:25 mm which yields a time unit of
mRba2

s

�
^10{4 s. Hence, the characteristic time scale is 1=vI^10{3 . . . 10{2 s

which yields a realistic time scale for the appearance of the non-thermal fixed point at
tNTFP^0:1 . . . 1 s.

Spin-fluid representation. Although we always simulate the full set of equations (2)
it is instructive to study the degrees of freedom which describe the relative evolution
of the two components. Writing the fields in the polar representation
wi~

ffiffiffiffi
ri
p

exp ihið Þ these are given by the local phase difference hr 5 h1 2 h2 and by the
local density difference r1 2 r2. The Pauli matrices sa serve to define the Schwinger
representation Sa~w{

i sa
ijwj (sum over repeated indices implied) of angular

momentum operators. This results in a three-component vector of (pseudo-)spin
densities Sa, a g {x, y, z}

Sx~2
ffiffiffiffiffiffiffiffiffiffi
r1r2
p

cos hrð Þ, ð4aÞ

Sy~{2
ffiffiffiffiffiffiffiffiffiffi
r1r2
p

sin hrð Þ, ð4bÞ

Sz~r1{r2, ð4cÞ

where the modulus corresponds to the total density jSj 5 r1 1 r2 ; rT. For
convenience, we apply the redefinition Sa R rTSa such that jSj ; 1. Then, the
Hamiltonian density H of Eq. (1) can be rewritten as

H~
1
2

+
ffiffiffiffiffiffi
rT
p� �2

z
rT

8
+Sa+Saz

1
2rT

j2
T

z
gr2

T

2
{

gr2
T

4
1{að Þ 1{ Szð Þ2

� 	
,

ð5Þ

which shows the influence of the relative degrees of freedom and their coupling to the
global ones32. The quantity jT 5 r1=Q1 1 r2=Q2 is the conserved total particle current
associated with a global U(1) symmetry of Eq. (1) associated with the global shift of
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the total phase hT 5 h1 1 h2. Thus jT can not be expressed using just the spin densities
but contains also the remaining fourth degree of freedom, the total phase hT. We
obtain

jT~
1
2

rT+hTz
rT Sz

2 1{ Szð Þ2
� 	 Sy+Sx{Sx+Syð Þ: ð6Þ

According to the representation (5) of the Hamiltonian density the two-component
Bose gas can be described by a spinor field S which is coupled to a hydrodynamic fluid
with density rT and (conserved) quasi particle current jT. For a fluid at rest, i.e., rT 5

const and jT 5 0, the spin system thereby assumes the form of a classical non-linear
sigma model (NLsM) with a mass term gr2

T

�
4 1{að Þ Sxð Þ2z Syð Þ2

� 	
, whereas in

general a current jT ? 0 leads to a highly non-trivial coupling between internal and
hydrodynamic degrees of freedom.

Hydrodynamic decomposition. In order to gain further insight into the interplay
between the domain structure and other excitations we decompose the energy
spectrum according to Refs. 18,33. The results of this decomposition at the non-
thermal fixed point were discussed in Figure 3 of the main text. In a density-phase
representation, the kinetic part of the Hamiltonian density can be written in the
following way:

Hkin~+wj+wj~ +
ffiffiffiffiffiffi
rT
p

 

2z rT

4
+Sa+Saz wj j2: ð7Þ

The velocity field w is defined via the total particle current
ffiffiffiffiffiffi
rT
p

w~jT , similar to the
convenient choice for the one-component case. In this decomposition the first and
the last terms are the quantum-pressure component and the classical hydrodynamic
component, respectively. In contrast to a single-component fluid the second term of
Eq. (7) adds a pressure-like contribution to the kinetic energy which is produced by
internal excitations only. In addition, the velocity field w and thus the corresponding
part of the kinetic energy can be decomposed in a compressible and an incompressible
part, w 5 wc 1 wi, with = 3 wc 5 0 and = ? wi 5 0, such that wave-like and vortical
excitations appear in different parts of the decomposition, see Refs. 33. Based on Eq.
(7), radial energy spectra in momentum space corresponding to the discussed energy
parts can be defined as

Ed kð Þ~ 1
2

ð
dVk wd kð Þj j2

� �
, d [ q, c, if g ð8aÞ

Es kð Þ~ 1
2

ð
dVk wa

s kð Þ:wa
s kð Þ

� �
: ð8bÞ

Here we have introduced additional velocities wq~+ ffiffiffiffiffiffi
rT
p

and wa
s ~

ffiffiffiffiffiffi
rT
p +Sa=2 for

the sake of a closed representation. Finally, the energy spectra can be converted to
occupation number spectra defined in Eq. (3) by multiplication with a factor k22,
nd(k) 5 k22Ed(k), d g {q, c, i, s}18.

Domain and vortex spectra. In Figure 3 of the main text we discussed the
microscopic origin of characteristic power-laws in the momentum distribution n(k)
by decomposing the spectra in different components. This was successful since
signatures of different defects show up in specific components of the spectra. Here we
make this correspondence explicit for the case of vortices and domain walls.

Under the assumption of spatially constant total particle density the spectrum ns

can be related to the Fourier transform of the correlation function of the angle-
averaged spin order parameter S kð Þ~

Ð
dVk Sa {kð ÞSa kð Þh i,

k2ns~
rT

2

ð
dVk F +Sa�½ �F +Sa½ �h i

~
rT

2
k2
ð

dVk Sa {kð ÞSa kð Þh i,
ð9Þ

with F denoting the Fourier transform, and therefore ns kð Þ~rTS kð Þ=2. Hence, in a
momentum regime p/LD = k= p/js where the the scaling behaviour is dominated by
a single domain wall, ns*S*k{3 follows from an ansatz in terms of the Heaviside
function Sz 5 6(1 2 2h(x)), Sx ; Sy ; 0. This feature is similar to the scaling induced
by solitons in one-dimensional Bose gases, where the phase jump occurs in the
bosonic field and induces a scaling n1D , k22, see Ref. 34.

Similarly, the appearance of quantised vortices induces scaling behaviour of the
incompressible energy ni. On scales considerably smaller than the mean distance
between vortices, the effective velocity field jwi(r)j associated with the rotational flow
decays as 1/r with growing distance r from the nearest vortex core. As a result, the
angle-averaged incompressible kinetic energy distribution * w2

i



 

�2 gives rise to the
IR momentum spectrum ni(k) , k24, whereas compressible excitations vanish.
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